blob: 9aa18f387a34679de8a7b399f0bfefb54178d772 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/interrupt.h>
29#include <linux/sysctl.h>
30#include <linux/slab.h>
31#include <linux/acpi.h>
32#include <linux/completion.h>
33#include <linux/hyperv.h>
34#include <linux/kernel_stat.h>
35#include <linux/clockchips.h>
36#include <linux/cpu.h>
37#include <linux/sched/task_stack.h>
38
39#include <asm/mshyperv.h>
40#include <linux/notifier.h>
41#include <linux/ptrace.h>
42#include <linux/screen_info.h>
43#include <linux/kdebug.h>
44#include <linux/efi.h>
45#include <linux/random.h>
46#include "hyperv_vmbus.h"
47
48struct vmbus_dynid {
49 struct list_head node;
50 struct hv_vmbus_device_id id;
51};
52
53static struct acpi_device *hv_acpi_dev;
54
55static struct completion probe_event;
56
57static int hyperv_cpuhp_online;
58
59static void *hv_panic_page;
60
61static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 void *args)
63{
64 struct pt_regs *regs;
65
66 regs = current_pt_regs();
67
68 hyperv_report_panic(regs, val);
69 return NOTIFY_DONE;
70}
71
72static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 void *args)
74{
75 struct die_args *die = (struct die_args *)args;
76 struct pt_regs *regs = die->regs;
77
78 hyperv_report_panic(regs, val);
79 return NOTIFY_DONE;
80}
81
82static struct notifier_block hyperv_die_block = {
83 .notifier_call = hyperv_die_event,
84};
85static struct notifier_block hyperv_panic_block = {
86 .notifier_call = hyperv_panic_event,
87};
88
89static const char *fb_mmio_name = "fb_range";
90static struct resource *fb_mmio;
91static struct resource *hyperv_mmio;
92static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93
94static int vmbus_exists(void)
95{
96 if (hv_acpi_dev == NULL)
97 return -ENODEV;
98
99 return 0;
100}
101
102#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104{
105 int i;
106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108}
109
110static u8 channel_monitor_group(const struct vmbus_channel *channel)
111{
112 return (u8)channel->offermsg.monitorid / 32;
113}
114
115static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116{
117 return (u8)channel->offermsg.monitorid % 32;
118}
119
120static u32 channel_pending(const struct vmbus_channel *channel,
121 const struct hv_monitor_page *monitor_page)
122{
123 u8 monitor_group = channel_monitor_group(channel);
124
125 return monitor_page->trigger_group[monitor_group].pending;
126}
127
128static u32 channel_latency(const struct vmbus_channel *channel,
129 const struct hv_monitor_page *monitor_page)
130{
131 u8 monitor_group = channel_monitor_group(channel);
132 u8 monitor_offset = channel_monitor_offset(channel);
133
134 return monitor_page->latency[monitor_group][monitor_offset];
135}
136
137static u32 channel_conn_id(struct vmbus_channel *channel,
138 struct hv_monitor_page *monitor_page)
139{
140 u8 monitor_group = channel_monitor_group(channel);
141 u8 monitor_offset = channel_monitor_offset(channel);
142 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143}
144
145static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
146 char *buf)
147{
148 struct hv_device *hv_dev = device_to_hv_device(dev);
149
150 if (!hv_dev->channel)
151 return -ENODEV;
152 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153}
154static DEVICE_ATTR_RO(id);
155
156static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
157 char *buf)
158{
159 struct hv_device *hv_dev = device_to_hv_device(dev);
160
161 if (!hv_dev->channel)
162 return -ENODEV;
163 return sprintf(buf, "%d\n", hv_dev->channel->state);
164}
165static DEVICE_ATTR_RO(state);
166
167static ssize_t monitor_id_show(struct device *dev,
168 struct device_attribute *dev_attr, char *buf)
169{
170 struct hv_device *hv_dev = device_to_hv_device(dev);
171
172 if (!hv_dev->channel)
173 return -ENODEV;
174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175}
176static DEVICE_ATTR_RO(monitor_id);
177
178static ssize_t class_id_show(struct device *dev,
179 struct device_attribute *dev_attr, char *buf)
180{
181 struct hv_device *hv_dev = device_to_hv_device(dev);
182
183 if (!hv_dev->channel)
184 return -ENODEV;
185 return sprintf(buf, "{%pUl}\n",
186 hv_dev->channel->offermsg.offer.if_type.b);
187}
188static DEVICE_ATTR_RO(class_id);
189
190static ssize_t device_id_show(struct device *dev,
191 struct device_attribute *dev_attr, char *buf)
192{
193 struct hv_device *hv_dev = device_to_hv_device(dev);
194
195 if (!hv_dev->channel)
196 return -ENODEV;
197 return sprintf(buf, "{%pUl}\n",
198 hv_dev->channel->offermsg.offer.if_instance.b);
199}
200static DEVICE_ATTR_RO(device_id);
201
202static ssize_t modalias_show(struct device *dev,
203 struct device_attribute *dev_attr, char *buf)
204{
205 struct hv_device *hv_dev = device_to_hv_device(dev);
206 char alias_name[VMBUS_ALIAS_LEN + 1];
207
208 print_alias_name(hv_dev, alias_name);
209 return sprintf(buf, "vmbus:%s\n", alias_name);
210}
211static DEVICE_ATTR_RO(modalias);
212
213#ifdef CONFIG_NUMA
214static ssize_t numa_node_show(struct device *dev,
215 struct device_attribute *attr, char *buf)
216{
217 struct hv_device *hv_dev = device_to_hv_device(dev);
218
219 if (!hv_dev->channel)
220 return -ENODEV;
221
222 return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
223}
224static DEVICE_ATTR_RO(numa_node);
225#endif
226
227static ssize_t server_monitor_pending_show(struct device *dev,
228 struct device_attribute *dev_attr,
229 char *buf)
230{
231 struct hv_device *hv_dev = device_to_hv_device(dev);
232
233 if (!hv_dev->channel)
234 return -ENODEV;
235 return sprintf(buf, "%d\n",
236 channel_pending(hv_dev->channel,
237 vmbus_connection.monitor_pages[1]));
238}
239static DEVICE_ATTR_RO(server_monitor_pending);
240
241static ssize_t client_monitor_pending_show(struct device *dev,
242 struct device_attribute *dev_attr,
243 char *buf)
244{
245 struct hv_device *hv_dev = device_to_hv_device(dev);
246
247 if (!hv_dev->channel)
248 return -ENODEV;
249 return sprintf(buf, "%d\n",
250 channel_pending(hv_dev->channel,
251 vmbus_connection.monitor_pages[1]));
252}
253static DEVICE_ATTR_RO(client_monitor_pending);
254
255static ssize_t server_monitor_latency_show(struct device *dev,
256 struct device_attribute *dev_attr,
257 char *buf)
258{
259 struct hv_device *hv_dev = device_to_hv_device(dev);
260
261 if (!hv_dev->channel)
262 return -ENODEV;
263 return sprintf(buf, "%d\n",
264 channel_latency(hv_dev->channel,
265 vmbus_connection.monitor_pages[0]));
266}
267static DEVICE_ATTR_RO(server_monitor_latency);
268
269static ssize_t client_monitor_latency_show(struct device *dev,
270 struct device_attribute *dev_attr,
271 char *buf)
272{
273 struct hv_device *hv_dev = device_to_hv_device(dev);
274
275 if (!hv_dev->channel)
276 return -ENODEV;
277 return sprintf(buf, "%d\n",
278 channel_latency(hv_dev->channel,
279 vmbus_connection.monitor_pages[1]));
280}
281static DEVICE_ATTR_RO(client_monitor_latency);
282
283static ssize_t server_monitor_conn_id_show(struct device *dev,
284 struct device_attribute *dev_attr,
285 char *buf)
286{
287 struct hv_device *hv_dev = device_to_hv_device(dev);
288
289 if (!hv_dev->channel)
290 return -ENODEV;
291 return sprintf(buf, "%d\n",
292 channel_conn_id(hv_dev->channel,
293 vmbus_connection.monitor_pages[0]));
294}
295static DEVICE_ATTR_RO(server_monitor_conn_id);
296
297static ssize_t client_monitor_conn_id_show(struct device *dev,
298 struct device_attribute *dev_attr,
299 char *buf)
300{
301 struct hv_device *hv_dev = device_to_hv_device(dev);
302
303 if (!hv_dev->channel)
304 return -ENODEV;
305 return sprintf(buf, "%d\n",
306 channel_conn_id(hv_dev->channel,
307 vmbus_connection.monitor_pages[1]));
308}
309static DEVICE_ATTR_RO(client_monitor_conn_id);
310
311static ssize_t out_intr_mask_show(struct device *dev,
312 struct device_attribute *dev_attr, char *buf)
313{
314 struct hv_device *hv_dev = device_to_hv_device(dev);
315 struct hv_ring_buffer_debug_info outbound;
316 int ret;
317
318 if (!hv_dev->channel)
319 return -ENODEV;
320
321 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
322 &outbound);
323 if (ret < 0)
324 return ret;
325
326 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
327}
328static DEVICE_ATTR_RO(out_intr_mask);
329
330static ssize_t out_read_index_show(struct device *dev,
331 struct device_attribute *dev_attr, char *buf)
332{
333 struct hv_device *hv_dev = device_to_hv_device(dev);
334 struct hv_ring_buffer_debug_info outbound;
335 int ret;
336
337 if (!hv_dev->channel)
338 return -ENODEV;
339
340 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
341 &outbound);
342 if (ret < 0)
343 return ret;
344 return sprintf(buf, "%d\n", outbound.current_read_index);
345}
346static DEVICE_ATTR_RO(out_read_index);
347
348static ssize_t out_write_index_show(struct device *dev,
349 struct device_attribute *dev_attr,
350 char *buf)
351{
352 struct hv_device *hv_dev = device_to_hv_device(dev);
353 struct hv_ring_buffer_debug_info outbound;
354 int ret;
355
356 if (!hv_dev->channel)
357 return -ENODEV;
358
359 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
360 &outbound);
361 if (ret < 0)
362 return ret;
363 return sprintf(buf, "%d\n", outbound.current_write_index);
364}
365static DEVICE_ATTR_RO(out_write_index);
366
367static ssize_t out_read_bytes_avail_show(struct device *dev,
368 struct device_attribute *dev_attr,
369 char *buf)
370{
371 struct hv_device *hv_dev = device_to_hv_device(dev);
372 struct hv_ring_buffer_debug_info outbound;
373 int ret;
374
375 if (!hv_dev->channel)
376 return -ENODEV;
377
378 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
379 &outbound);
380 if (ret < 0)
381 return ret;
382 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
383}
384static DEVICE_ATTR_RO(out_read_bytes_avail);
385
386static ssize_t out_write_bytes_avail_show(struct device *dev,
387 struct device_attribute *dev_attr,
388 char *buf)
389{
390 struct hv_device *hv_dev = device_to_hv_device(dev);
391 struct hv_ring_buffer_debug_info outbound;
392 int ret;
393
394 if (!hv_dev->channel)
395 return -ENODEV;
396
397 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
398 &outbound);
399 if (ret < 0)
400 return ret;
401 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
402}
403static DEVICE_ATTR_RO(out_write_bytes_avail);
404
405static ssize_t in_intr_mask_show(struct device *dev,
406 struct device_attribute *dev_attr, char *buf)
407{
408 struct hv_device *hv_dev = device_to_hv_device(dev);
409 struct hv_ring_buffer_debug_info inbound;
410 int ret;
411
412 if (!hv_dev->channel)
413 return -ENODEV;
414
415 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
416 if (ret < 0)
417 return ret;
418
419 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
420}
421static DEVICE_ATTR_RO(in_intr_mask);
422
423static ssize_t in_read_index_show(struct device *dev,
424 struct device_attribute *dev_attr, char *buf)
425{
426 struct hv_device *hv_dev = device_to_hv_device(dev);
427 struct hv_ring_buffer_debug_info inbound;
428 int ret;
429
430 if (!hv_dev->channel)
431 return -ENODEV;
432
433 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
434 if (ret < 0)
435 return ret;
436
437 return sprintf(buf, "%d\n", inbound.current_read_index);
438}
439static DEVICE_ATTR_RO(in_read_index);
440
441static ssize_t in_write_index_show(struct device *dev,
442 struct device_attribute *dev_attr, char *buf)
443{
444 struct hv_device *hv_dev = device_to_hv_device(dev);
445 struct hv_ring_buffer_debug_info inbound;
446 int ret;
447
448 if (!hv_dev->channel)
449 return -ENODEV;
450
451 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
452 if (ret < 0)
453 return ret;
454
455 return sprintf(buf, "%d\n", inbound.current_write_index);
456}
457static DEVICE_ATTR_RO(in_write_index);
458
459static ssize_t in_read_bytes_avail_show(struct device *dev,
460 struct device_attribute *dev_attr,
461 char *buf)
462{
463 struct hv_device *hv_dev = device_to_hv_device(dev);
464 struct hv_ring_buffer_debug_info inbound;
465 int ret;
466
467 if (!hv_dev->channel)
468 return -ENODEV;
469
470 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
471 if (ret < 0)
472 return ret;
473
474 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
475}
476static DEVICE_ATTR_RO(in_read_bytes_avail);
477
478static ssize_t in_write_bytes_avail_show(struct device *dev,
479 struct device_attribute *dev_attr,
480 char *buf)
481{
482 struct hv_device *hv_dev = device_to_hv_device(dev);
483 struct hv_ring_buffer_debug_info inbound;
484 int ret;
485
486 if (!hv_dev->channel)
487 return -ENODEV;
488
489 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
490 if (ret < 0)
491 return ret;
492
493 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
494}
495static DEVICE_ATTR_RO(in_write_bytes_avail);
496
497static ssize_t channel_vp_mapping_show(struct device *dev,
498 struct device_attribute *dev_attr,
499 char *buf)
500{
501 struct hv_device *hv_dev = device_to_hv_device(dev);
502 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
503 unsigned long flags;
504 int buf_size = PAGE_SIZE, n_written, tot_written;
505 struct list_head *cur;
506
507 if (!channel)
508 return -ENODEV;
509
510 tot_written = snprintf(buf, buf_size, "%u:%u\n",
511 channel->offermsg.child_relid, channel->target_cpu);
512
513 spin_lock_irqsave(&channel->lock, flags);
514
515 list_for_each(cur, &channel->sc_list) {
516 if (tot_written >= buf_size - 1)
517 break;
518
519 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
520 n_written = scnprintf(buf + tot_written,
521 buf_size - tot_written,
522 "%u:%u\n",
523 cur_sc->offermsg.child_relid,
524 cur_sc->target_cpu);
525 tot_written += n_written;
526 }
527
528 spin_unlock_irqrestore(&channel->lock, flags);
529
530 return tot_written;
531}
532static DEVICE_ATTR_RO(channel_vp_mapping);
533
534static ssize_t vendor_show(struct device *dev,
535 struct device_attribute *dev_attr,
536 char *buf)
537{
538 struct hv_device *hv_dev = device_to_hv_device(dev);
539 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
540}
541static DEVICE_ATTR_RO(vendor);
542
543static ssize_t device_show(struct device *dev,
544 struct device_attribute *dev_attr,
545 char *buf)
546{
547 struct hv_device *hv_dev = device_to_hv_device(dev);
548 return sprintf(buf, "0x%x\n", hv_dev->device_id);
549}
550static DEVICE_ATTR_RO(device);
551
552/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
553static struct attribute *vmbus_dev_attrs[] = {
554 &dev_attr_id.attr,
555 &dev_attr_state.attr,
556 &dev_attr_monitor_id.attr,
557 &dev_attr_class_id.attr,
558 &dev_attr_device_id.attr,
559 &dev_attr_modalias.attr,
560#ifdef CONFIG_NUMA
561 &dev_attr_numa_node.attr,
562#endif
563 &dev_attr_server_monitor_pending.attr,
564 &dev_attr_client_monitor_pending.attr,
565 &dev_attr_server_monitor_latency.attr,
566 &dev_attr_client_monitor_latency.attr,
567 &dev_attr_server_monitor_conn_id.attr,
568 &dev_attr_client_monitor_conn_id.attr,
569 &dev_attr_out_intr_mask.attr,
570 &dev_attr_out_read_index.attr,
571 &dev_attr_out_write_index.attr,
572 &dev_attr_out_read_bytes_avail.attr,
573 &dev_attr_out_write_bytes_avail.attr,
574 &dev_attr_in_intr_mask.attr,
575 &dev_attr_in_read_index.attr,
576 &dev_attr_in_write_index.attr,
577 &dev_attr_in_read_bytes_avail.attr,
578 &dev_attr_in_write_bytes_avail.attr,
579 &dev_attr_channel_vp_mapping.attr,
580 &dev_attr_vendor.attr,
581 &dev_attr_device.attr,
582 NULL,
583};
584ATTRIBUTE_GROUPS(vmbus_dev);
585
586/*
587 * vmbus_uevent - add uevent for our device
588 *
589 * This routine is invoked when a device is added or removed on the vmbus to
590 * generate a uevent to udev in the userspace. The udev will then look at its
591 * rule and the uevent generated here to load the appropriate driver
592 *
593 * The alias string will be of the form vmbus:guid where guid is the string
594 * representation of the device guid (each byte of the guid will be
595 * represented with two hex characters.
596 */
597static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
598{
599 struct hv_device *dev = device_to_hv_device(device);
600 int ret;
601 char alias_name[VMBUS_ALIAS_LEN + 1];
602
603 print_alias_name(dev, alias_name);
604 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
605 return ret;
606}
607
608static const uuid_le null_guid;
609
610static inline bool is_null_guid(const uuid_le *guid)
611{
612 if (uuid_le_cmp(*guid, null_guid))
613 return false;
614 return true;
615}
616
617/*
618 * Return a matching hv_vmbus_device_id pointer.
619 * If there is no match, return NULL.
620 */
621static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
622 const uuid_le *guid)
623{
624 const struct hv_vmbus_device_id *id = NULL;
625 struct vmbus_dynid *dynid;
626
627 /* Look at the dynamic ids first, before the static ones */
628 spin_lock(&drv->dynids.lock);
629 list_for_each_entry(dynid, &drv->dynids.list, node) {
630 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
631 id = &dynid->id;
632 break;
633 }
634 }
635 spin_unlock(&drv->dynids.lock);
636
637 if (id)
638 return id;
639
640 id = drv->id_table;
641 if (id == NULL)
642 return NULL; /* empty device table */
643
644 for (; !is_null_guid(&id->guid); id++)
645 if (!uuid_le_cmp(id->guid, *guid))
646 return id;
647
648 return NULL;
649}
650
651/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
652static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
653{
654 struct vmbus_dynid *dynid;
655
656 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
657 if (!dynid)
658 return -ENOMEM;
659
660 dynid->id.guid = *guid;
661
662 spin_lock(&drv->dynids.lock);
663 list_add_tail(&dynid->node, &drv->dynids.list);
664 spin_unlock(&drv->dynids.lock);
665
666 return driver_attach(&drv->driver);
667}
668
669static void vmbus_free_dynids(struct hv_driver *drv)
670{
671 struct vmbus_dynid *dynid, *n;
672
673 spin_lock(&drv->dynids.lock);
674 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
675 list_del(&dynid->node);
676 kfree(dynid);
677 }
678 spin_unlock(&drv->dynids.lock);
679}
680
681/*
682 * store_new_id - sysfs frontend to vmbus_add_dynid()
683 *
684 * Allow GUIDs to be added to an existing driver via sysfs.
685 */
686static ssize_t new_id_store(struct device_driver *driver, const char *buf,
687 size_t count)
688{
689 struct hv_driver *drv = drv_to_hv_drv(driver);
690 uuid_le guid;
691 ssize_t retval;
692
693 retval = uuid_le_to_bin(buf, &guid);
694 if (retval)
695 return retval;
696
697 if (hv_vmbus_get_id(drv, &guid))
698 return -EEXIST;
699
700 retval = vmbus_add_dynid(drv, &guid);
701 if (retval)
702 return retval;
703 return count;
704}
705static DRIVER_ATTR_WO(new_id);
706
707/*
708 * store_remove_id - remove a PCI device ID from this driver
709 *
710 * Removes a dynamic pci device ID to this driver.
711 */
712static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
713 size_t count)
714{
715 struct hv_driver *drv = drv_to_hv_drv(driver);
716 struct vmbus_dynid *dynid, *n;
717 uuid_le guid;
718 ssize_t retval;
719
720 retval = uuid_le_to_bin(buf, &guid);
721 if (retval)
722 return retval;
723
724 retval = -ENODEV;
725 spin_lock(&drv->dynids.lock);
726 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
727 struct hv_vmbus_device_id *id = &dynid->id;
728
729 if (!uuid_le_cmp(id->guid, guid)) {
730 list_del(&dynid->node);
731 kfree(dynid);
732 retval = count;
733 break;
734 }
735 }
736 spin_unlock(&drv->dynids.lock);
737
738 return retval;
739}
740static DRIVER_ATTR_WO(remove_id);
741
742static struct attribute *vmbus_drv_attrs[] = {
743 &driver_attr_new_id.attr,
744 &driver_attr_remove_id.attr,
745 NULL,
746};
747ATTRIBUTE_GROUPS(vmbus_drv);
748
749
750/*
751 * vmbus_match - Attempt to match the specified device to the specified driver
752 */
753static int vmbus_match(struct device *device, struct device_driver *driver)
754{
755 struct hv_driver *drv = drv_to_hv_drv(driver);
756 struct hv_device *hv_dev = device_to_hv_device(device);
757
758 /* The hv_sock driver handles all hv_sock offers. */
759 if (is_hvsock_channel(hv_dev->channel))
760 return drv->hvsock;
761
762 if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
763 return 1;
764
765 return 0;
766}
767
768/*
769 * vmbus_probe - Add the new vmbus's child device
770 */
771static int vmbus_probe(struct device *child_device)
772{
773 int ret = 0;
774 struct hv_driver *drv =
775 drv_to_hv_drv(child_device->driver);
776 struct hv_device *dev = device_to_hv_device(child_device);
777 const struct hv_vmbus_device_id *dev_id;
778
779 dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
780 if (drv->probe) {
781 ret = drv->probe(dev, dev_id);
782 if (ret != 0)
783 pr_err("probe failed for device %s (%d)\n",
784 dev_name(child_device), ret);
785
786 } else {
787 pr_err("probe not set for driver %s\n",
788 dev_name(child_device));
789 ret = -ENODEV;
790 }
791 return ret;
792}
793
794/*
795 * vmbus_remove - Remove a vmbus device
796 */
797static int vmbus_remove(struct device *child_device)
798{
799 struct hv_driver *drv;
800 struct hv_device *dev = device_to_hv_device(child_device);
801
802 if (child_device->driver) {
803 drv = drv_to_hv_drv(child_device->driver);
804 if (drv->remove)
805 drv->remove(dev);
806 }
807
808 return 0;
809}
810
811
812/*
813 * vmbus_shutdown - Shutdown a vmbus device
814 */
815static void vmbus_shutdown(struct device *child_device)
816{
817 struct hv_driver *drv;
818 struct hv_device *dev = device_to_hv_device(child_device);
819
820
821 /* The device may not be attached yet */
822 if (!child_device->driver)
823 return;
824
825 drv = drv_to_hv_drv(child_device->driver);
826
827 if (drv->shutdown)
828 drv->shutdown(dev);
829}
830
831
832/*
833 * vmbus_device_release - Final callback release of the vmbus child device
834 */
835static void vmbus_device_release(struct device *device)
836{
837 struct hv_device *hv_dev = device_to_hv_device(device);
838 struct vmbus_channel *channel = hv_dev->channel;
839
840 mutex_lock(&vmbus_connection.channel_mutex);
841 hv_process_channel_removal(channel->offermsg.child_relid);
842 mutex_unlock(&vmbus_connection.channel_mutex);
843 kfree(hv_dev);
844
845}
846
847/* The one and only one */
848static struct bus_type hv_bus = {
849 .name = "vmbus",
850 .match = vmbus_match,
851 .shutdown = vmbus_shutdown,
852 .remove = vmbus_remove,
853 .probe = vmbus_probe,
854 .uevent = vmbus_uevent,
855 .dev_groups = vmbus_dev_groups,
856 .drv_groups = vmbus_drv_groups,
857};
858
859struct onmessage_work_context {
860 struct work_struct work;
861 struct hv_message msg;
862};
863
864static void vmbus_onmessage_work(struct work_struct *work)
865{
866 struct onmessage_work_context *ctx;
867
868 /* Do not process messages if we're in DISCONNECTED state */
869 if (vmbus_connection.conn_state == DISCONNECTED)
870 return;
871
872 ctx = container_of(work, struct onmessage_work_context,
873 work);
874 vmbus_onmessage(&ctx->msg);
875 kfree(ctx);
876}
877
878static void hv_process_timer_expiration(struct hv_message *msg,
879 struct hv_per_cpu_context *hv_cpu)
880{
881 struct clock_event_device *dev = hv_cpu->clk_evt;
882
883 if (dev->event_handler)
884 dev->event_handler(dev);
885
886 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
887}
888
889void vmbus_on_msg_dpc(unsigned long data)
890{
891 struct hv_per_cpu_context *hv_cpu = (void *)data;
892 void *page_addr = hv_cpu->synic_message_page;
893 struct hv_message *msg = (struct hv_message *)page_addr +
894 VMBUS_MESSAGE_SINT;
895 struct vmbus_channel_message_header *hdr;
896 const struct vmbus_channel_message_table_entry *entry;
897 struct onmessage_work_context *ctx;
898 u32 message_type = msg->header.message_type;
899
900 if (message_type == HVMSG_NONE)
901 /* no msg */
902 return;
903
904 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
905
906 trace_vmbus_on_msg_dpc(hdr);
907
908 if (hdr->msgtype >= CHANNELMSG_COUNT) {
909 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
910 goto msg_handled;
911 }
912
913 entry = &channel_message_table[hdr->msgtype];
914 if (entry->handler_type == VMHT_BLOCKING) {
915 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
916 if (ctx == NULL)
917 return;
918
919 INIT_WORK(&ctx->work, vmbus_onmessage_work);
920 memcpy(&ctx->msg, msg, sizeof(*msg));
921
922 /*
923 * The host can generate a rescind message while we
924 * may still be handling the original offer. We deal with
925 * this condition by ensuring the processing is done on the
926 * same CPU.
927 */
928 switch (hdr->msgtype) {
929 case CHANNELMSG_RESCIND_CHANNELOFFER:
930 /*
931 * If we are handling the rescind message;
932 * schedule the work on the global work queue.
933 */
934 schedule_work_on(vmbus_connection.connect_cpu,
935 &ctx->work);
936 break;
937
938 case CHANNELMSG_OFFERCHANNEL:
939 atomic_inc(&vmbus_connection.offer_in_progress);
940 queue_work_on(vmbus_connection.connect_cpu,
941 vmbus_connection.work_queue,
942 &ctx->work);
943 break;
944
945 default:
946 queue_work(vmbus_connection.work_queue, &ctx->work);
947 }
948 } else
949 entry->message_handler(hdr);
950
951msg_handled:
952 vmbus_signal_eom(msg, message_type);
953}
954
955
956/*
957 * Direct callback for channels using other deferred processing
958 */
959static void vmbus_channel_isr(struct vmbus_channel *channel)
960{
961 void (*callback_fn)(void *);
962
963 callback_fn = READ_ONCE(channel->onchannel_callback);
964 if (likely(callback_fn != NULL))
965 (*callback_fn)(channel->channel_callback_context);
966}
967
968/*
969 * Schedule all channels with events pending
970 */
971static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
972{
973 unsigned long *recv_int_page;
974 u32 maxbits, relid;
975
976 if (vmbus_proto_version < VERSION_WIN8) {
977 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
978 recv_int_page = vmbus_connection.recv_int_page;
979 } else {
980 /*
981 * When the host is win8 and beyond, the event page
982 * can be directly checked to get the id of the channel
983 * that has the interrupt pending.
984 */
985 void *page_addr = hv_cpu->synic_event_page;
986 union hv_synic_event_flags *event
987 = (union hv_synic_event_flags *)page_addr +
988 VMBUS_MESSAGE_SINT;
989
990 maxbits = HV_EVENT_FLAGS_COUNT;
991 recv_int_page = event->flags;
992 }
993
994 if (unlikely(!recv_int_page))
995 return;
996
997 for_each_set_bit(relid, recv_int_page, maxbits) {
998 struct vmbus_channel *channel;
999
1000 if (!sync_test_and_clear_bit(relid, recv_int_page))
1001 continue;
1002
1003 /* Special case - vmbus channel protocol msg */
1004 if (relid == 0)
1005 continue;
1006
1007 rcu_read_lock();
1008
1009 /* Find channel based on relid */
1010 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1011 if (channel->offermsg.child_relid != relid)
1012 continue;
1013
1014 if (channel->rescind)
1015 continue;
1016
1017 trace_vmbus_chan_sched(channel);
1018
1019 ++channel->interrupts;
1020
1021 switch (channel->callback_mode) {
1022 case HV_CALL_ISR:
1023 vmbus_channel_isr(channel);
1024 break;
1025
1026 case HV_CALL_BATCHED:
1027 hv_begin_read(&channel->inbound);
1028 /* fallthrough */
1029 case HV_CALL_DIRECT:
1030 tasklet_schedule(&channel->callback_event);
1031 }
1032 }
1033
1034 rcu_read_unlock();
1035 }
1036}
1037
1038static void vmbus_isr(void)
1039{
1040 struct hv_per_cpu_context *hv_cpu
1041 = this_cpu_ptr(hv_context.cpu_context);
1042 void *page_addr = hv_cpu->synic_event_page;
1043 struct hv_message *msg;
1044 union hv_synic_event_flags *event;
1045 bool handled = false;
1046
1047 if (unlikely(page_addr == NULL))
1048 return;
1049
1050 event = (union hv_synic_event_flags *)page_addr +
1051 VMBUS_MESSAGE_SINT;
1052 /*
1053 * Check for events before checking for messages. This is the order
1054 * in which events and messages are checked in Windows guests on
1055 * Hyper-V, and the Windows team suggested we do the same.
1056 */
1057
1058 if ((vmbus_proto_version == VERSION_WS2008) ||
1059 (vmbus_proto_version == VERSION_WIN7)) {
1060
1061 /* Since we are a child, we only need to check bit 0 */
1062 if (sync_test_and_clear_bit(0, event->flags))
1063 handled = true;
1064 } else {
1065 /*
1066 * Our host is win8 or above. The signaling mechanism
1067 * has changed and we can directly look at the event page.
1068 * If bit n is set then we have an interrup on the channel
1069 * whose id is n.
1070 */
1071 handled = true;
1072 }
1073
1074 if (handled)
1075 vmbus_chan_sched(hv_cpu);
1076
1077 page_addr = hv_cpu->synic_message_page;
1078 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1079
1080 /* Check if there are actual msgs to be processed */
1081 if (msg->header.message_type != HVMSG_NONE) {
1082 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1083 hv_process_timer_expiration(msg, hv_cpu);
1084 else
1085 tasklet_schedule(&hv_cpu->msg_dpc);
1086 }
1087
1088 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1089}
1090
1091/*
1092 * Boolean to control whether to report panic messages over Hyper-V.
1093 *
1094 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1095 */
1096static int sysctl_record_panic_msg = 1;
1097
1098/*
1099 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1100 * buffer and call into Hyper-V to transfer the data.
1101 */
1102static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1103 enum kmsg_dump_reason reason)
1104{
1105 size_t bytes_written;
1106 phys_addr_t panic_pa;
1107
1108 /* We are only interested in panics. */
1109 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1110 return;
1111
1112 panic_pa = virt_to_phys(hv_panic_page);
1113
1114 /*
1115 * Write dump contents to the page. No need to synchronize; panic should
1116 * be single-threaded.
1117 */
1118 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1119 &bytes_written);
1120 if (bytes_written)
1121 hyperv_report_panic_msg(panic_pa, bytes_written);
1122}
1123
1124static struct kmsg_dumper hv_kmsg_dumper = {
1125 .dump = hv_kmsg_dump,
1126};
1127
1128static struct ctl_table_header *hv_ctl_table_hdr;
1129static int zero;
1130static int one = 1;
1131
1132/*
1133 * sysctl option to allow the user to control whether kmsg data should be
1134 * reported to Hyper-V on panic.
1135 */
1136static struct ctl_table hv_ctl_table[] = {
1137 {
1138 .procname = "hyperv_record_panic_msg",
1139 .data = &sysctl_record_panic_msg,
1140 .maxlen = sizeof(int),
1141 .mode = 0644,
1142 .proc_handler = proc_dointvec_minmax,
1143 .extra1 = &zero,
1144 .extra2 = &one
1145 },
1146 {}
1147};
1148
1149static struct ctl_table hv_root_table[] = {
1150 {
1151 .procname = "kernel",
1152 .mode = 0555,
1153 .child = hv_ctl_table
1154 },
1155 {}
1156};
1157
1158/*
1159 * vmbus_bus_init -Main vmbus driver initialization routine.
1160 *
1161 * Here, we
1162 * - initialize the vmbus driver context
1163 * - invoke the vmbus hv main init routine
1164 * - retrieve the channel offers
1165 */
1166static int vmbus_bus_init(void)
1167{
1168 int ret;
1169
1170 /* Hypervisor initialization...setup hypercall page..etc */
1171 ret = hv_init();
1172 if (ret != 0) {
1173 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1174 return ret;
1175 }
1176
1177 ret = bus_register(&hv_bus);
1178 if (ret)
1179 return ret;
1180
1181 hv_setup_vmbus_irq(vmbus_isr);
1182
1183 ret = hv_synic_alloc();
1184 if (ret)
1185 goto err_alloc;
1186 /*
1187 * Initialize the per-cpu interrupt state and
1188 * connect to the host.
1189 */
1190 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1191 hv_synic_init, hv_synic_cleanup);
1192 if (ret < 0)
1193 goto err_alloc;
1194 hyperv_cpuhp_online = ret;
1195
1196 ret = vmbus_connect();
1197 if (ret)
1198 goto err_connect;
1199
1200 /*
1201 * Only register if the crash MSRs are available
1202 */
1203 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1204 u64 hyperv_crash_ctl;
1205 /*
1206 * Sysctl registration is not fatal, since by default
1207 * reporting is enabled.
1208 */
1209 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1210 if (!hv_ctl_table_hdr)
1211 pr_err("Hyper-V: sysctl table register error");
1212
1213 /*
1214 * Register for panic kmsg callback only if the right
1215 * capability is supported by the hypervisor.
1216 */
1217 hv_get_crash_ctl(hyperv_crash_ctl);
1218 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1219 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1220 if (hv_panic_page) {
1221 ret = kmsg_dump_register(&hv_kmsg_dumper);
1222 if (ret)
1223 pr_err("Hyper-V: kmsg dump register "
1224 "error 0x%x\n", ret);
1225 } else
1226 pr_err("Hyper-V: panic message page memory "
1227 "allocation failed");
1228 }
1229
1230 register_die_notifier(&hyperv_die_block);
1231 atomic_notifier_chain_register(&panic_notifier_list,
1232 &hyperv_panic_block);
1233 }
1234
1235 vmbus_request_offers();
1236
1237 return 0;
1238
1239err_connect:
1240 cpuhp_remove_state(hyperv_cpuhp_online);
1241err_alloc:
1242 hv_synic_free();
1243 hv_remove_vmbus_irq();
1244
1245 bus_unregister(&hv_bus);
1246 free_page((unsigned long)hv_panic_page);
1247 unregister_sysctl_table(hv_ctl_table_hdr);
1248 hv_ctl_table_hdr = NULL;
1249 return ret;
1250}
1251
1252/**
1253 * __vmbus_child_driver_register() - Register a vmbus's driver
1254 * @hv_driver: Pointer to driver structure you want to register
1255 * @owner: owner module of the drv
1256 * @mod_name: module name string
1257 *
1258 * Registers the given driver with Linux through the 'driver_register()' call
1259 * and sets up the hyper-v vmbus handling for this driver.
1260 * It will return the state of the 'driver_register()' call.
1261 *
1262 */
1263int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1264{
1265 int ret;
1266
1267 pr_info("registering driver %s\n", hv_driver->name);
1268
1269 ret = vmbus_exists();
1270 if (ret < 0)
1271 return ret;
1272
1273 hv_driver->driver.name = hv_driver->name;
1274 hv_driver->driver.owner = owner;
1275 hv_driver->driver.mod_name = mod_name;
1276 hv_driver->driver.bus = &hv_bus;
1277
1278 spin_lock_init(&hv_driver->dynids.lock);
1279 INIT_LIST_HEAD(&hv_driver->dynids.list);
1280
1281 ret = driver_register(&hv_driver->driver);
1282
1283 return ret;
1284}
1285EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1286
1287/**
1288 * vmbus_driver_unregister() - Unregister a vmbus's driver
1289 * @hv_driver: Pointer to driver structure you want to
1290 * un-register
1291 *
1292 * Un-register the given driver that was previous registered with a call to
1293 * vmbus_driver_register()
1294 */
1295void vmbus_driver_unregister(struct hv_driver *hv_driver)
1296{
1297 pr_info("unregistering driver %s\n", hv_driver->name);
1298
1299 if (!vmbus_exists()) {
1300 driver_unregister(&hv_driver->driver);
1301 vmbus_free_dynids(hv_driver);
1302 }
1303}
1304EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1305
1306
1307/*
1308 * Called when last reference to channel is gone.
1309 */
1310static void vmbus_chan_release(struct kobject *kobj)
1311{
1312 struct vmbus_channel *channel
1313 = container_of(kobj, struct vmbus_channel, kobj);
1314
1315 kfree_rcu(channel, rcu);
1316}
1317
1318struct vmbus_chan_attribute {
1319 struct attribute attr;
1320 ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1321 ssize_t (*store)(struct vmbus_channel *chan,
1322 const char *buf, size_t count);
1323};
1324#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1325 struct vmbus_chan_attribute chan_attr_##_name \
1326 = __ATTR(_name, _mode, _show, _store)
1327#define VMBUS_CHAN_ATTR_RW(_name) \
1328 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1329#define VMBUS_CHAN_ATTR_RO(_name) \
1330 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1331#define VMBUS_CHAN_ATTR_WO(_name) \
1332 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1333
1334static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1335 struct attribute *attr, char *buf)
1336{
1337 const struct vmbus_chan_attribute *attribute
1338 = container_of(attr, struct vmbus_chan_attribute, attr);
1339 const struct vmbus_channel *chan
1340 = container_of(kobj, struct vmbus_channel, kobj);
1341
1342 if (!attribute->show)
1343 return -EIO;
1344
1345 if (chan->state != CHANNEL_OPENED_STATE)
1346 return -EINVAL;
1347
1348 return attribute->show(chan, buf);
1349}
1350
1351static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1352 .show = vmbus_chan_attr_show,
1353};
1354
1355static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1356{
1357 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1358
1359 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1360}
1361static VMBUS_CHAN_ATTR_RO(out_mask);
1362
1363static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1364{
1365 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1366
1367 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1368}
1369static VMBUS_CHAN_ATTR_RO(in_mask);
1370
1371static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1372{
1373 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1374
1375 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1376}
1377static VMBUS_CHAN_ATTR_RO(read_avail);
1378
1379static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1380{
1381 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1382
1383 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1384}
1385static VMBUS_CHAN_ATTR_RO(write_avail);
1386
1387static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1388{
1389 return sprintf(buf, "%u\n", channel->target_cpu);
1390}
1391static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1392
1393static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1394 char *buf)
1395{
1396 return sprintf(buf, "%d\n",
1397 channel_pending(channel,
1398 vmbus_connection.monitor_pages[1]));
1399}
1400static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1401
1402static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1403 char *buf)
1404{
1405 return sprintf(buf, "%d\n",
1406 channel_latency(channel,
1407 vmbus_connection.monitor_pages[1]));
1408}
1409static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1410
1411static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1412{
1413 return sprintf(buf, "%llu\n", channel->interrupts);
1414}
1415static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1416
1417static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1418{
1419 return sprintf(buf, "%llu\n", channel->sig_events);
1420}
1421static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1422
1423static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1424 char *buf)
1425{
1426 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1427}
1428static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1429
1430static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1431 char *buf)
1432{
1433 return sprintf(buf, "%u\n",
1434 channel->offermsg.offer.sub_channel_index);
1435}
1436static VMBUS_CHAN_ATTR_RO(subchannel_id);
1437
1438static struct attribute *vmbus_chan_attrs[] = {
1439 &chan_attr_out_mask.attr,
1440 &chan_attr_in_mask.attr,
1441 &chan_attr_read_avail.attr,
1442 &chan_attr_write_avail.attr,
1443 &chan_attr_cpu.attr,
1444 &chan_attr_pending.attr,
1445 &chan_attr_latency.attr,
1446 &chan_attr_interrupts.attr,
1447 &chan_attr_events.attr,
1448 &chan_attr_monitor_id.attr,
1449 &chan_attr_subchannel_id.attr,
1450 NULL
1451};
1452
1453static struct kobj_type vmbus_chan_ktype = {
1454 .sysfs_ops = &vmbus_chan_sysfs_ops,
1455 .release = vmbus_chan_release,
1456 .default_attrs = vmbus_chan_attrs,
1457};
1458
1459/*
1460 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1461 */
1462int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1463{
1464 struct kobject *kobj = &channel->kobj;
1465 u32 relid = channel->offermsg.child_relid;
1466 int ret;
1467
1468 kobj->kset = dev->channels_kset;
1469 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1470 "%u", relid);
1471 if (ret)
1472 return ret;
1473
1474 kobject_uevent(kobj, KOBJ_ADD);
1475
1476 return 0;
1477}
1478
1479/*
1480 * vmbus_device_create - Creates and registers a new child device
1481 * on the vmbus.
1482 */
1483struct hv_device *vmbus_device_create(const uuid_le *type,
1484 const uuid_le *instance,
1485 struct vmbus_channel *channel)
1486{
1487 struct hv_device *child_device_obj;
1488
1489 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1490 if (!child_device_obj) {
1491 pr_err("Unable to allocate device object for child device\n");
1492 return NULL;
1493 }
1494
1495 child_device_obj->channel = channel;
1496 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1497 memcpy(&child_device_obj->dev_instance, instance,
1498 sizeof(uuid_le));
1499 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1500
1501
1502 return child_device_obj;
1503}
1504
1505/*
1506 * vmbus_device_register - Register the child device
1507 */
1508int vmbus_device_register(struct hv_device *child_device_obj)
1509{
1510 struct kobject *kobj = &child_device_obj->device.kobj;
1511 int ret;
1512
1513 dev_set_name(&child_device_obj->device, "%pUl",
1514 child_device_obj->channel->offermsg.offer.if_instance.b);
1515
1516 child_device_obj->device.bus = &hv_bus;
1517 child_device_obj->device.parent = &hv_acpi_dev->dev;
1518 child_device_obj->device.release = vmbus_device_release;
1519
1520 /*
1521 * Register with the LDM. This will kick off the driver/device
1522 * binding...which will eventually call vmbus_match() and vmbus_probe()
1523 */
1524 ret = device_register(&child_device_obj->device);
1525 if (ret) {
1526 pr_err("Unable to register child device\n");
1527 return ret;
1528 }
1529
1530 child_device_obj->channels_kset = kset_create_and_add("channels",
1531 NULL, kobj);
1532 if (!child_device_obj->channels_kset) {
1533 ret = -ENOMEM;
1534 goto err_dev_unregister;
1535 }
1536
1537 ret = vmbus_add_channel_kobj(child_device_obj,
1538 child_device_obj->channel);
1539 if (ret) {
1540 pr_err("Unable to register primary channeln");
1541 goto err_kset_unregister;
1542 }
1543
1544 return 0;
1545
1546err_kset_unregister:
1547 kset_unregister(child_device_obj->channels_kset);
1548
1549err_dev_unregister:
1550 device_unregister(&child_device_obj->device);
1551 return ret;
1552}
1553
1554/*
1555 * vmbus_device_unregister - Remove the specified child device
1556 * from the vmbus.
1557 */
1558void vmbus_device_unregister(struct hv_device *device_obj)
1559{
1560 pr_debug("child device %s unregistered\n",
1561 dev_name(&device_obj->device));
1562
1563 kset_unregister(device_obj->channels_kset);
1564
1565 /*
1566 * Kick off the process of unregistering the device.
1567 * This will call vmbus_remove() and eventually vmbus_device_release()
1568 */
1569 device_unregister(&device_obj->device);
1570}
1571
1572
1573/*
1574 * VMBUS is an acpi enumerated device. Get the information we
1575 * need from DSDT.
1576 */
1577#define VTPM_BASE_ADDRESS 0xfed40000
1578static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1579{
1580 resource_size_t start = 0;
1581 resource_size_t end = 0;
1582 struct resource *new_res;
1583 struct resource **old_res = &hyperv_mmio;
1584 struct resource **prev_res = NULL;
1585
1586 switch (res->type) {
1587
1588 /*
1589 * "Address" descriptors are for bus windows. Ignore
1590 * "memory" descriptors, which are for registers on
1591 * devices.
1592 */
1593 case ACPI_RESOURCE_TYPE_ADDRESS32:
1594 start = res->data.address32.address.minimum;
1595 end = res->data.address32.address.maximum;
1596 break;
1597
1598 case ACPI_RESOURCE_TYPE_ADDRESS64:
1599 start = res->data.address64.address.minimum;
1600 end = res->data.address64.address.maximum;
1601 break;
1602
1603 default:
1604 /* Unused resource type */
1605 return AE_OK;
1606
1607 }
1608 /*
1609 * Ignore ranges that are below 1MB, as they're not
1610 * necessary or useful here.
1611 */
1612 if (end < 0x100000)
1613 return AE_OK;
1614
1615 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1616 if (!new_res)
1617 return AE_NO_MEMORY;
1618
1619 /* If this range overlaps the virtual TPM, truncate it. */
1620 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1621 end = VTPM_BASE_ADDRESS;
1622
1623 new_res->name = "hyperv mmio";
1624 new_res->flags = IORESOURCE_MEM;
1625 new_res->start = start;
1626 new_res->end = end;
1627
1628 /*
1629 * If two ranges are adjacent, merge them.
1630 */
1631 do {
1632 if (!*old_res) {
1633 *old_res = new_res;
1634 break;
1635 }
1636
1637 if (((*old_res)->end + 1) == new_res->start) {
1638 (*old_res)->end = new_res->end;
1639 kfree(new_res);
1640 break;
1641 }
1642
1643 if ((*old_res)->start == new_res->end + 1) {
1644 (*old_res)->start = new_res->start;
1645 kfree(new_res);
1646 break;
1647 }
1648
1649 if ((*old_res)->start > new_res->end) {
1650 new_res->sibling = *old_res;
1651 if (prev_res)
1652 (*prev_res)->sibling = new_res;
1653 *old_res = new_res;
1654 break;
1655 }
1656
1657 prev_res = old_res;
1658 old_res = &(*old_res)->sibling;
1659
1660 } while (1);
1661
1662 return AE_OK;
1663}
1664
1665static int vmbus_acpi_remove(struct acpi_device *device)
1666{
1667 struct resource *cur_res;
1668 struct resource *next_res;
1669
1670 if (hyperv_mmio) {
1671 if (fb_mmio) {
1672 __release_region(hyperv_mmio, fb_mmio->start,
1673 resource_size(fb_mmio));
1674 fb_mmio = NULL;
1675 }
1676
1677 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1678 next_res = cur_res->sibling;
1679 kfree(cur_res);
1680 }
1681 }
1682
1683 return 0;
1684}
1685
1686static void vmbus_reserve_fb(void)
1687{
1688 int size;
1689 /*
1690 * Make a claim for the frame buffer in the resource tree under the
1691 * first node, which will be the one below 4GB. The length seems to
1692 * be underreported, particularly in a Generation 1 VM. So start out
1693 * reserving a larger area and make it smaller until it succeeds.
1694 */
1695
1696 if (screen_info.lfb_base) {
1697 if (efi_enabled(EFI_BOOT))
1698 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1699 else
1700 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1701
1702 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1703 fb_mmio = __request_region(hyperv_mmio,
1704 screen_info.lfb_base, size,
1705 fb_mmio_name, 0);
1706 }
1707 }
1708}
1709
1710/**
1711 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1712 * @new: If successful, supplied a pointer to the
1713 * allocated MMIO space.
1714 * @device_obj: Identifies the caller
1715 * @min: Minimum guest physical address of the
1716 * allocation
1717 * @max: Maximum guest physical address
1718 * @size: Size of the range to be allocated
1719 * @align: Alignment of the range to be allocated
1720 * @fb_overlap_ok: Whether this allocation can be allowed
1721 * to overlap the video frame buffer.
1722 *
1723 * This function walks the resources granted to VMBus by the
1724 * _CRS object in the ACPI namespace underneath the parent
1725 * "bridge" whether that's a root PCI bus in the Generation 1
1726 * case or a Module Device in the Generation 2 case. It then
1727 * attempts to allocate from the global MMIO pool in a way that
1728 * matches the constraints supplied in these parameters and by
1729 * that _CRS.
1730 *
1731 * Return: 0 on success, -errno on failure
1732 */
1733int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1734 resource_size_t min, resource_size_t max,
1735 resource_size_t size, resource_size_t align,
1736 bool fb_overlap_ok)
1737{
1738 struct resource *iter, *shadow;
1739 resource_size_t range_min, range_max, start;
1740 const char *dev_n = dev_name(&device_obj->device);
1741 int retval;
1742
1743 retval = -ENXIO;
1744 down(&hyperv_mmio_lock);
1745
1746 /*
1747 * If overlaps with frame buffers are allowed, then first attempt to
1748 * make the allocation from within the reserved region. Because it
1749 * is already reserved, no shadow allocation is necessary.
1750 */
1751 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1752 !(max < fb_mmio->start)) {
1753
1754 range_min = fb_mmio->start;
1755 range_max = fb_mmio->end;
1756 start = (range_min + align - 1) & ~(align - 1);
1757 for (; start + size - 1 <= range_max; start += align) {
1758 *new = request_mem_region_exclusive(start, size, dev_n);
1759 if (*new) {
1760 retval = 0;
1761 goto exit;
1762 }
1763 }
1764 }
1765
1766 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1767 if ((iter->start >= max) || (iter->end <= min))
1768 continue;
1769
1770 range_min = iter->start;
1771 range_max = iter->end;
1772 start = (range_min + align - 1) & ~(align - 1);
1773 for (; start + size - 1 <= range_max; start += align) {
1774 shadow = __request_region(iter, start, size, NULL,
1775 IORESOURCE_BUSY);
1776 if (!shadow)
1777 continue;
1778
1779 *new = request_mem_region_exclusive(start, size, dev_n);
1780 if (*new) {
1781 shadow->name = (char *)*new;
1782 retval = 0;
1783 goto exit;
1784 }
1785
1786 __release_region(iter, start, size);
1787 }
1788 }
1789
1790exit:
1791 up(&hyperv_mmio_lock);
1792 return retval;
1793}
1794EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1795
1796/**
1797 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1798 * @start: Base address of region to release.
1799 * @size: Size of the range to be allocated
1800 *
1801 * This function releases anything requested by
1802 * vmbus_mmio_allocate().
1803 */
1804void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1805{
1806 struct resource *iter;
1807
1808 down(&hyperv_mmio_lock);
1809 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1810 if ((iter->start >= start + size) || (iter->end <= start))
1811 continue;
1812
1813 __release_region(iter, start, size);
1814 }
1815 release_mem_region(start, size);
1816 up(&hyperv_mmio_lock);
1817
1818}
1819EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1820
1821static int vmbus_acpi_add(struct acpi_device *device)
1822{
1823 acpi_status result;
1824 int ret_val = -ENODEV;
1825 struct acpi_device *ancestor;
1826
1827 hv_acpi_dev = device;
1828
1829 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1830 vmbus_walk_resources, NULL);
1831
1832 if (ACPI_FAILURE(result))
1833 goto acpi_walk_err;
1834 /*
1835 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1836 * firmware) is the VMOD that has the mmio ranges. Get that.
1837 */
1838 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1839 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1840 vmbus_walk_resources, NULL);
1841
1842 if (ACPI_FAILURE(result))
1843 continue;
1844 if (hyperv_mmio) {
1845 vmbus_reserve_fb();
1846 break;
1847 }
1848 }
1849 ret_val = 0;
1850
1851acpi_walk_err:
1852 complete(&probe_event);
1853 if (ret_val)
1854 vmbus_acpi_remove(device);
1855 return ret_val;
1856}
1857
1858static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1859 {"VMBUS", 0},
1860 {"VMBus", 0},
1861 {"", 0},
1862};
1863MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1864
1865static struct acpi_driver vmbus_acpi_driver = {
1866 .name = "vmbus",
1867 .ids = vmbus_acpi_device_ids,
1868 .ops = {
1869 .add = vmbus_acpi_add,
1870 .remove = vmbus_acpi_remove,
1871 },
1872};
1873
1874static void hv_kexec_handler(void)
1875{
1876 hv_synic_clockevents_cleanup();
1877 vmbus_initiate_unload(false);
1878 vmbus_connection.conn_state = DISCONNECTED;
1879 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1880 mb();
1881 cpuhp_remove_state(hyperv_cpuhp_online);
1882 hyperv_cleanup();
1883};
1884
1885static void hv_crash_handler(struct pt_regs *regs)
1886{
1887 vmbus_initiate_unload(true);
1888 /*
1889 * In crash handler we can't schedule synic cleanup for all CPUs,
1890 * doing the cleanup for current CPU only. This should be sufficient
1891 * for kdump.
1892 */
1893 vmbus_connection.conn_state = DISCONNECTED;
1894 hv_synic_cleanup(smp_processor_id());
1895 hyperv_cleanup();
1896};
1897
1898static int __init hv_acpi_init(void)
1899{
1900 int ret, t;
1901
1902 if (!hv_is_hyperv_initialized())
1903 return -ENODEV;
1904
1905 init_completion(&probe_event);
1906
1907 /*
1908 * Get ACPI resources first.
1909 */
1910 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1911
1912 if (ret)
1913 return ret;
1914
1915 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1916 if (t == 0) {
1917 ret = -ETIMEDOUT;
1918 goto cleanup;
1919 }
1920
1921 ret = vmbus_bus_init();
1922 if (ret)
1923 goto cleanup;
1924
1925 hv_setup_kexec_handler(hv_kexec_handler);
1926 hv_setup_crash_handler(hv_crash_handler);
1927
1928 return 0;
1929
1930cleanup:
1931 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1932 hv_acpi_dev = NULL;
1933 return ret;
1934}
1935
1936static void __exit vmbus_exit(void)
1937{
1938 int cpu;
1939
1940 hv_remove_kexec_handler();
1941 hv_remove_crash_handler();
1942 vmbus_connection.conn_state = DISCONNECTED;
1943 hv_synic_clockevents_cleanup();
1944 vmbus_disconnect();
1945 hv_remove_vmbus_irq();
1946 for_each_online_cpu(cpu) {
1947 struct hv_per_cpu_context *hv_cpu
1948 = per_cpu_ptr(hv_context.cpu_context, cpu);
1949
1950 tasklet_kill(&hv_cpu->msg_dpc);
1951 }
1952 vmbus_free_channels();
1953
1954 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1955 kmsg_dump_unregister(&hv_kmsg_dumper);
1956 unregister_die_notifier(&hyperv_die_block);
1957 atomic_notifier_chain_unregister(&panic_notifier_list,
1958 &hyperv_panic_block);
1959 }
1960
1961 free_page((unsigned long)hv_panic_page);
1962 unregister_sysctl_table(hv_ctl_table_hdr);
1963 hv_ctl_table_hdr = NULL;
1964 bus_unregister(&hv_bus);
1965
1966 cpuhp_remove_state(hyperv_cpuhp_online);
1967 hv_synic_free();
1968 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1969}
1970
1971
1972MODULE_LICENSE("GPL");
1973
1974subsys_initcall(hv_acpi_init);
1975module_exit(vmbus_exit);