blob: 9b4d197fae8e5962f6e983d15fa08d07732d7f43 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/backing-dev.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "trace.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42}
43
44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45{
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 si_meminfo(&val);
53
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
56
57 /*
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 */
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66 PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
77
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
96 }
97 return res;
98}
99
100static void clear_node_page_dirty(struct page *page)
101{
102 if (PageDirty(page)) {
103 f2fs_clear_radix_tree_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 }
107 ClearPageUptodate(page);
108}
109
110static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111{
112 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
113}
114
115static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116{
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
132
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
138
139 set_to_next_nat(nm_i, nid);
140
141 return dst_page;
142}
143
144static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145{
146 struct nat_entry *new;
147
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
155 }
156 return new;
157}
158
159static void __free_nat_entry(struct nat_entry *e)
160{
161 kmem_cache_free(nat_entry_slab, e);
162}
163
164/* must be locked by nat_tree_lock */
165static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167{
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
172
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
179
180 nm_i->nat_cnt++;
181 return ne;
182}
183
184static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185{
186 struct nat_entry *ne;
187
188 ne = radix_tree_lookup(&nm_i->nat_root, n);
189
190 /* for recent accessed nat entry, move it to tail of lru list */
191 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 spin_lock(&nm_i->nat_list_lock);
193 if (!list_empty(&ne->list))
194 list_move_tail(&ne->list, &nm_i->nat_entries);
195 spin_unlock(&nm_i->nat_list_lock);
196 }
197
198 return ne;
199}
200
201static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 nid_t start, unsigned int nr, struct nat_entry **ep)
203{
204 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205}
206
207static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208{
209 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210 nm_i->nat_cnt--;
211 __free_nat_entry(e);
212}
213
214static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215 struct nat_entry *ne)
216{
217 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218 struct nat_entry_set *head;
219
220 head = radix_tree_lookup(&nm_i->nat_set_root, set);
221 if (!head) {
222 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223
224 INIT_LIST_HEAD(&head->entry_list);
225 INIT_LIST_HEAD(&head->set_list);
226 head->set = set;
227 head->entry_cnt = 0;
228 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229 }
230 return head;
231}
232
233static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234 struct nat_entry *ne)
235{
236 struct nat_entry_set *head;
237 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238
239 if (!new_ne)
240 head = __grab_nat_entry_set(nm_i, ne);
241
242 /*
243 * update entry_cnt in below condition:
244 * 1. update NEW_ADDR to valid block address;
245 * 2. update old block address to new one;
246 */
247 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248 !get_nat_flag(ne, IS_DIRTY)))
249 head->entry_cnt++;
250
251 set_nat_flag(ne, IS_PREALLOC, new_ne);
252
253 if (get_nat_flag(ne, IS_DIRTY))
254 goto refresh_list;
255
256 nm_i->dirty_nat_cnt++;
257 set_nat_flag(ne, IS_DIRTY, true);
258refresh_list:
259 spin_lock(&nm_i->nat_list_lock);
260 if (new_ne)
261 list_del_init(&ne->list);
262 else
263 list_move_tail(&ne->list, &head->entry_list);
264 spin_unlock(&nm_i->nat_list_lock);
265}
266
267static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 struct nat_entry_set *set, struct nat_entry *ne)
269{
270 spin_lock(&nm_i->nat_list_lock);
271 list_move_tail(&ne->list, &nm_i->nat_entries);
272 spin_unlock(&nm_i->nat_list_lock);
273
274 set_nat_flag(ne, IS_DIRTY, false);
275 set->entry_cnt--;
276 nm_i->dirty_nat_cnt--;
277}
278
279static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280 nid_t start, unsigned int nr, struct nat_entry_set **ep)
281{
282 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283 start, nr);
284}
285
286bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287{
288 return NODE_MAPPING(sbi) == page->mapping &&
289 IS_DNODE(page) && is_cold_node(page);
290}
291
292void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293{
294 spin_lock_init(&sbi->fsync_node_lock);
295 INIT_LIST_HEAD(&sbi->fsync_node_list);
296 sbi->fsync_seg_id = 0;
297 sbi->fsync_node_num = 0;
298}
299
300static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301 struct page *page)
302{
303 struct fsync_node_entry *fn;
304 unsigned long flags;
305 unsigned int seq_id;
306
307 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308
309 get_page(page);
310 fn->page = page;
311 INIT_LIST_HEAD(&fn->list);
312
313 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314 list_add_tail(&fn->list, &sbi->fsync_node_list);
315 fn->seq_id = sbi->fsync_seg_id++;
316 seq_id = fn->seq_id;
317 sbi->fsync_node_num++;
318 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319
320 return seq_id;
321}
322
323void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324{
325 struct fsync_node_entry *fn;
326 unsigned long flags;
327
328 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330 if (fn->page == page) {
331 list_del(&fn->list);
332 sbi->fsync_node_num--;
333 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334 kmem_cache_free(fsync_node_entry_slab, fn);
335 put_page(page);
336 return;
337 }
338 }
339 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340 f2fs_bug_on(sbi, 1);
341}
342
343void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344{
345 unsigned long flags;
346
347 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348 sbi->fsync_seg_id = 0;
349 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350}
351
352int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353{
354 struct f2fs_nm_info *nm_i = NM_I(sbi);
355 struct nat_entry *e;
356 bool need = false;
357
358 down_read(&nm_i->nat_tree_lock);
359 e = __lookup_nat_cache(nm_i, nid);
360 if (e) {
361 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362 !get_nat_flag(e, HAS_FSYNCED_INODE))
363 need = true;
364 }
365 up_read(&nm_i->nat_tree_lock);
366 return need;
367}
368
369bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370{
371 struct f2fs_nm_info *nm_i = NM_I(sbi);
372 struct nat_entry *e;
373 bool is_cp = true;
374
375 down_read(&nm_i->nat_tree_lock);
376 e = __lookup_nat_cache(nm_i, nid);
377 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378 is_cp = false;
379 up_read(&nm_i->nat_tree_lock);
380 return is_cp;
381}
382
383bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384{
385 struct f2fs_nm_info *nm_i = NM_I(sbi);
386 struct nat_entry *e;
387 bool need_update = true;
388
389 down_read(&nm_i->nat_tree_lock);
390 e = __lookup_nat_cache(nm_i, ino);
391 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392 (get_nat_flag(e, IS_CHECKPOINTED) ||
393 get_nat_flag(e, HAS_FSYNCED_INODE)))
394 need_update = false;
395 up_read(&nm_i->nat_tree_lock);
396 return need_update;
397}
398
399/* must be locked by nat_tree_lock */
400static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401 struct f2fs_nat_entry *ne)
402{
403 struct f2fs_nm_info *nm_i = NM_I(sbi);
404 struct nat_entry *new, *e;
405
406 new = __alloc_nat_entry(nid, false);
407 if (!new)
408 return;
409
410 down_write(&nm_i->nat_tree_lock);
411 e = __lookup_nat_cache(nm_i, nid);
412 if (!e)
413 e = __init_nat_entry(nm_i, new, ne, false);
414 else
415 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416 nat_get_blkaddr(e) !=
417 le32_to_cpu(ne->block_addr) ||
418 nat_get_version(e) != ne->version);
419 up_write(&nm_i->nat_tree_lock);
420 if (e != new)
421 __free_nat_entry(new);
422}
423
424static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425 block_t new_blkaddr, bool fsync_done)
426{
427 struct f2fs_nm_info *nm_i = NM_I(sbi);
428 struct nat_entry *e;
429 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430
431 down_write(&nm_i->nat_tree_lock);
432 e = __lookup_nat_cache(nm_i, ni->nid);
433 if (!e) {
434 e = __init_nat_entry(nm_i, new, NULL, true);
435 copy_node_info(&e->ni, ni);
436 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437 } else if (new_blkaddr == NEW_ADDR) {
438 /*
439 * when nid is reallocated,
440 * previous nat entry can be remained in nat cache.
441 * So, reinitialize it with new information.
442 */
443 copy_node_info(&e->ni, ni);
444 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445 }
446 /* let's free early to reduce memory consumption */
447 if (e != new)
448 __free_nat_entry(new);
449
450 /* sanity check */
451 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453 new_blkaddr == NULL_ADDR);
454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455 new_blkaddr == NEW_ADDR);
456 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457 new_blkaddr == NEW_ADDR);
458
459 /* increment version no as node is removed */
460 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461 unsigned char version = nat_get_version(e);
462 nat_set_version(e, inc_node_version(version));
463 }
464
465 /* change address */
466 nat_set_blkaddr(e, new_blkaddr);
467 if (!__is_valid_data_blkaddr(new_blkaddr))
468 set_nat_flag(e, IS_CHECKPOINTED, false);
469 __set_nat_cache_dirty(nm_i, e);
470
471 /* update fsync_mark if its inode nat entry is still alive */
472 if (ni->nid != ni->ino)
473 e = __lookup_nat_cache(nm_i, ni->ino);
474 if (e) {
475 if (fsync_done && ni->nid == ni->ino)
476 set_nat_flag(e, HAS_FSYNCED_INODE, true);
477 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478 }
479 up_write(&nm_i->nat_tree_lock);
480}
481
482int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483{
484 struct f2fs_nm_info *nm_i = NM_I(sbi);
485 int nr = nr_shrink;
486
487 if (!down_write_trylock(&nm_i->nat_tree_lock))
488 return 0;
489
490 spin_lock(&nm_i->nat_list_lock);
491 while (nr_shrink) {
492 struct nat_entry *ne;
493
494 if (list_empty(&nm_i->nat_entries))
495 break;
496
497 ne = list_first_entry(&nm_i->nat_entries,
498 struct nat_entry, list);
499 list_del(&ne->list);
500 spin_unlock(&nm_i->nat_list_lock);
501
502 __del_from_nat_cache(nm_i, ne);
503 nr_shrink--;
504
505 spin_lock(&nm_i->nat_list_lock);
506 }
507 spin_unlock(&nm_i->nat_list_lock);
508
509 up_write(&nm_i->nat_tree_lock);
510 return nr - nr_shrink;
511}
512
513/*
514 * This function always returns success
515 */
516int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
517 struct node_info *ni)
518{
519 struct f2fs_nm_info *nm_i = NM_I(sbi);
520 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
521 struct f2fs_journal *journal = curseg->journal;
522 nid_t start_nid = START_NID(nid);
523 struct f2fs_nat_block *nat_blk;
524 struct page *page = NULL;
525 struct f2fs_nat_entry ne;
526 struct nat_entry *e;
527 pgoff_t index;
528 block_t blkaddr;
529 int i;
530
531 ni->nid = nid;
532
533 /* Check nat cache */
534 down_read(&nm_i->nat_tree_lock);
535 e = __lookup_nat_cache(nm_i, nid);
536 if (e) {
537 ni->ino = nat_get_ino(e);
538 ni->blk_addr = nat_get_blkaddr(e);
539 ni->version = nat_get_version(e);
540 up_read(&nm_i->nat_tree_lock);
541 return 0;
542 }
543
544 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545
546 /* Check current segment summary */
547 down_read(&curseg->journal_rwsem);
548 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549 if (i >= 0) {
550 ne = nat_in_journal(journal, i);
551 node_info_from_raw_nat(ni, &ne);
552 }
553 up_read(&curseg->journal_rwsem);
554 if (i >= 0) {
555 up_read(&nm_i->nat_tree_lock);
556 goto cache;
557 }
558
559 /* Fill node_info from nat page */
560 index = current_nat_addr(sbi, nid);
561 up_read(&nm_i->nat_tree_lock);
562
563 page = f2fs_get_meta_page(sbi, index);
564 if (IS_ERR(page))
565 return PTR_ERR(page);
566
567 nat_blk = (struct f2fs_nat_block *)page_address(page);
568 ne = nat_blk->entries[nid - start_nid];
569 node_info_from_raw_nat(ni, &ne);
570 f2fs_put_page(page, 1);
571cache:
572 blkaddr = le32_to_cpu(ne.block_addr);
573 if (__is_valid_data_blkaddr(blkaddr) &&
574 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
575 return -EFAULT;
576
577 /* cache nat entry */
578 cache_nat_entry(sbi, nid, &ne);
579 return 0;
580}
581
582/*
583 * readahead MAX_RA_NODE number of node pages.
584 */
585static void f2fs_ra_node_pages(struct page *parent, int start, int n)
586{
587 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
588 struct blk_plug plug;
589 int i, end;
590 nid_t nid;
591
592 blk_start_plug(&plug);
593
594 /* Then, try readahead for siblings of the desired node */
595 end = start + n;
596 end = min(end, NIDS_PER_BLOCK);
597 for (i = start; i < end; i++) {
598 nid = get_nid(parent, i, false);
599 f2fs_ra_node_page(sbi, nid);
600 }
601
602 blk_finish_plug(&plug);
603}
604
605pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
606{
607 const long direct_index = ADDRS_PER_INODE(dn->inode);
608 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
609 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
610 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
611 int cur_level = dn->cur_level;
612 int max_level = dn->max_level;
613 pgoff_t base = 0;
614
615 if (!dn->max_level)
616 return pgofs + 1;
617
618 while (max_level-- > cur_level)
619 skipped_unit *= NIDS_PER_BLOCK;
620
621 switch (dn->max_level) {
622 case 3:
623 base += 2 * indirect_blks;
624 case 2:
625 base += 2 * direct_blks;
626 case 1:
627 base += direct_index;
628 break;
629 default:
630 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
631 }
632
633 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
634}
635
636/*
637 * The maximum depth is four.
638 * Offset[0] will have raw inode offset.
639 */
640static int get_node_path(struct inode *inode, long block,
641 int offset[4], unsigned int noffset[4])
642{
643 const long direct_index = ADDRS_PER_INODE(inode);
644 const long direct_blks = ADDRS_PER_BLOCK(inode);
645 const long dptrs_per_blk = NIDS_PER_BLOCK;
646 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
647 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
648 int n = 0;
649 int level = 0;
650
651 noffset[0] = 0;
652
653 if (block < direct_index) {
654 offset[n] = block;
655 goto got;
656 }
657 block -= direct_index;
658 if (block < direct_blks) {
659 offset[n++] = NODE_DIR1_BLOCK;
660 noffset[n] = 1;
661 offset[n] = block;
662 level = 1;
663 goto got;
664 }
665 block -= direct_blks;
666 if (block < direct_blks) {
667 offset[n++] = NODE_DIR2_BLOCK;
668 noffset[n] = 2;
669 offset[n] = block;
670 level = 1;
671 goto got;
672 }
673 block -= direct_blks;
674 if (block < indirect_blks) {
675 offset[n++] = NODE_IND1_BLOCK;
676 noffset[n] = 3;
677 offset[n++] = block / direct_blks;
678 noffset[n] = 4 + offset[n - 1];
679 offset[n] = block % direct_blks;
680 level = 2;
681 goto got;
682 }
683 block -= indirect_blks;
684 if (block < indirect_blks) {
685 offset[n++] = NODE_IND2_BLOCK;
686 noffset[n] = 4 + dptrs_per_blk;
687 offset[n++] = block / direct_blks;
688 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
689 offset[n] = block % direct_blks;
690 level = 2;
691 goto got;
692 }
693 block -= indirect_blks;
694 if (block < dindirect_blks) {
695 offset[n++] = NODE_DIND_BLOCK;
696 noffset[n] = 5 + (dptrs_per_blk * 2);
697 offset[n++] = block / indirect_blks;
698 noffset[n] = 6 + (dptrs_per_blk * 2) +
699 offset[n - 1] * (dptrs_per_blk + 1);
700 offset[n++] = (block / direct_blks) % dptrs_per_blk;
701 noffset[n] = 7 + (dptrs_per_blk * 2) +
702 offset[n - 2] * (dptrs_per_blk + 1) +
703 offset[n - 1];
704 offset[n] = block % direct_blks;
705 level = 3;
706 goto got;
707 } else {
708 return -E2BIG;
709 }
710got:
711 return level;
712}
713
714/*
715 * Caller should call f2fs_put_dnode(dn).
716 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
717 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
718 * In the case of RDONLY_NODE, we don't need to care about mutex.
719 */
720int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
721{
722 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
723 struct page *npage[4];
724 struct page *parent = NULL;
725 int offset[4];
726 unsigned int noffset[4];
727 nid_t nids[4];
728 int level, i = 0;
729 int err = 0;
730
731 level = get_node_path(dn->inode, index, offset, noffset);
732 if (level < 0)
733 return level;
734
735 nids[0] = dn->inode->i_ino;
736 npage[0] = dn->inode_page;
737
738 if (!npage[0]) {
739 npage[0] = f2fs_get_node_page(sbi, nids[0]);
740 if (IS_ERR(npage[0]))
741 return PTR_ERR(npage[0]);
742 }
743
744 /* if inline_data is set, should not report any block indices */
745 if (f2fs_has_inline_data(dn->inode) && index) {
746 err = -ENOENT;
747 f2fs_put_page(npage[0], 1);
748 goto release_out;
749 }
750
751 parent = npage[0];
752 if (level != 0)
753 nids[1] = get_nid(parent, offset[0], true);
754 dn->inode_page = npage[0];
755 dn->inode_page_locked = true;
756
757 /* get indirect or direct nodes */
758 for (i = 1; i <= level; i++) {
759 bool done = false;
760
761 if (!nids[i] && mode == ALLOC_NODE) {
762 /* alloc new node */
763 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
764 err = -ENOSPC;
765 goto release_pages;
766 }
767
768 dn->nid = nids[i];
769 npage[i] = f2fs_new_node_page(dn, noffset[i]);
770 if (IS_ERR(npage[i])) {
771 f2fs_alloc_nid_failed(sbi, nids[i]);
772 err = PTR_ERR(npage[i]);
773 goto release_pages;
774 }
775
776 set_nid(parent, offset[i - 1], nids[i], i == 1);
777 f2fs_alloc_nid_done(sbi, nids[i]);
778 done = true;
779 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
780 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
781 if (IS_ERR(npage[i])) {
782 err = PTR_ERR(npage[i]);
783 goto release_pages;
784 }
785 done = true;
786 }
787 if (i == 1) {
788 dn->inode_page_locked = false;
789 unlock_page(parent);
790 } else {
791 f2fs_put_page(parent, 1);
792 }
793
794 if (!done) {
795 npage[i] = f2fs_get_node_page(sbi, nids[i]);
796 if (IS_ERR(npage[i])) {
797 err = PTR_ERR(npage[i]);
798 f2fs_put_page(npage[0], 0);
799 goto release_out;
800 }
801 }
802 if (i < level) {
803 parent = npage[i];
804 nids[i + 1] = get_nid(parent, offset[i], false);
805 }
806 }
807 dn->nid = nids[level];
808 dn->ofs_in_node = offset[level];
809 dn->node_page = npage[level];
810 dn->data_blkaddr = datablock_addr(dn->inode,
811 dn->node_page, dn->ofs_in_node);
812 return 0;
813
814release_pages:
815 f2fs_put_page(parent, 1);
816 if (i > 1)
817 f2fs_put_page(npage[0], 0);
818release_out:
819 dn->inode_page = NULL;
820 dn->node_page = NULL;
821 if (err == -ENOENT) {
822 dn->cur_level = i;
823 dn->max_level = level;
824 dn->ofs_in_node = offset[level];
825 }
826 return err;
827}
828
829static int truncate_node(struct dnode_of_data *dn)
830{
831 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
832 struct node_info ni;
833 int err;
834 pgoff_t index;
835
836 err = f2fs_get_node_info(sbi, dn->nid, &ni);
837 if (err)
838 return err;
839
840 /* Deallocate node address */
841 f2fs_invalidate_blocks(sbi, ni.blk_addr);
842 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
843 set_node_addr(sbi, &ni, NULL_ADDR, false);
844
845 if (dn->nid == dn->inode->i_ino) {
846 f2fs_remove_orphan_inode(sbi, dn->nid);
847 dec_valid_inode_count(sbi);
848 f2fs_inode_synced(dn->inode);
849 }
850
851 clear_node_page_dirty(dn->node_page);
852 set_sbi_flag(sbi, SBI_IS_DIRTY);
853
854 index = dn->node_page->index;
855 f2fs_put_page(dn->node_page, 1);
856
857 invalidate_mapping_pages(NODE_MAPPING(sbi),
858 index, index);
859
860 dn->node_page = NULL;
861 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
862
863 return 0;
864}
865
866static int truncate_dnode(struct dnode_of_data *dn)
867{
868 struct page *page;
869 int err;
870
871 if (dn->nid == 0)
872 return 1;
873
874 /* get direct node */
875 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
876 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
877 return 1;
878 else if (IS_ERR(page))
879 return PTR_ERR(page);
880
881 /* Make dnode_of_data for parameter */
882 dn->node_page = page;
883 dn->ofs_in_node = 0;
884 f2fs_truncate_data_blocks(dn);
885 err = truncate_node(dn);
886 if (err)
887 return err;
888
889 return 1;
890}
891
892static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
893 int ofs, int depth)
894{
895 struct dnode_of_data rdn = *dn;
896 struct page *page;
897 struct f2fs_node *rn;
898 nid_t child_nid;
899 unsigned int child_nofs;
900 int freed = 0;
901 int i, ret;
902
903 if (dn->nid == 0)
904 return NIDS_PER_BLOCK + 1;
905
906 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
907
908 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
909 if (IS_ERR(page)) {
910 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
911 return PTR_ERR(page);
912 }
913
914 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
915
916 rn = F2FS_NODE(page);
917 if (depth < 3) {
918 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
919 child_nid = le32_to_cpu(rn->in.nid[i]);
920 if (child_nid == 0)
921 continue;
922 rdn.nid = child_nid;
923 ret = truncate_dnode(&rdn);
924 if (ret < 0)
925 goto out_err;
926 if (set_nid(page, i, 0, false))
927 dn->node_changed = true;
928 }
929 } else {
930 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
931 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
932 child_nid = le32_to_cpu(rn->in.nid[i]);
933 if (child_nid == 0) {
934 child_nofs += NIDS_PER_BLOCK + 1;
935 continue;
936 }
937 rdn.nid = child_nid;
938 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
939 if (ret == (NIDS_PER_BLOCK + 1)) {
940 if (set_nid(page, i, 0, false))
941 dn->node_changed = true;
942 child_nofs += ret;
943 } else if (ret < 0 && ret != -ENOENT) {
944 goto out_err;
945 }
946 }
947 freed = child_nofs;
948 }
949
950 if (!ofs) {
951 /* remove current indirect node */
952 dn->node_page = page;
953 ret = truncate_node(dn);
954 if (ret)
955 goto out_err;
956 freed++;
957 } else {
958 f2fs_put_page(page, 1);
959 }
960 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
961 return freed;
962
963out_err:
964 f2fs_put_page(page, 1);
965 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
966 return ret;
967}
968
969static int truncate_partial_nodes(struct dnode_of_data *dn,
970 struct f2fs_inode *ri, int *offset, int depth)
971{
972 struct page *pages[2];
973 nid_t nid[3];
974 nid_t child_nid;
975 int err = 0;
976 int i;
977 int idx = depth - 2;
978
979 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
980 if (!nid[0])
981 return 0;
982
983 /* get indirect nodes in the path */
984 for (i = 0; i < idx + 1; i++) {
985 /* reference count'll be increased */
986 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
987 if (IS_ERR(pages[i])) {
988 err = PTR_ERR(pages[i]);
989 idx = i - 1;
990 goto fail;
991 }
992 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
993 }
994
995 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
996
997 /* free direct nodes linked to a partial indirect node */
998 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
999 child_nid = get_nid(pages[idx], i, false);
1000 if (!child_nid)
1001 continue;
1002 dn->nid = child_nid;
1003 err = truncate_dnode(dn);
1004 if (err < 0)
1005 goto fail;
1006 if (set_nid(pages[idx], i, 0, false))
1007 dn->node_changed = true;
1008 }
1009
1010 if (offset[idx + 1] == 0) {
1011 dn->node_page = pages[idx];
1012 dn->nid = nid[idx];
1013 err = truncate_node(dn);
1014 if (err)
1015 goto fail;
1016 } else {
1017 f2fs_put_page(pages[idx], 1);
1018 }
1019 offset[idx]++;
1020 offset[idx + 1] = 0;
1021 idx--;
1022fail:
1023 for (i = idx; i >= 0; i--)
1024 f2fs_put_page(pages[i], 1);
1025
1026 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1027
1028 return err;
1029}
1030
1031/*
1032 * All the block addresses of data and nodes should be nullified.
1033 */
1034int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1035{
1036 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1037 int err = 0, cont = 1;
1038 int level, offset[4], noffset[4];
1039 unsigned int nofs = 0;
1040 struct f2fs_inode *ri;
1041 struct dnode_of_data dn;
1042 struct page *page;
1043
1044 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1045
1046 level = get_node_path(inode, from, offset, noffset);
1047 if (level < 0)
1048 return level;
1049
1050 page = f2fs_get_node_page(sbi, inode->i_ino);
1051 if (IS_ERR(page)) {
1052 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1053 return PTR_ERR(page);
1054 }
1055
1056 set_new_dnode(&dn, inode, page, NULL, 0);
1057 unlock_page(page);
1058
1059 ri = F2FS_INODE(page);
1060 switch (level) {
1061 case 0:
1062 case 1:
1063 nofs = noffset[1];
1064 break;
1065 case 2:
1066 nofs = noffset[1];
1067 if (!offset[level - 1])
1068 goto skip_partial;
1069 err = truncate_partial_nodes(&dn, ri, offset, level);
1070 if (err < 0 && err != -ENOENT)
1071 goto fail;
1072 nofs += 1 + NIDS_PER_BLOCK;
1073 break;
1074 case 3:
1075 nofs = 5 + 2 * NIDS_PER_BLOCK;
1076 if (!offset[level - 1])
1077 goto skip_partial;
1078 err = truncate_partial_nodes(&dn, ri, offset, level);
1079 if (err < 0 && err != -ENOENT)
1080 goto fail;
1081 break;
1082 default:
1083 BUG();
1084 }
1085
1086skip_partial:
1087 while (cont) {
1088 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1089 switch (offset[0]) {
1090 case NODE_DIR1_BLOCK:
1091 case NODE_DIR2_BLOCK:
1092 err = truncate_dnode(&dn);
1093 break;
1094
1095 case NODE_IND1_BLOCK:
1096 case NODE_IND2_BLOCK:
1097 err = truncate_nodes(&dn, nofs, offset[1], 2);
1098 break;
1099
1100 case NODE_DIND_BLOCK:
1101 err = truncate_nodes(&dn, nofs, offset[1], 3);
1102 cont = 0;
1103 break;
1104
1105 default:
1106 BUG();
1107 }
1108 if (err < 0 && err != -ENOENT)
1109 goto fail;
1110 if (offset[1] == 0 &&
1111 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1112 lock_page(page);
1113 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1114 f2fs_wait_on_page_writeback(page, NODE, true, true);
1115 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1116 set_page_dirty(page);
1117 unlock_page(page);
1118 }
1119 offset[1] = 0;
1120 offset[0]++;
1121 nofs += err;
1122 }
1123fail:
1124 f2fs_put_page(page, 0);
1125 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1126 return err > 0 ? 0 : err;
1127}
1128
1129/* caller must lock inode page */
1130int f2fs_truncate_xattr_node(struct inode *inode)
1131{
1132 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1133 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1134 struct dnode_of_data dn;
1135 struct page *npage;
1136 int err;
1137
1138 if (!nid)
1139 return 0;
1140
1141 npage = f2fs_get_node_page(sbi, nid);
1142 if (IS_ERR(npage))
1143 return PTR_ERR(npage);
1144
1145 set_new_dnode(&dn, inode, NULL, npage, nid);
1146 err = truncate_node(&dn);
1147 if (err) {
1148 f2fs_put_page(npage, 1);
1149 return err;
1150 }
1151
1152 f2fs_i_xnid_write(inode, 0);
1153
1154 return 0;
1155}
1156
1157/*
1158 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1159 * f2fs_unlock_op().
1160 */
1161int f2fs_remove_inode_page(struct inode *inode)
1162{
1163 struct dnode_of_data dn;
1164 int err;
1165
1166 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1167 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1168 if (err)
1169 return err;
1170
1171 err = f2fs_truncate_xattr_node(inode);
1172 if (err) {
1173 f2fs_put_dnode(&dn);
1174 return err;
1175 }
1176
1177 /* remove potential inline_data blocks */
1178 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1179 S_ISLNK(inode->i_mode))
1180 f2fs_truncate_data_blocks_range(&dn, 1);
1181
1182 /* 0 is possible, after f2fs_new_inode() has failed */
1183 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1184 f2fs_put_dnode(&dn);
1185 return -EIO;
1186 }
1187
1188 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1189 f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1190 inode->i_ino, (unsigned long long)inode->i_blocks);
1191 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1192 }
1193
1194 /* will put inode & node pages */
1195 err = truncate_node(&dn);
1196 if (err) {
1197 f2fs_put_dnode(&dn);
1198 return err;
1199 }
1200 return 0;
1201}
1202
1203struct page *f2fs_new_inode_page(struct inode *inode)
1204{
1205 struct dnode_of_data dn;
1206
1207 /* allocate inode page for new inode */
1208 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1209
1210 /* caller should f2fs_put_page(page, 1); */
1211 return f2fs_new_node_page(&dn, 0);
1212}
1213
1214struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1215{
1216 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1217 struct node_info new_ni;
1218 struct page *page;
1219 int err;
1220
1221 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1222 return ERR_PTR(-EPERM);
1223
1224 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1225 if (!page)
1226 return ERR_PTR(-ENOMEM);
1227
1228 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1229 goto fail;
1230
1231#ifdef CONFIG_F2FS_CHECK_FS
1232 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1233 if (err) {
1234 dec_valid_node_count(sbi, dn->inode, !ofs);
1235 goto fail;
1236 }
1237 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1238#endif
1239 new_ni.nid = dn->nid;
1240 new_ni.ino = dn->inode->i_ino;
1241 new_ni.blk_addr = NULL_ADDR;
1242 new_ni.flag = 0;
1243 new_ni.version = 0;
1244 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1245
1246 f2fs_wait_on_page_writeback(page, NODE, true, true);
1247 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1248 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1249 if (!PageUptodate(page))
1250 SetPageUptodate(page);
1251 if (set_page_dirty(page))
1252 dn->node_changed = true;
1253
1254 if (f2fs_has_xattr_block(ofs))
1255 f2fs_i_xnid_write(dn->inode, dn->nid);
1256
1257 if (ofs == 0)
1258 inc_valid_inode_count(sbi);
1259 return page;
1260
1261fail:
1262 clear_node_page_dirty(page);
1263 f2fs_put_page(page, 1);
1264 return ERR_PTR(err);
1265}
1266
1267/*
1268 * Caller should do after getting the following values.
1269 * 0: f2fs_put_page(page, 0)
1270 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1271 */
1272static int read_node_page(struct page *page, int op_flags)
1273{
1274 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1275 struct node_info ni;
1276 struct f2fs_io_info fio = {
1277 .sbi = sbi,
1278 .type = NODE,
1279 .op = REQ_OP_READ,
1280 .op_flags = op_flags,
1281 .page = page,
1282 .encrypted_page = NULL,
1283 };
1284 int err;
1285
1286 if (PageUptodate(page)) {
1287 if (!f2fs_inode_chksum_verify(sbi, page)) {
1288 ClearPageUptodate(page);
1289 return -EFSBADCRC;
1290 }
1291 return LOCKED_PAGE;
1292 }
1293
1294 err = f2fs_get_node_info(sbi, page->index, &ni);
1295 if (err)
1296 return err;
1297
1298 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1299 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1300 ClearPageUptodate(page);
1301 return -ENOENT;
1302 }
1303
1304 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1305 return f2fs_submit_page_bio(&fio);
1306}
1307
1308/*
1309 * Readahead a node page
1310 */
1311void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1312{
1313 struct page *apage;
1314 int err;
1315
1316 if (!nid)
1317 return;
1318 if (f2fs_check_nid_range(sbi, nid))
1319 return;
1320
1321 rcu_read_lock();
1322 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1323 rcu_read_unlock();
1324 if (apage)
1325 return;
1326
1327 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328 if (!apage)
1329 return;
1330
1331 err = read_node_page(apage, REQ_RAHEAD);
1332 f2fs_put_page(apage, err ? 1 : 0);
1333}
1334
1335static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336 struct page *parent, int start)
1337{
1338 struct page *page;
1339 int err;
1340
1341 if (!nid)
1342 return ERR_PTR(-ENOENT);
1343 if (f2fs_check_nid_range(sbi, nid))
1344 return ERR_PTR(-EINVAL);
1345repeat:
1346 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1347 if (!page)
1348 return ERR_PTR(-ENOMEM);
1349
1350 err = read_node_page(page, 0);
1351 if (err < 0) {
1352 f2fs_put_page(page, 1);
1353 return ERR_PTR(err);
1354 } else if (err == LOCKED_PAGE) {
1355 err = 0;
1356 goto page_hit;
1357 }
1358
1359 if (parent)
1360 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1361
1362 lock_page(page);
1363
1364 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365 f2fs_put_page(page, 1);
1366 goto repeat;
1367 }
1368
1369 if (unlikely(!PageUptodate(page))) {
1370 err = -EIO;
1371 goto out_err;
1372 }
1373
1374 if (!f2fs_inode_chksum_verify(sbi, page)) {
1375 err = -EFSBADCRC;
1376 goto out_err;
1377 }
1378page_hit:
1379 if(unlikely(nid != nid_of_node(page))) {
1380 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381 nid, nid_of_node(page), ino_of_node(page),
1382 ofs_of_node(page), cpver_of_node(page),
1383 next_blkaddr_of_node(page));
1384 err = -EINVAL;
1385out_err:
1386 ClearPageUptodate(page);
1387 f2fs_put_page(page, 1);
1388 return ERR_PTR(err);
1389 }
1390 return page;
1391}
1392
1393struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1394{
1395 return __get_node_page(sbi, nid, NULL, 0);
1396}
1397
1398struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1399{
1400 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401 nid_t nid = get_nid(parent, start, false);
1402
1403 return __get_node_page(sbi, nid, parent, start);
1404}
1405
1406static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1407{
1408 struct inode *inode;
1409 struct page *page;
1410 int ret;
1411
1412 /* should flush inline_data before evict_inode */
1413 inode = ilookup(sbi->sb, ino);
1414 if (!inode)
1415 return;
1416
1417 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418 FGP_LOCK|FGP_NOWAIT, 0);
1419 if (!page)
1420 goto iput_out;
1421
1422 if (!PageUptodate(page))
1423 goto page_out;
1424
1425 if (!PageDirty(page))
1426 goto page_out;
1427
1428 if (!clear_page_dirty_for_io(page))
1429 goto page_out;
1430
1431 ret = f2fs_write_inline_data(inode, page);
1432 inode_dec_dirty_pages(inode);
1433 f2fs_remove_dirty_inode(inode);
1434 if (ret)
1435 set_page_dirty(page);
1436page_out:
1437 f2fs_put_page(page, 1);
1438iput_out:
1439 iput(inode);
1440}
1441
1442static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1443{
1444 pgoff_t index;
1445 struct pagevec pvec;
1446 struct page *last_page = NULL;
1447 int nr_pages;
1448
1449 pagevec_init(&pvec);
1450 index = 0;
1451
1452 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453 PAGECACHE_TAG_DIRTY))) {
1454 int i;
1455
1456 for (i = 0; i < nr_pages; i++) {
1457 struct page *page = pvec.pages[i];
1458
1459 if (unlikely(f2fs_cp_error(sbi))) {
1460 f2fs_put_page(last_page, 0);
1461 pagevec_release(&pvec);
1462 return ERR_PTR(-EIO);
1463 }
1464
1465 if (!IS_DNODE(page) || !is_cold_node(page))
1466 continue;
1467 if (ino_of_node(page) != ino)
1468 continue;
1469
1470 lock_page(page);
1471
1472 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473continue_unlock:
1474 unlock_page(page);
1475 continue;
1476 }
1477 if (ino_of_node(page) != ino)
1478 goto continue_unlock;
1479
1480 if (!PageDirty(page)) {
1481 /* someone wrote it for us */
1482 goto continue_unlock;
1483 }
1484
1485 if (last_page)
1486 f2fs_put_page(last_page, 0);
1487
1488 get_page(page);
1489 last_page = page;
1490 unlock_page(page);
1491 }
1492 pagevec_release(&pvec);
1493 cond_resched();
1494 }
1495 return last_page;
1496}
1497
1498static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499 struct writeback_control *wbc, bool do_balance,
1500 enum iostat_type io_type, unsigned int *seq_id)
1501{
1502 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503 nid_t nid;
1504 struct node_info ni;
1505 struct f2fs_io_info fio = {
1506 .sbi = sbi,
1507 .ino = ino_of_node(page),
1508 .type = NODE,
1509 .op = REQ_OP_WRITE,
1510 .op_flags = wbc_to_write_flags(wbc),
1511 .page = page,
1512 .encrypted_page = NULL,
1513 .submitted = false,
1514 .io_type = io_type,
1515 .io_wbc = wbc,
1516 };
1517 unsigned int seq;
1518
1519 trace_f2fs_writepage(page, NODE);
1520
1521 if (unlikely(f2fs_cp_error(sbi)))
1522 goto redirty_out;
1523
1524 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525 goto redirty_out;
1526
1527 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1528 wbc->sync_mode == WB_SYNC_NONE &&
1529 IS_DNODE(page) && is_cold_node(page))
1530 goto redirty_out;
1531
1532 /* get old block addr of this node page */
1533 nid = nid_of_node(page);
1534 f2fs_bug_on(sbi, page->index != nid);
1535
1536 if (f2fs_get_node_info(sbi, nid, &ni))
1537 goto redirty_out;
1538
1539 if (wbc->for_reclaim) {
1540 if (!down_read_trylock(&sbi->node_write))
1541 goto redirty_out;
1542 } else {
1543 down_read(&sbi->node_write);
1544 }
1545
1546 /* This page is already truncated */
1547 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1548 ClearPageUptodate(page);
1549 dec_page_count(sbi, F2FS_DIRTY_NODES);
1550 up_read(&sbi->node_write);
1551 unlock_page(page);
1552 return 0;
1553 }
1554
1555 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1556 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1557 DATA_GENERIC_ENHANCE)) {
1558 up_read(&sbi->node_write);
1559 goto redirty_out;
1560 }
1561
1562 if (atomic && !test_opt(sbi, NOBARRIER))
1563 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1564
1565 set_page_writeback(page);
1566 ClearPageError(page);
1567
1568 if (f2fs_in_warm_node_list(sbi, page)) {
1569 seq = f2fs_add_fsync_node_entry(sbi, page);
1570 if (seq_id)
1571 *seq_id = seq;
1572 }
1573
1574 fio.old_blkaddr = ni.blk_addr;
1575 f2fs_do_write_node_page(nid, &fio);
1576 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1577 dec_page_count(sbi, F2FS_DIRTY_NODES);
1578 up_read(&sbi->node_write);
1579
1580 if (wbc->for_reclaim) {
1581 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1582 submitted = NULL;
1583 }
1584
1585 unlock_page(page);
1586
1587 if (unlikely(f2fs_cp_error(sbi))) {
1588 f2fs_submit_merged_write(sbi, NODE);
1589 submitted = NULL;
1590 }
1591 if (submitted)
1592 *submitted = fio.submitted;
1593
1594 if (do_balance)
1595 f2fs_balance_fs(sbi, false);
1596 return 0;
1597
1598redirty_out:
1599 redirty_page_for_writepage(wbc, page);
1600 return AOP_WRITEPAGE_ACTIVATE;
1601}
1602
1603int f2fs_move_node_page(struct page *node_page, int gc_type)
1604{
1605 int err = 0;
1606
1607 if (gc_type == FG_GC) {
1608 struct writeback_control wbc = {
1609 .sync_mode = WB_SYNC_ALL,
1610 .nr_to_write = 1,
1611 .for_reclaim = 0,
1612 };
1613
1614 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1615
1616 set_page_dirty(node_page);
1617
1618 if (!clear_page_dirty_for_io(node_page)) {
1619 err = -EAGAIN;
1620 goto out_page;
1621 }
1622
1623 if (__write_node_page(node_page, false, NULL,
1624 &wbc, false, FS_GC_NODE_IO, NULL)) {
1625 err = -EAGAIN;
1626 unlock_page(node_page);
1627 }
1628 goto release_page;
1629 } else {
1630 /* set page dirty and write it */
1631 if (!PageWriteback(node_page))
1632 set_page_dirty(node_page);
1633 }
1634out_page:
1635 unlock_page(node_page);
1636release_page:
1637 f2fs_put_page(node_page, 0);
1638 return err;
1639}
1640
1641static int f2fs_write_node_page(struct page *page,
1642 struct writeback_control *wbc)
1643{
1644 return __write_node_page(page, false, NULL, wbc, false,
1645 FS_NODE_IO, NULL);
1646}
1647
1648int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1649 struct writeback_control *wbc, bool atomic,
1650 unsigned int *seq_id)
1651{
1652 pgoff_t index;
1653 struct pagevec pvec;
1654 int ret = 0;
1655 struct page *last_page = NULL;
1656 bool marked = false;
1657 nid_t ino = inode->i_ino;
1658 int nr_pages;
1659 int nwritten = 0;
1660
1661 if (atomic) {
1662 last_page = last_fsync_dnode(sbi, ino);
1663 if (IS_ERR_OR_NULL(last_page))
1664 return PTR_ERR_OR_ZERO(last_page);
1665 }
1666retry:
1667 pagevec_init(&pvec);
1668 index = 0;
1669
1670 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1671 PAGECACHE_TAG_DIRTY))) {
1672 int i;
1673
1674 for (i = 0; i < nr_pages; i++) {
1675 struct page *page = pvec.pages[i];
1676 bool submitted = false;
1677
1678 if (unlikely(f2fs_cp_error(sbi))) {
1679 f2fs_put_page(last_page, 0);
1680 pagevec_release(&pvec);
1681 ret = -EIO;
1682 goto out;
1683 }
1684
1685 if (!IS_DNODE(page) || !is_cold_node(page))
1686 continue;
1687 if (ino_of_node(page) != ino)
1688 continue;
1689
1690 lock_page(page);
1691
1692 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1693continue_unlock:
1694 unlock_page(page);
1695 continue;
1696 }
1697 if (ino_of_node(page) != ino)
1698 goto continue_unlock;
1699
1700 if (!PageDirty(page) && page != last_page) {
1701 /* someone wrote it for us */
1702 goto continue_unlock;
1703 }
1704
1705 f2fs_wait_on_page_writeback(page, NODE, true, true);
1706
1707 set_fsync_mark(page, 0);
1708 set_dentry_mark(page, 0);
1709
1710 if (!atomic || page == last_page) {
1711 set_fsync_mark(page, 1);
1712 if (IS_INODE(page)) {
1713 if (is_inode_flag_set(inode,
1714 FI_DIRTY_INODE))
1715 f2fs_update_inode(inode, page);
1716 set_dentry_mark(page,
1717 f2fs_need_dentry_mark(sbi, ino));
1718 }
1719 /* may be written by other thread */
1720 if (!PageDirty(page))
1721 set_page_dirty(page);
1722 }
1723
1724 if (!clear_page_dirty_for_io(page))
1725 goto continue_unlock;
1726
1727 ret = __write_node_page(page, atomic &&
1728 page == last_page,
1729 &submitted, wbc, true,
1730 FS_NODE_IO, seq_id);
1731 if (ret) {
1732 unlock_page(page);
1733 f2fs_put_page(last_page, 0);
1734 break;
1735 } else if (submitted) {
1736 nwritten++;
1737 }
1738
1739 if (page == last_page) {
1740 f2fs_put_page(page, 0);
1741 marked = true;
1742 break;
1743 }
1744 }
1745 pagevec_release(&pvec);
1746 cond_resched();
1747
1748 if (ret || marked)
1749 break;
1750 }
1751 if (!ret && atomic && !marked) {
1752 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1753 ino, last_page->index);
1754 lock_page(last_page);
1755 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1756 set_page_dirty(last_page);
1757 unlock_page(last_page);
1758 goto retry;
1759 }
1760out:
1761 if (nwritten)
1762 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1763 return ret ? -EIO: 0;
1764}
1765
1766static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1767{
1768 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1769 bool clean;
1770
1771 if (inode->i_ino != ino)
1772 return 0;
1773
1774 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1775 return 0;
1776
1777 spin_lock(&sbi->inode_lock[DIRTY_META]);
1778 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1779 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1780
1781 if (clean)
1782 return 0;
1783
1784 inode = igrab(inode);
1785 if (!inode)
1786 return 0;
1787 return 1;
1788}
1789
1790static bool flush_dirty_inode(struct page *page)
1791{
1792 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1793 struct inode *inode;
1794 nid_t ino = ino_of_node(page);
1795
1796 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1797 if (!inode)
1798 return false;
1799
1800 f2fs_update_inode(inode, page);
1801 unlock_page(page);
1802
1803 iput(inode);
1804 return true;
1805}
1806
1807int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1808 struct writeback_control *wbc,
1809 bool do_balance, enum iostat_type io_type)
1810{
1811 pgoff_t index;
1812 struct pagevec pvec;
1813 int step = 0;
1814 int nwritten = 0;
1815 int ret = 0;
1816 int nr_pages, done = 0;
1817
1818 pagevec_init(&pvec);
1819
1820next_step:
1821 index = 0;
1822
1823 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1824 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1825 int i;
1826
1827 for (i = 0; i < nr_pages; i++) {
1828 struct page *page = pvec.pages[i];
1829 bool submitted = false;
1830 bool may_dirty = true;
1831
1832 /* give a priority to WB_SYNC threads */
1833 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1834 wbc->sync_mode == WB_SYNC_NONE) {
1835 done = 1;
1836 break;
1837 }
1838
1839 /*
1840 * flushing sequence with step:
1841 * 0. indirect nodes
1842 * 1. dentry dnodes
1843 * 2. file dnodes
1844 */
1845 if (step == 0 && IS_DNODE(page))
1846 continue;
1847 if (step == 1 && (!IS_DNODE(page) ||
1848 is_cold_node(page)))
1849 continue;
1850 if (step == 2 && (!IS_DNODE(page) ||
1851 !is_cold_node(page)))
1852 continue;
1853lock_node:
1854 if (wbc->sync_mode == WB_SYNC_ALL)
1855 lock_page(page);
1856 else if (!trylock_page(page))
1857 continue;
1858
1859 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1860continue_unlock:
1861 unlock_page(page);
1862 continue;
1863 }
1864
1865 if (!PageDirty(page)) {
1866 /* someone wrote it for us */
1867 goto continue_unlock;
1868 }
1869
1870 /* flush inline_data */
1871 if (is_inline_node(page)) {
1872 clear_inline_node(page);
1873 unlock_page(page);
1874 flush_inline_data(sbi, ino_of_node(page));
1875 goto lock_node;
1876 }
1877
1878 /* flush dirty inode */
1879 if (IS_INODE(page) && may_dirty) {
1880 may_dirty = false;
1881 if (flush_dirty_inode(page))
1882 goto lock_node;
1883 }
1884
1885 f2fs_wait_on_page_writeback(page, NODE, true, true);
1886
1887 if (!clear_page_dirty_for_io(page))
1888 goto continue_unlock;
1889
1890 set_fsync_mark(page, 0);
1891 set_dentry_mark(page, 0);
1892
1893 ret = __write_node_page(page, false, &submitted,
1894 wbc, do_balance, io_type, NULL);
1895 if (ret)
1896 unlock_page(page);
1897 else if (submitted)
1898 nwritten++;
1899
1900 if (--wbc->nr_to_write == 0)
1901 break;
1902 }
1903 pagevec_release(&pvec);
1904 cond_resched();
1905
1906 if (wbc->nr_to_write == 0) {
1907 step = 2;
1908 break;
1909 }
1910 }
1911
1912 if (step < 2) {
1913 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1914 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1915 goto out;
1916 step++;
1917 goto next_step;
1918 }
1919out:
1920 if (nwritten)
1921 f2fs_submit_merged_write(sbi, NODE);
1922
1923 if (unlikely(f2fs_cp_error(sbi)))
1924 return -EIO;
1925 return ret;
1926}
1927
1928int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1929 unsigned int seq_id)
1930{
1931 struct fsync_node_entry *fn;
1932 struct page *page;
1933 struct list_head *head = &sbi->fsync_node_list;
1934 unsigned long flags;
1935 unsigned int cur_seq_id = 0;
1936 int ret2, ret = 0;
1937
1938 while (seq_id && cur_seq_id < seq_id) {
1939 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1940 if (list_empty(head)) {
1941 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1942 break;
1943 }
1944 fn = list_first_entry(head, struct fsync_node_entry, list);
1945 if (fn->seq_id > seq_id) {
1946 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1947 break;
1948 }
1949 cur_seq_id = fn->seq_id;
1950 page = fn->page;
1951 get_page(page);
1952 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1953
1954 f2fs_wait_on_page_writeback(page, NODE, true, false);
1955 if (TestClearPageError(page))
1956 ret = -EIO;
1957
1958 put_page(page);
1959
1960 if (ret)
1961 break;
1962 }
1963
1964 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1965 if (!ret)
1966 ret = ret2;
1967
1968 return ret;
1969}
1970
1971static int f2fs_write_node_pages(struct address_space *mapping,
1972 struct writeback_control *wbc)
1973{
1974 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1975 struct blk_plug plug;
1976 long diff;
1977
1978 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1979 goto skip_write;
1980
1981 /* balancing f2fs's metadata in background */
1982 f2fs_balance_fs_bg(sbi);
1983
1984 /* collect a number of dirty node pages and write together */
1985 if (wbc->sync_mode != WB_SYNC_ALL &&
1986 get_pages(sbi, F2FS_DIRTY_NODES) <
1987 nr_pages_to_skip(sbi, NODE))
1988 goto skip_write;
1989
1990 if (wbc->sync_mode == WB_SYNC_ALL)
1991 atomic_inc(&sbi->wb_sync_req[NODE]);
1992 else if (atomic_read(&sbi->wb_sync_req[NODE]))
1993 goto skip_write;
1994
1995 trace_f2fs_writepages(mapping->host, wbc, NODE);
1996
1997 diff = nr_pages_to_write(sbi, NODE, wbc);
1998 blk_start_plug(&plug);
1999 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2000 blk_finish_plug(&plug);
2001 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2002
2003 if (wbc->sync_mode == WB_SYNC_ALL)
2004 atomic_dec(&sbi->wb_sync_req[NODE]);
2005 return 0;
2006
2007skip_write:
2008 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2009 trace_f2fs_writepages(mapping->host, wbc, NODE);
2010 return 0;
2011}
2012
2013static int f2fs_set_node_page_dirty(struct page *page)
2014{
2015 trace_f2fs_set_page_dirty(page, NODE);
2016
2017 if (!PageUptodate(page))
2018 SetPageUptodate(page);
2019#ifdef CONFIG_F2FS_CHECK_FS
2020 if (IS_INODE(page))
2021 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2022#endif
2023 if (!PageDirty(page)) {
2024 __set_page_dirty_nobuffers(page);
2025 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2026 f2fs_set_page_private(page, 0);
2027 f2fs_trace_pid(page);
2028 return 1;
2029 }
2030 return 0;
2031}
2032
2033/*
2034 * Structure of the f2fs node operations
2035 */
2036const struct address_space_operations f2fs_node_aops = {
2037 .writepage = f2fs_write_node_page,
2038 .writepages = f2fs_write_node_pages,
2039 .set_page_dirty = f2fs_set_node_page_dirty,
2040 .invalidatepage = f2fs_invalidate_page,
2041 .releasepage = f2fs_release_page,
2042#ifdef CONFIG_MIGRATION
2043 .migratepage = f2fs_migrate_page,
2044#endif
2045};
2046
2047static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2048 nid_t n)
2049{
2050 return radix_tree_lookup(&nm_i->free_nid_root, n);
2051}
2052
2053static int __insert_free_nid(struct f2fs_sb_info *sbi,
2054 struct free_nid *i, enum nid_state state)
2055{
2056 struct f2fs_nm_info *nm_i = NM_I(sbi);
2057
2058 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2059 if (err)
2060 return err;
2061
2062 f2fs_bug_on(sbi, state != i->state);
2063 nm_i->nid_cnt[state]++;
2064 if (state == FREE_NID)
2065 list_add_tail(&i->list, &nm_i->free_nid_list);
2066 return 0;
2067}
2068
2069static void __remove_free_nid(struct f2fs_sb_info *sbi,
2070 struct free_nid *i, enum nid_state state)
2071{
2072 struct f2fs_nm_info *nm_i = NM_I(sbi);
2073
2074 f2fs_bug_on(sbi, state != i->state);
2075 nm_i->nid_cnt[state]--;
2076 if (state == FREE_NID)
2077 list_del(&i->list);
2078 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2079}
2080
2081static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2082 enum nid_state org_state, enum nid_state dst_state)
2083{
2084 struct f2fs_nm_info *nm_i = NM_I(sbi);
2085
2086 f2fs_bug_on(sbi, org_state != i->state);
2087 i->state = dst_state;
2088 nm_i->nid_cnt[org_state]--;
2089 nm_i->nid_cnt[dst_state]++;
2090
2091 switch (dst_state) {
2092 case PREALLOC_NID:
2093 list_del(&i->list);
2094 break;
2095 case FREE_NID:
2096 list_add_tail(&i->list, &nm_i->free_nid_list);
2097 break;
2098 default:
2099 BUG_ON(1);
2100 }
2101}
2102
2103static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2104 bool set, bool build)
2105{
2106 struct f2fs_nm_info *nm_i = NM_I(sbi);
2107 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2108 unsigned int nid_ofs = nid - START_NID(nid);
2109
2110 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2111 return;
2112
2113 if (set) {
2114 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2115 return;
2116 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2117 nm_i->free_nid_count[nat_ofs]++;
2118 } else {
2119 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2120 return;
2121 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2122 if (!build)
2123 nm_i->free_nid_count[nat_ofs]--;
2124 }
2125}
2126
2127/* return if the nid is recognized as free */
2128static bool add_free_nid(struct f2fs_sb_info *sbi,
2129 nid_t nid, bool build, bool update)
2130{
2131 struct f2fs_nm_info *nm_i = NM_I(sbi);
2132 struct free_nid *i, *e;
2133 struct nat_entry *ne;
2134 int err = -EINVAL;
2135 bool ret = false;
2136
2137 /* 0 nid should not be used */
2138 if (unlikely(nid == 0))
2139 return false;
2140
2141 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2142 return false;
2143
2144 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2145 i->nid = nid;
2146 i->state = FREE_NID;
2147
2148 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2149
2150 spin_lock(&nm_i->nid_list_lock);
2151
2152 if (build) {
2153 /*
2154 * Thread A Thread B
2155 * - f2fs_create
2156 * - f2fs_new_inode
2157 * - f2fs_alloc_nid
2158 * - __insert_nid_to_list(PREALLOC_NID)
2159 * - f2fs_balance_fs_bg
2160 * - f2fs_build_free_nids
2161 * - __f2fs_build_free_nids
2162 * - scan_nat_page
2163 * - add_free_nid
2164 * - __lookup_nat_cache
2165 * - f2fs_add_link
2166 * - f2fs_init_inode_metadata
2167 * - f2fs_new_inode_page
2168 * - f2fs_new_node_page
2169 * - set_node_addr
2170 * - f2fs_alloc_nid_done
2171 * - __remove_nid_from_list(PREALLOC_NID)
2172 * - __insert_nid_to_list(FREE_NID)
2173 */
2174 ne = __lookup_nat_cache(nm_i, nid);
2175 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2176 nat_get_blkaddr(ne) != NULL_ADDR))
2177 goto err_out;
2178
2179 e = __lookup_free_nid_list(nm_i, nid);
2180 if (e) {
2181 if (e->state == FREE_NID)
2182 ret = true;
2183 goto err_out;
2184 }
2185 }
2186 ret = true;
2187 err = __insert_free_nid(sbi, i, FREE_NID);
2188err_out:
2189 if (update) {
2190 update_free_nid_bitmap(sbi, nid, ret, build);
2191 if (!build)
2192 nm_i->available_nids++;
2193 }
2194 spin_unlock(&nm_i->nid_list_lock);
2195 radix_tree_preload_end();
2196
2197 if (err)
2198 kmem_cache_free(free_nid_slab, i);
2199 return ret;
2200}
2201
2202static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2203{
2204 struct f2fs_nm_info *nm_i = NM_I(sbi);
2205 struct free_nid *i;
2206 bool need_free = false;
2207
2208 spin_lock(&nm_i->nid_list_lock);
2209 i = __lookup_free_nid_list(nm_i, nid);
2210 if (i && i->state == FREE_NID) {
2211 __remove_free_nid(sbi, i, FREE_NID);
2212 need_free = true;
2213 }
2214 spin_unlock(&nm_i->nid_list_lock);
2215
2216 if (need_free)
2217 kmem_cache_free(free_nid_slab, i);
2218}
2219
2220static int scan_nat_page(struct f2fs_sb_info *sbi,
2221 struct page *nat_page, nid_t start_nid)
2222{
2223 struct f2fs_nm_info *nm_i = NM_I(sbi);
2224 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2225 block_t blk_addr;
2226 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2227 int i;
2228
2229 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2230
2231 i = start_nid % NAT_ENTRY_PER_BLOCK;
2232
2233 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2234 if (unlikely(start_nid >= nm_i->max_nid))
2235 break;
2236
2237 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2238
2239 if (blk_addr == NEW_ADDR)
2240 return -EINVAL;
2241
2242 if (blk_addr == NULL_ADDR) {
2243 add_free_nid(sbi, start_nid, true, true);
2244 } else {
2245 spin_lock(&NM_I(sbi)->nid_list_lock);
2246 update_free_nid_bitmap(sbi, start_nid, false, true);
2247 spin_unlock(&NM_I(sbi)->nid_list_lock);
2248 }
2249 }
2250
2251 return 0;
2252}
2253
2254static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2255{
2256 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2257 struct f2fs_journal *journal = curseg->journal;
2258 int i;
2259
2260 down_read(&curseg->journal_rwsem);
2261 for (i = 0; i < nats_in_cursum(journal); i++) {
2262 block_t addr;
2263 nid_t nid;
2264
2265 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2266 nid = le32_to_cpu(nid_in_journal(journal, i));
2267 if (addr == NULL_ADDR)
2268 add_free_nid(sbi, nid, true, false);
2269 else
2270 remove_free_nid(sbi, nid);
2271 }
2272 up_read(&curseg->journal_rwsem);
2273}
2274
2275static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2276{
2277 struct f2fs_nm_info *nm_i = NM_I(sbi);
2278 unsigned int i, idx;
2279 nid_t nid;
2280
2281 down_read(&nm_i->nat_tree_lock);
2282
2283 for (i = 0; i < nm_i->nat_blocks; i++) {
2284 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2285 continue;
2286 if (!nm_i->free_nid_count[i])
2287 continue;
2288 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2289 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2290 NAT_ENTRY_PER_BLOCK, idx);
2291 if (idx >= NAT_ENTRY_PER_BLOCK)
2292 break;
2293
2294 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2295 add_free_nid(sbi, nid, true, false);
2296
2297 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2298 goto out;
2299 }
2300 }
2301out:
2302 scan_curseg_cache(sbi);
2303
2304 up_read(&nm_i->nat_tree_lock);
2305}
2306
2307static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2308 bool sync, bool mount)
2309{
2310 struct f2fs_nm_info *nm_i = NM_I(sbi);
2311 int i = 0, ret;
2312 nid_t nid = nm_i->next_scan_nid;
2313
2314 if (unlikely(nid >= nm_i->max_nid))
2315 nid = 0;
2316
2317 /* Enough entries */
2318 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2319 return 0;
2320
2321 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2322 return 0;
2323
2324 if (!mount) {
2325 /* try to find free nids in free_nid_bitmap */
2326 scan_free_nid_bits(sbi);
2327
2328 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2329 return 0;
2330 }
2331
2332 /* readahead nat pages to be scanned */
2333 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2334 META_NAT, true);
2335
2336 down_read(&nm_i->nat_tree_lock);
2337
2338 while (1) {
2339 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2340 nm_i->nat_block_bitmap)) {
2341 struct page *page = get_current_nat_page(sbi, nid);
2342
2343 if (IS_ERR(page)) {
2344 ret = PTR_ERR(page);
2345 } else {
2346 ret = scan_nat_page(sbi, page, nid);
2347 f2fs_put_page(page, 1);
2348 }
2349
2350 if (ret) {
2351 up_read(&nm_i->nat_tree_lock);
2352 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2353 return ret;
2354 }
2355 }
2356
2357 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2358 if (unlikely(nid >= nm_i->max_nid))
2359 nid = 0;
2360
2361 if (++i >= FREE_NID_PAGES)
2362 break;
2363 }
2364
2365 /* go to the next free nat pages to find free nids abundantly */
2366 nm_i->next_scan_nid = nid;
2367
2368 /* find free nids from current sum_pages */
2369 scan_curseg_cache(sbi);
2370
2371 up_read(&nm_i->nat_tree_lock);
2372
2373 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2374 nm_i->ra_nid_pages, META_NAT, false);
2375
2376 return 0;
2377}
2378
2379int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2380{
2381 int ret;
2382
2383 mutex_lock(&NM_I(sbi)->build_lock);
2384 ret = __f2fs_build_free_nids(sbi, sync, mount);
2385 mutex_unlock(&NM_I(sbi)->build_lock);
2386
2387 return ret;
2388}
2389
2390/*
2391 * If this function returns success, caller can obtain a new nid
2392 * from second parameter of this function.
2393 * The returned nid could be used ino as well as nid when inode is created.
2394 */
2395bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2396{
2397 struct f2fs_nm_info *nm_i = NM_I(sbi);
2398 struct free_nid *i = NULL;
2399retry:
2400 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2401 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2402 return false;
2403 }
2404
2405 spin_lock(&nm_i->nid_list_lock);
2406
2407 if (unlikely(nm_i->available_nids == 0)) {
2408 spin_unlock(&nm_i->nid_list_lock);
2409 return false;
2410 }
2411
2412 /* We should not use stale free nids created by f2fs_build_free_nids */
2413 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2414 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2415 i = list_first_entry(&nm_i->free_nid_list,
2416 struct free_nid, list);
2417 *nid = i->nid;
2418
2419 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2420 nm_i->available_nids--;
2421
2422 update_free_nid_bitmap(sbi, *nid, false, false);
2423
2424 spin_unlock(&nm_i->nid_list_lock);
2425 return true;
2426 }
2427 spin_unlock(&nm_i->nid_list_lock);
2428
2429 /* Let's scan nat pages and its caches to get free nids */
2430 if (!f2fs_build_free_nids(sbi, true, false))
2431 goto retry;
2432 return false;
2433}
2434
2435/*
2436 * f2fs_alloc_nid() should be called prior to this function.
2437 */
2438void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2439{
2440 struct f2fs_nm_info *nm_i = NM_I(sbi);
2441 struct free_nid *i;
2442
2443 spin_lock(&nm_i->nid_list_lock);
2444 i = __lookup_free_nid_list(nm_i, nid);
2445 f2fs_bug_on(sbi, !i);
2446 __remove_free_nid(sbi, i, PREALLOC_NID);
2447 spin_unlock(&nm_i->nid_list_lock);
2448
2449 kmem_cache_free(free_nid_slab, i);
2450}
2451
2452/*
2453 * f2fs_alloc_nid() should be called prior to this function.
2454 */
2455void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2456{
2457 struct f2fs_nm_info *nm_i = NM_I(sbi);
2458 struct free_nid *i;
2459 bool need_free = false;
2460
2461 if (!nid)
2462 return;
2463
2464 spin_lock(&nm_i->nid_list_lock);
2465 i = __lookup_free_nid_list(nm_i, nid);
2466 f2fs_bug_on(sbi, !i);
2467
2468 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2469 __remove_free_nid(sbi, i, PREALLOC_NID);
2470 need_free = true;
2471 } else {
2472 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2473 }
2474
2475 nm_i->available_nids++;
2476
2477 update_free_nid_bitmap(sbi, nid, true, false);
2478
2479 spin_unlock(&nm_i->nid_list_lock);
2480
2481 if (need_free)
2482 kmem_cache_free(free_nid_slab, i);
2483}
2484
2485int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2486{
2487 struct f2fs_nm_info *nm_i = NM_I(sbi);
2488 struct free_nid *i, *next;
2489 int nr = nr_shrink;
2490
2491 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2492 return 0;
2493
2494 if (!mutex_trylock(&nm_i->build_lock))
2495 return 0;
2496
2497 spin_lock(&nm_i->nid_list_lock);
2498 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2499 if (nr_shrink <= 0 ||
2500 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2501 break;
2502
2503 __remove_free_nid(sbi, i, FREE_NID);
2504 kmem_cache_free(free_nid_slab, i);
2505 nr_shrink--;
2506 }
2507 spin_unlock(&nm_i->nid_list_lock);
2508 mutex_unlock(&nm_i->build_lock);
2509
2510 return nr - nr_shrink;
2511}
2512
2513void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2514{
2515 void *src_addr, *dst_addr;
2516 size_t inline_size;
2517 struct page *ipage;
2518 struct f2fs_inode *ri;
2519
2520 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2521 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2522
2523 ri = F2FS_INODE(page);
2524 if (ri->i_inline & F2FS_INLINE_XATTR) {
2525 set_inode_flag(inode, FI_INLINE_XATTR);
2526 } else {
2527 clear_inode_flag(inode, FI_INLINE_XATTR);
2528 goto update_inode;
2529 }
2530
2531 dst_addr = inline_xattr_addr(inode, ipage);
2532 src_addr = inline_xattr_addr(inode, page);
2533 inline_size = inline_xattr_size(inode);
2534
2535 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2536 memcpy(dst_addr, src_addr, inline_size);
2537update_inode:
2538 f2fs_update_inode(inode, ipage);
2539 f2fs_put_page(ipage, 1);
2540}
2541
2542int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2543{
2544 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2545 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2546 nid_t new_xnid;
2547 struct dnode_of_data dn;
2548 struct node_info ni;
2549 struct page *xpage;
2550 int err;
2551
2552 if (!prev_xnid)
2553 goto recover_xnid;
2554
2555 /* 1: invalidate the previous xattr nid */
2556 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2557 if (err)
2558 return err;
2559
2560 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2561 dec_valid_node_count(sbi, inode, false);
2562 set_node_addr(sbi, &ni, NULL_ADDR, false);
2563
2564recover_xnid:
2565 /* 2: update xattr nid in inode */
2566 if (!f2fs_alloc_nid(sbi, &new_xnid))
2567 return -ENOSPC;
2568
2569 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2570 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2571 if (IS_ERR(xpage)) {
2572 f2fs_alloc_nid_failed(sbi, new_xnid);
2573 return PTR_ERR(xpage);
2574 }
2575
2576 f2fs_alloc_nid_done(sbi, new_xnid);
2577 f2fs_update_inode_page(inode);
2578
2579 /* 3: update and set xattr node page dirty */
2580 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2581
2582 set_page_dirty(xpage);
2583 f2fs_put_page(xpage, 1);
2584
2585 return 0;
2586}
2587
2588int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2589{
2590 struct f2fs_inode *src, *dst;
2591 nid_t ino = ino_of_node(page);
2592 struct node_info old_ni, new_ni;
2593 struct page *ipage;
2594 int err;
2595
2596 err = f2fs_get_node_info(sbi, ino, &old_ni);
2597 if (err)
2598 return err;
2599
2600 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2601 return -EINVAL;
2602retry:
2603 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2604 if (!ipage) {
2605 congestion_wait(BLK_RW_ASYNC, HZ/50);
2606 goto retry;
2607 }
2608
2609 /* Should not use this inode from free nid list */
2610 remove_free_nid(sbi, ino);
2611
2612 if (!PageUptodate(ipage))
2613 SetPageUptodate(ipage);
2614 fill_node_footer(ipage, ino, ino, 0, true);
2615 set_cold_node(ipage, false);
2616
2617 src = F2FS_INODE(page);
2618 dst = F2FS_INODE(ipage);
2619
2620 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2621 dst->i_size = 0;
2622 dst->i_blocks = cpu_to_le64(1);
2623 dst->i_links = cpu_to_le32(1);
2624 dst->i_xattr_nid = 0;
2625 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2626 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2627 dst->i_extra_isize = src->i_extra_isize;
2628
2629 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2630 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2631 i_inline_xattr_size))
2632 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2633
2634 if (f2fs_sb_has_project_quota(sbi) &&
2635 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2636 i_projid))
2637 dst->i_projid = src->i_projid;
2638
2639 if (f2fs_sb_has_inode_crtime(sbi) &&
2640 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2641 i_crtime_nsec)) {
2642 dst->i_crtime = src->i_crtime;
2643 dst->i_crtime_nsec = src->i_crtime_nsec;
2644 }
2645 }
2646
2647 new_ni = old_ni;
2648 new_ni.ino = ino;
2649
2650 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2651 WARN_ON(1);
2652 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2653 inc_valid_inode_count(sbi);
2654 set_page_dirty(ipage);
2655 f2fs_put_page(ipage, 1);
2656 return 0;
2657}
2658
2659int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2660 unsigned int segno, struct f2fs_summary_block *sum)
2661{
2662 struct f2fs_node *rn;
2663 struct f2fs_summary *sum_entry;
2664 block_t addr;
2665 int i, idx, last_offset, nrpages;
2666
2667 /* scan the node segment */
2668 last_offset = sbi->blocks_per_seg;
2669 addr = START_BLOCK(sbi, segno);
2670 sum_entry = &sum->entries[0];
2671
2672 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2673 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2674
2675 /* readahead node pages */
2676 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2677
2678 for (idx = addr; idx < addr + nrpages; idx++) {
2679 struct page *page = f2fs_get_tmp_page(sbi, idx);
2680
2681 if (IS_ERR(page))
2682 return PTR_ERR(page);
2683
2684 rn = F2FS_NODE(page);
2685 sum_entry->nid = rn->footer.nid;
2686 sum_entry->version = 0;
2687 sum_entry->ofs_in_node = 0;
2688 sum_entry++;
2689 f2fs_put_page(page, 1);
2690 }
2691
2692 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2693 addr + nrpages);
2694 }
2695 return 0;
2696}
2697
2698static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2699{
2700 struct f2fs_nm_info *nm_i = NM_I(sbi);
2701 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2702 struct f2fs_journal *journal = curseg->journal;
2703 int i;
2704
2705 down_write(&curseg->journal_rwsem);
2706 for (i = 0; i < nats_in_cursum(journal); i++) {
2707 struct nat_entry *ne;
2708 struct f2fs_nat_entry raw_ne;
2709 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2710
2711 raw_ne = nat_in_journal(journal, i);
2712
2713 ne = __lookup_nat_cache(nm_i, nid);
2714 if (!ne) {
2715 ne = __alloc_nat_entry(nid, true);
2716 __init_nat_entry(nm_i, ne, &raw_ne, true);
2717 }
2718
2719 /*
2720 * if a free nat in journal has not been used after last
2721 * checkpoint, we should remove it from available nids,
2722 * since later we will add it again.
2723 */
2724 if (!get_nat_flag(ne, IS_DIRTY) &&
2725 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2726 spin_lock(&nm_i->nid_list_lock);
2727 nm_i->available_nids--;
2728 spin_unlock(&nm_i->nid_list_lock);
2729 }
2730
2731 __set_nat_cache_dirty(nm_i, ne);
2732 }
2733 update_nats_in_cursum(journal, -i);
2734 up_write(&curseg->journal_rwsem);
2735}
2736
2737static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2738 struct list_head *head, int max)
2739{
2740 struct nat_entry_set *cur;
2741
2742 if (nes->entry_cnt >= max)
2743 goto add_out;
2744
2745 list_for_each_entry(cur, head, set_list) {
2746 if (cur->entry_cnt >= nes->entry_cnt) {
2747 list_add(&nes->set_list, cur->set_list.prev);
2748 return;
2749 }
2750 }
2751add_out:
2752 list_add_tail(&nes->set_list, head);
2753}
2754
2755static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2756 struct page *page)
2757{
2758 struct f2fs_nm_info *nm_i = NM_I(sbi);
2759 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2760 struct f2fs_nat_block *nat_blk = page_address(page);
2761 int valid = 0;
2762 int i = 0;
2763
2764 if (!enabled_nat_bits(sbi, NULL))
2765 return;
2766
2767 if (nat_index == 0) {
2768 valid = 1;
2769 i = 1;
2770 }
2771 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2772 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2773 valid++;
2774 }
2775 if (valid == 0) {
2776 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2777 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2778 return;
2779 }
2780
2781 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2782 if (valid == NAT_ENTRY_PER_BLOCK)
2783 __set_bit_le(nat_index, nm_i->full_nat_bits);
2784 else
2785 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2786}
2787
2788static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2789 struct nat_entry_set *set, struct cp_control *cpc)
2790{
2791 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2792 struct f2fs_journal *journal = curseg->journal;
2793 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2794 bool to_journal = true;
2795 struct f2fs_nat_block *nat_blk;
2796 struct nat_entry *ne, *cur;
2797 struct page *page = NULL;
2798
2799 /*
2800 * there are two steps to flush nat entries:
2801 * #1, flush nat entries to journal in current hot data summary block.
2802 * #2, flush nat entries to nat page.
2803 */
2804 if (enabled_nat_bits(sbi, cpc) ||
2805 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2806 to_journal = false;
2807
2808 if (to_journal) {
2809 down_write(&curseg->journal_rwsem);
2810 } else {
2811 page = get_next_nat_page(sbi, start_nid);
2812 if (IS_ERR(page))
2813 return PTR_ERR(page);
2814
2815 nat_blk = page_address(page);
2816 f2fs_bug_on(sbi, !nat_blk);
2817 }
2818
2819 /* flush dirty nats in nat entry set */
2820 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2821 struct f2fs_nat_entry *raw_ne;
2822 nid_t nid = nat_get_nid(ne);
2823 int offset;
2824
2825 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2826
2827 if (to_journal) {
2828 offset = f2fs_lookup_journal_in_cursum(journal,
2829 NAT_JOURNAL, nid, 1);
2830 f2fs_bug_on(sbi, offset < 0);
2831 raw_ne = &nat_in_journal(journal, offset);
2832 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2833 } else {
2834 raw_ne = &nat_blk->entries[nid - start_nid];
2835 }
2836 raw_nat_from_node_info(raw_ne, &ne->ni);
2837 nat_reset_flag(ne);
2838 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2839 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2840 add_free_nid(sbi, nid, false, true);
2841 } else {
2842 spin_lock(&NM_I(sbi)->nid_list_lock);
2843 update_free_nid_bitmap(sbi, nid, false, false);
2844 spin_unlock(&NM_I(sbi)->nid_list_lock);
2845 }
2846 }
2847
2848 if (to_journal) {
2849 up_write(&curseg->journal_rwsem);
2850 } else {
2851 __update_nat_bits(sbi, start_nid, page);
2852 f2fs_put_page(page, 1);
2853 }
2854
2855 /* Allow dirty nats by node block allocation in write_begin */
2856 if (!set->entry_cnt) {
2857 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2858 kmem_cache_free(nat_entry_set_slab, set);
2859 }
2860 return 0;
2861}
2862
2863/*
2864 * This function is called during the checkpointing process.
2865 */
2866int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2867{
2868 struct f2fs_nm_info *nm_i = NM_I(sbi);
2869 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2870 struct f2fs_journal *journal = curseg->journal;
2871 struct nat_entry_set *setvec[SETVEC_SIZE];
2872 struct nat_entry_set *set, *tmp;
2873 unsigned int found;
2874 nid_t set_idx = 0;
2875 LIST_HEAD(sets);
2876 int err = 0;
2877
2878 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2879 if (enabled_nat_bits(sbi, cpc)) {
2880 down_write(&nm_i->nat_tree_lock);
2881 remove_nats_in_journal(sbi);
2882 up_write(&nm_i->nat_tree_lock);
2883 }
2884
2885 if (!nm_i->dirty_nat_cnt)
2886 return 0;
2887
2888 down_write(&nm_i->nat_tree_lock);
2889
2890 /*
2891 * if there are no enough space in journal to store dirty nat
2892 * entries, remove all entries from journal and merge them
2893 * into nat entry set.
2894 */
2895 if (enabled_nat_bits(sbi, cpc) ||
2896 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2897 remove_nats_in_journal(sbi);
2898
2899 while ((found = __gang_lookup_nat_set(nm_i,
2900 set_idx, SETVEC_SIZE, setvec))) {
2901 unsigned idx;
2902 set_idx = setvec[found - 1]->set + 1;
2903 for (idx = 0; idx < found; idx++)
2904 __adjust_nat_entry_set(setvec[idx], &sets,
2905 MAX_NAT_JENTRIES(journal));
2906 }
2907
2908 /* flush dirty nats in nat entry set */
2909 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2910 err = __flush_nat_entry_set(sbi, set, cpc);
2911 if (err)
2912 break;
2913 }
2914
2915 up_write(&nm_i->nat_tree_lock);
2916 /* Allow dirty nats by node block allocation in write_begin */
2917
2918 return err;
2919}
2920
2921static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2922{
2923 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2924 struct f2fs_nm_info *nm_i = NM_I(sbi);
2925 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2926 unsigned int i;
2927 __u64 cp_ver = cur_cp_version(ckpt);
2928 block_t nat_bits_addr;
2929
2930 if (!enabled_nat_bits(sbi, NULL))
2931 return 0;
2932
2933 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2934 nm_i->nat_bits = f2fs_kzalloc(sbi,
2935 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2936 if (!nm_i->nat_bits)
2937 return -ENOMEM;
2938
2939 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2940 nm_i->nat_bits_blocks;
2941 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2942 struct page *page;
2943
2944 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2945 if (IS_ERR(page))
2946 return PTR_ERR(page);
2947
2948 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2949 page_address(page), F2FS_BLKSIZE);
2950 f2fs_put_page(page, 1);
2951 }
2952
2953 cp_ver |= (cur_cp_crc(ckpt) << 32);
2954 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2955 disable_nat_bits(sbi, true);
2956 return 0;
2957 }
2958
2959 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2960 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2961
2962 f2fs_notice(sbi, "Found nat_bits in checkpoint");
2963 return 0;
2964}
2965
2966static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2967{
2968 struct f2fs_nm_info *nm_i = NM_I(sbi);
2969 unsigned int i = 0;
2970 nid_t nid, last_nid;
2971
2972 if (!enabled_nat_bits(sbi, NULL))
2973 return;
2974
2975 for (i = 0; i < nm_i->nat_blocks; i++) {
2976 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2977 if (i >= nm_i->nat_blocks)
2978 break;
2979
2980 __set_bit_le(i, nm_i->nat_block_bitmap);
2981
2982 nid = i * NAT_ENTRY_PER_BLOCK;
2983 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2984
2985 spin_lock(&NM_I(sbi)->nid_list_lock);
2986 for (; nid < last_nid; nid++)
2987 update_free_nid_bitmap(sbi, nid, true, true);
2988 spin_unlock(&NM_I(sbi)->nid_list_lock);
2989 }
2990
2991 for (i = 0; i < nm_i->nat_blocks; i++) {
2992 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2993 if (i >= nm_i->nat_blocks)
2994 break;
2995
2996 __set_bit_le(i, nm_i->nat_block_bitmap);
2997 }
2998}
2999
3000static int init_node_manager(struct f2fs_sb_info *sbi)
3001{
3002 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3003 struct f2fs_nm_info *nm_i = NM_I(sbi);
3004 unsigned char *version_bitmap;
3005 unsigned int nat_segs;
3006 int err;
3007
3008 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3009
3010 /* segment_count_nat includes pair segment so divide to 2. */
3011 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3012 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3013 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3014
3015 /* not used nids: 0, node, meta, (and root counted as valid node) */
3016 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3017 F2FS_RESERVED_NODE_NUM;
3018 nm_i->nid_cnt[FREE_NID] = 0;
3019 nm_i->nid_cnt[PREALLOC_NID] = 0;
3020 nm_i->nat_cnt = 0;
3021 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3022 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3023 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3024
3025 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3026 INIT_LIST_HEAD(&nm_i->free_nid_list);
3027 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3028 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3029 INIT_LIST_HEAD(&nm_i->nat_entries);
3030 spin_lock_init(&nm_i->nat_list_lock);
3031
3032 mutex_init(&nm_i->build_lock);
3033 spin_lock_init(&nm_i->nid_list_lock);
3034 init_rwsem(&nm_i->nat_tree_lock);
3035
3036 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3037 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3038 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3039 if (!version_bitmap)
3040 return -EFAULT;
3041
3042 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3043 GFP_KERNEL);
3044 if (!nm_i->nat_bitmap)
3045 return -ENOMEM;
3046
3047 err = __get_nat_bitmaps(sbi);
3048 if (err)
3049 return err;
3050
3051#ifdef CONFIG_F2FS_CHECK_FS
3052 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3053 GFP_KERNEL);
3054 if (!nm_i->nat_bitmap_mir)
3055 return -ENOMEM;
3056#endif
3057
3058 return 0;
3059}
3060
3061static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3062{
3063 struct f2fs_nm_info *nm_i = NM_I(sbi);
3064 int i;
3065
3066 nm_i->free_nid_bitmap =
3067 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3068 nm_i->nat_blocks),
3069 GFP_KERNEL);
3070 if (!nm_i->free_nid_bitmap)
3071 return -ENOMEM;
3072
3073 for (i = 0; i < nm_i->nat_blocks; i++) {
3074 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3075 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3076 if (!nm_i->free_nid_bitmap[i])
3077 return -ENOMEM;
3078 }
3079
3080 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3081 GFP_KERNEL);
3082 if (!nm_i->nat_block_bitmap)
3083 return -ENOMEM;
3084
3085 nm_i->free_nid_count =
3086 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3087 nm_i->nat_blocks),
3088 GFP_KERNEL);
3089 if (!nm_i->free_nid_count)
3090 return -ENOMEM;
3091 return 0;
3092}
3093
3094int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3095{
3096 int err;
3097
3098 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3099 GFP_KERNEL);
3100 if (!sbi->nm_info)
3101 return -ENOMEM;
3102
3103 err = init_node_manager(sbi);
3104 if (err)
3105 return err;
3106
3107 err = init_free_nid_cache(sbi);
3108 if (err)
3109 return err;
3110
3111 /* load free nid status from nat_bits table */
3112 load_free_nid_bitmap(sbi);
3113
3114 return f2fs_build_free_nids(sbi, true, true);
3115}
3116
3117void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3118{
3119 struct f2fs_nm_info *nm_i = NM_I(sbi);
3120 struct free_nid *i, *next_i;
3121 struct nat_entry *natvec[NATVEC_SIZE];
3122 struct nat_entry_set *setvec[SETVEC_SIZE];
3123 nid_t nid = 0;
3124 unsigned int found;
3125
3126 if (!nm_i)
3127 return;
3128
3129 /* destroy free nid list */
3130 spin_lock(&nm_i->nid_list_lock);
3131 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3132 __remove_free_nid(sbi, i, FREE_NID);
3133 spin_unlock(&nm_i->nid_list_lock);
3134 kmem_cache_free(free_nid_slab, i);
3135 spin_lock(&nm_i->nid_list_lock);
3136 }
3137 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3138 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3139 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3140 spin_unlock(&nm_i->nid_list_lock);
3141
3142 /* destroy nat cache */
3143 down_write(&nm_i->nat_tree_lock);
3144 while ((found = __gang_lookup_nat_cache(nm_i,
3145 nid, NATVEC_SIZE, natvec))) {
3146 unsigned idx;
3147
3148 nid = nat_get_nid(natvec[found - 1]) + 1;
3149 for (idx = 0; idx < found; idx++) {
3150 spin_lock(&nm_i->nat_list_lock);
3151 list_del(&natvec[idx]->list);
3152 spin_unlock(&nm_i->nat_list_lock);
3153
3154 __del_from_nat_cache(nm_i, natvec[idx]);
3155 }
3156 }
3157 f2fs_bug_on(sbi, nm_i->nat_cnt);
3158
3159 /* destroy nat set cache */
3160 nid = 0;
3161 while ((found = __gang_lookup_nat_set(nm_i,
3162 nid, SETVEC_SIZE, setvec))) {
3163 unsigned idx;
3164
3165 nid = setvec[found - 1]->set + 1;
3166 for (idx = 0; idx < found; idx++) {
3167 /* entry_cnt is not zero, when cp_error was occurred */
3168 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3169 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3170 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3171 }
3172 }
3173 up_write(&nm_i->nat_tree_lock);
3174
3175 kvfree(nm_i->nat_block_bitmap);
3176 if (nm_i->free_nid_bitmap) {
3177 int i;
3178
3179 for (i = 0; i < nm_i->nat_blocks; i++)
3180 kvfree(nm_i->free_nid_bitmap[i]);
3181 kvfree(nm_i->free_nid_bitmap);
3182 }
3183 kvfree(nm_i->free_nid_count);
3184
3185 kvfree(nm_i->nat_bitmap);
3186 kvfree(nm_i->nat_bits);
3187#ifdef CONFIG_F2FS_CHECK_FS
3188 kvfree(nm_i->nat_bitmap_mir);
3189#endif
3190 sbi->nm_info = NULL;
3191 kvfree(nm_i);
3192}
3193
3194int __init f2fs_create_node_manager_caches(void)
3195{
3196 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3197 sizeof(struct nat_entry));
3198 if (!nat_entry_slab)
3199 goto fail;
3200
3201 free_nid_slab = f2fs_kmem_cache_create("free_nid",
3202 sizeof(struct free_nid));
3203 if (!free_nid_slab)
3204 goto destroy_nat_entry;
3205
3206 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3207 sizeof(struct nat_entry_set));
3208 if (!nat_entry_set_slab)
3209 goto destroy_free_nid;
3210
3211 fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3212 sizeof(struct fsync_node_entry));
3213 if (!fsync_node_entry_slab)
3214 goto destroy_nat_entry_set;
3215 return 0;
3216
3217destroy_nat_entry_set:
3218 kmem_cache_destroy(nat_entry_set_slab);
3219destroy_free_nid:
3220 kmem_cache_destroy(free_nid_slab);
3221destroy_nat_entry:
3222 kmem_cache_destroy(nat_entry_slab);
3223fail:
3224 return -ENOMEM;
3225}
3226
3227void f2fs_destroy_node_manager_caches(void)
3228{
3229 kmem_cache_destroy(fsync_node_entry_slab);
3230 kmem_cache_destroy(nat_entry_set_slab);
3231 kmem_cache_destroy(free_nid_slab);
3232 kmem_cache_destroy(nat_entry_slab);
3233}