blob: 34f3b2c565791bc6ca99d8c3e309c4a0a7ef3aa7 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17#include <linux/ratelimit.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
21#include <linux/fscrypt.h>
22#include <linux/fsnotify.h>
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/hash.h>
26#include <linux/cache.h>
27#include <linux/export.h>
28#include <linux/security.h>
29#include <linux/seqlock.h>
30#include <linux/bootmem.h>
31#include <linux/bit_spinlock.h>
32#include <linux/rculist_bl.h>
33#include <linux/list_lru.h>
34#include "internal.h"
35#include "mount.h"
36
37/*
38 * Usage:
39 * dcache->d_inode->i_lock protects:
40 * - i_dentry, d_u.d_alias, d_inode of aliases
41 * dcache_hash_bucket lock protects:
42 * - the dcache hash table
43 * s_roots bl list spinlock protects:
44 * - the s_roots list (see __d_drop)
45 * dentry->d_sb->s_dentry_lru_lock protects:
46 * - the dcache lru lists and counters
47 * d_lock protects:
48 * - d_flags
49 * - d_name
50 * - d_lru
51 * - d_count
52 * - d_unhashed()
53 * - d_parent and d_subdirs
54 * - childrens' d_child and d_parent
55 * - d_u.d_alias, d_inode
56 *
57 * Ordering:
58 * dentry->d_inode->i_lock
59 * dentry->d_lock
60 * dentry->d_sb->s_dentry_lru_lock
61 * dcache_hash_bucket lock
62 * s_roots lock
63 *
64 * If there is an ancestor relationship:
65 * dentry->d_parent->...->d_parent->d_lock
66 * ...
67 * dentry->d_parent->d_lock
68 * dentry->d_lock
69 *
70 * If no ancestor relationship:
71 * arbitrary, since it's serialized on rename_lock
72 */
73int sysctl_vfs_cache_pressure __read_mostly = 100;
74EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75
76__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
77
78EXPORT_SYMBOL(rename_lock);
79
80static struct kmem_cache *dentry_cache __read_mostly;
81
82const struct qstr empty_name = QSTR_INIT("", 0);
83EXPORT_SYMBOL(empty_name);
84const struct qstr slash_name = QSTR_INIT("/", 1);
85EXPORT_SYMBOL(slash_name);
86
87/*
88 * This is the single most critical data structure when it comes
89 * to the dcache: the hashtable for lookups. Somebody should try
90 * to make this good - I've just made it work.
91 *
92 * This hash-function tries to avoid losing too many bits of hash
93 * information, yet avoid using a prime hash-size or similar.
94 */
95
96static unsigned int d_hash_shift __read_mostly;
97
98static struct hlist_bl_head *dentry_hashtable __read_mostly;
99
100static inline struct hlist_bl_head *d_hash(unsigned int hash)
101{
102 return dentry_hashtable + (hash >> d_hash_shift);
103}
104
105#define IN_LOOKUP_SHIFT 10
106static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
107
108static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
109 unsigned int hash)
110{
111 hash += (unsigned long) parent / L1_CACHE_BYTES;
112 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
113}
114
115
116/* Statistics gathering. */
117struct dentry_stat_t dentry_stat = {
118 .age_limit = 45,
119};
120
121static DEFINE_PER_CPU(long, nr_dentry);
122static DEFINE_PER_CPU(long, nr_dentry_unused);
123
124#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
125
126/*
127 * Here we resort to our own counters instead of using generic per-cpu counters
128 * for consistency with what the vfs inode code does. We are expected to harvest
129 * better code and performance by having our own specialized counters.
130 *
131 * Please note that the loop is done over all possible CPUs, not over all online
132 * CPUs. The reason for this is that we don't want to play games with CPUs going
133 * on and off. If one of them goes off, we will just keep their counters.
134 *
135 * glommer: See cffbc8a for details, and if you ever intend to change this,
136 * please update all vfs counters to match.
137 */
138static long get_nr_dentry(void)
139{
140 int i;
141 long sum = 0;
142 for_each_possible_cpu(i)
143 sum += per_cpu(nr_dentry, i);
144 return sum < 0 ? 0 : sum;
145}
146
147static long get_nr_dentry_unused(void)
148{
149 int i;
150 long sum = 0;
151 for_each_possible_cpu(i)
152 sum += per_cpu(nr_dentry_unused, i);
153 return sum < 0 ? 0 : sum;
154}
155
156int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
157 size_t *lenp, loff_t *ppos)
158{
159 dentry_stat.nr_dentry = get_nr_dentry();
160 dentry_stat.nr_unused = get_nr_dentry_unused();
161 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
162}
163#endif
164
165/*
166 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
167 * The strings are both count bytes long, and count is non-zero.
168 */
169#ifdef CONFIG_DCACHE_WORD_ACCESS
170
171#include <asm/word-at-a-time.h>
172/*
173 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
174 * aligned allocation for this particular component. We don't
175 * strictly need the load_unaligned_zeropad() safety, but it
176 * doesn't hurt either.
177 *
178 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
179 * need the careful unaligned handling.
180 */
181static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
182{
183 unsigned long a,b,mask;
184
185 for (;;) {
186 a = read_word_at_a_time(cs);
187 b = load_unaligned_zeropad(ct);
188 if (tcount < sizeof(unsigned long))
189 break;
190 if (unlikely(a != b))
191 return 1;
192 cs += sizeof(unsigned long);
193 ct += sizeof(unsigned long);
194 tcount -= sizeof(unsigned long);
195 if (!tcount)
196 return 0;
197 }
198 mask = bytemask_from_count(tcount);
199 return unlikely(!!((a ^ b) & mask));
200}
201
202#else
203
204static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
205{
206 do {
207 if (*cs != *ct)
208 return 1;
209 cs++;
210 ct++;
211 tcount--;
212 } while (tcount);
213 return 0;
214}
215
216#endif
217
218static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
219{
220 /*
221 * Be careful about RCU walk racing with rename:
222 * use 'READ_ONCE' to fetch the name pointer.
223 *
224 * NOTE! Even if a rename will mean that the length
225 * was not loaded atomically, we don't care. The
226 * RCU walk will check the sequence count eventually,
227 * and catch it. And we won't overrun the buffer,
228 * because we're reading the name pointer atomically,
229 * and a dentry name is guaranteed to be properly
230 * terminated with a NUL byte.
231 *
232 * End result: even if 'len' is wrong, we'll exit
233 * early because the data cannot match (there can
234 * be no NUL in the ct/tcount data)
235 */
236 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
237
238 return dentry_string_cmp(cs, ct, tcount);
239}
240
241struct external_name {
242 union {
243 atomic_t count;
244 struct rcu_head head;
245 } u;
246 unsigned char name[];
247};
248
249static inline struct external_name *external_name(struct dentry *dentry)
250{
251 return container_of(dentry->d_name.name, struct external_name, name[0]);
252}
253
254static void __d_free(struct rcu_head *head)
255{
256 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
257
258 kmem_cache_free(dentry_cache, dentry);
259}
260
261static void __d_free_external(struct rcu_head *head)
262{
263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264 kfree(external_name(dentry));
265 kmem_cache_free(dentry_cache, dentry);
266}
267
268static inline int dname_external(const struct dentry *dentry)
269{
270 return dentry->d_name.name != dentry->d_iname;
271}
272
273void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
274{
275 spin_lock(&dentry->d_lock);
276 if (unlikely(dname_external(dentry))) {
277 struct external_name *p = external_name(dentry);
278 atomic_inc(&p->u.count);
279 spin_unlock(&dentry->d_lock);
280 name->name = p->name;
281 } else {
282 memcpy(name->inline_name, dentry->d_iname,
283 dentry->d_name.len + 1);
284 spin_unlock(&dentry->d_lock);
285 name->name = name->inline_name;
286 }
287}
288EXPORT_SYMBOL(take_dentry_name_snapshot);
289
290void release_dentry_name_snapshot(struct name_snapshot *name)
291{
292 if (unlikely(name->name != name->inline_name)) {
293 struct external_name *p;
294 p = container_of(name->name, struct external_name, name[0]);
295 if (unlikely(atomic_dec_and_test(&p->u.count)))
296 kfree_rcu(p, u.head);
297 }
298}
299EXPORT_SYMBOL(release_dentry_name_snapshot);
300
301static inline void __d_set_inode_and_type(struct dentry *dentry,
302 struct inode *inode,
303 unsigned type_flags)
304{
305 unsigned flags;
306
307 dentry->d_inode = inode;
308 flags = READ_ONCE(dentry->d_flags);
309 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
310 flags |= type_flags;
311 WRITE_ONCE(dentry->d_flags, flags);
312}
313
314static inline void __d_clear_type_and_inode(struct dentry *dentry)
315{
316 unsigned flags = READ_ONCE(dentry->d_flags);
317
318 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
319 WRITE_ONCE(dentry->d_flags, flags);
320 dentry->d_inode = NULL;
321}
322
323static void dentry_free(struct dentry *dentry)
324{
325 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
326 if (unlikely(dname_external(dentry))) {
327 struct external_name *p = external_name(dentry);
328 if (likely(atomic_dec_and_test(&p->u.count))) {
329 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
330 return;
331 }
332 }
333 /* if dentry was never visible to RCU, immediate free is OK */
334 if (dentry->d_flags & DCACHE_NORCU)
335 __d_free(&dentry->d_u.d_rcu);
336 else
337 call_rcu(&dentry->d_u.d_rcu, __d_free);
338}
339
340/*
341 * Release the dentry's inode, using the filesystem
342 * d_iput() operation if defined.
343 */
344static void dentry_unlink_inode(struct dentry * dentry)
345 __releases(dentry->d_lock)
346 __releases(dentry->d_inode->i_lock)
347{
348 struct inode *inode = dentry->d_inode;
349
350 raw_write_seqcount_begin(&dentry->d_seq);
351 __d_clear_type_and_inode(dentry);
352 hlist_del_init(&dentry->d_u.d_alias);
353 raw_write_seqcount_end(&dentry->d_seq);
354 spin_unlock(&dentry->d_lock);
355 spin_unlock(&inode->i_lock);
356 if (!inode->i_nlink)
357 fsnotify_inoderemove(inode);
358 if (dentry->d_op && dentry->d_op->d_iput)
359 dentry->d_op->d_iput(dentry, inode);
360 else
361 iput(inode);
362}
363
364/*
365 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
366 * is in use - which includes both the "real" per-superblock
367 * LRU list _and_ the DCACHE_SHRINK_LIST use.
368 *
369 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
370 * on the shrink list (ie not on the superblock LRU list).
371 *
372 * The per-cpu "nr_dentry_unused" counters are updated with
373 * the DCACHE_LRU_LIST bit.
374 *
375 * These helper functions make sure we always follow the
376 * rules. d_lock must be held by the caller.
377 */
378#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
379static void d_lru_add(struct dentry *dentry)
380{
381 D_FLAG_VERIFY(dentry, 0);
382 dentry->d_flags |= DCACHE_LRU_LIST;
383 this_cpu_inc(nr_dentry_unused);
384 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
385}
386
387static void d_lru_del(struct dentry *dentry)
388{
389 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
390 dentry->d_flags &= ~DCACHE_LRU_LIST;
391 this_cpu_dec(nr_dentry_unused);
392 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
393}
394
395static void d_shrink_del(struct dentry *dentry)
396{
397 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
398 list_del_init(&dentry->d_lru);
399 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
400 this_cpu_dec(nr_dentry_unused);
401}
402
403static void d_shrink_add(struct dentry *dentry, struct list_head *list)
404{
405 D_FLAG_VERIFY(dentry, 0);
406 list_add(&dentry->d_lru, list);
407 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
408 this_cpu_inc(nr_dentry_unused);
409}
410
411/*
412 * These can only be called under the global LRU lock, ie during the
413 * callback for freeing the LRU list. "isolate" removes it from the
414 * LRU lists entirely, while shrink_move moves it to the indicated
415 * private list.
416 */
417static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
418{
419 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
420 dentry->d_flags &= ~DCACHE_LRU_LIST;
421 this_cpu_dec(nr_dentry_unused);
422 list_lru_isolate(lru, &dentry->d_lru);
423}
424
425static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
426 struct list_head *list)
427{
428 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
429 dentry->d_flags |= DCACHE_SHRINK_LIST;
430 list_lru_isolate_move(lru, &dentry->d_lru, list);
431}
432
433/**
434 * d_drop - drop a dentry
435 * @dentry: dentry to drop
436 *
437 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
438 * be found through a VFS lookup any more. Note that this is different from
439 * deleting the dentry - d_delete will try to mark the dentry negative if
440 * possible, giving a successful _negative_ lookup, while d_drop will
441 * just make the cache lookup fail.
442 *
443 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
444 * reason (NFS timeouts or autofs deletes).
445 *
446 * __d_drop requires dentry->d_lock
447 * ___d_drop doesn't mark dentry as "unhashed"
448 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
449 */
450static void ___d_drop(struct dentry *dentry)
451{
452 struct hlist_bl_head *b;
453 /*
454 * Hashed dentries are normally on the dentry hashtable,
455 * with the exception of those newly allocated by
456 * d_obtain_root, which are always IS_ROOT:
457 */
458 if (unlikely(IS_ROOT(dentry)))
459 b = &dentry->d_sb->s_roots;
460 else
461 b = d_hash(dentry->d_name.hash);
462
463 hlist_bl_lock(b);
464 __hlist_bl_del(&dentry->d_hash);
465 hlist_bl_unlock(b);
466}
467
468void __d_drop(struct dentry *dentry)
469{
470 if (!d_unhashed(dentry)) {
471 ___d_drop(dentry);
472 dentry->d_hash.pprev = NULL;
473 write_seqcount_invalidate(&dentry->d_seq);
474 }
475}
476EXPORT_SYMBOL(__d_drop);
477
478void d_drop(struct dentry *dentry)
479{
480 spin_lock(&dentry->d_lock);
481 __d_drop(dentry);
482 spin_unlock(&dentry->d_lock);
483}
484EXPORT_SYMBOL(d_drop);
485
486static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
487{
488 struct dentry *next;
489 /*
490 * Inform d_walk() and shrink_dentry_list() that we are no longer
491 * attached to the dentry tree
492 */
493 dentry->d_flags |= DCACHE_DENTRY_KILLED;
494 if (unlikely(list_empty(&dentry->d_child)))
495 return;
496 __list_del_entry(&dentry->d_child);
497 /*
498 * Cursors can move around the list of children. While we'd been
499 * a normal list member, it didn't matter - ->d_child.next would've
500 * been updated. However, from now on it won't be and for the
501 * things like d_walk() it might end up with a nasty surprise.
502 * Normally d_walk() doesn't care about cursors moving around -
503 * ->d_lock on parent prevents that and since a cursor has no children
504 * of its own, we get through it without ever unlocking the parent.
505 * There is one exception, though - if we ascend from a child that
506 * gets killed as soon as we unlock it, the next sibling is found
507 * using the value left in its ->d_child.next. And if _that_
508 * pointed to a cursor, and cursor got moved (e.g. by lseek())
509 * before d_walk() regains parent->d_lock, we'll end up skipping
510 * everything the cursor had been moved past.
511 *
512 * Solution: make sure that the pointer left behind in ->d_child.next
513 * points to something that won't be moving around. I.e. skip the
514 * cursors.
515 */
516 while (dentry->d_child.next != &parent->d_subdirs) {
517 next = list_entry(dentry->d_child.next, struct dentry, d_child);
518 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
519 break;
520 dentry->d_child.next = next->d_child.next;
521 }
522}
523
524static void __dentry_kill(struct dentry *dentry)
525{
526 struct dentry *parent = NULL;
527 bool can_free = true;
528 if (!IS_ROOT(dentry))
529 parent = dentry->d_parent;
530
531 /*
532 * The dentry is now unrecoverably dead to the world.
533 */
534 lockref_mark_dead(&dentry->d_lockref);
535
536 /*
537 * inform the fs via d_prune that this dentry is about to be
538 * unhashed and destroyed.
539 */
540 if (dentry->d_flags & DCACHE_OP_PRUNE)
541 dentry->d_op->d_prune(dentry);
542
543 if (dentry->d_flags & DCACHE_LRU_LIST) {
544 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
545 d_lru_del(dentry);
546 }
547 /* if it was on the hash then remove it */
548 __d_drop(dentry);
549 dentry_unlist(dentry, parent);
550 if (parent)
551 spin_unlock(&parent->d_lock);
552 if (dentry->d_inode)
553 dentry_unlink_inode(dentry);
554 else
555 spin_unlock(&dentry->d_lock);
556 this_cpu_dec(nr_dentry);
557 if (dentry->d_op && dentry->d_op->d_release)
558 dentry->d_op->d_release(dentry);
559
560 spin_lock(&dentry->d_lock);
561 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
562 dentry->d_flags |= DCACHE_MAY_FREE;
563 can_free = false;
564 }
565 spin_unlock(&dentry->d_lock);
566 if (likely(can_free))
567 dentry_free(dentry);
568 cond_resched();
569}
570
571static struct dentry *__lock_parent(struct dentry *dentry)
572{
573 struct dentry *parent;
574 rcu_read_lock();
575 spin_unlock(&dentry->d_lock);
576again:
577 parent = READ_ONCE(dentry->d_parent);
578 spin_lock(&parent->d_lock);
579 /*
580 * We can't blindly lock dentry until we are sure
581 * that we won't violate the locking order.
582 * Any changes of dentry->d_parent must have
583 * been done with parent->d_lock held, so
584 * spin_lock() above is enough of a barrier
585 * for checking if it's still our child.
586 */
587 if (unlikely(parent != dentry->d_parent)) {
588 spin_unlock(&parent->d_lock);
589 goto again;
590 }
591 rcu_read_unlock();
592 if (parent != dentry)
593 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
594 else
595 parent = NULL;
596 return parent;
597}
598
599static inline struct dentry *lock_parent(struct dentry *dentry)
600{
601 struct dentry *parent = dentry->d_parent;
602 if (IS_ROOT(dentry))
603 return NULL;
604 if (likely(spin_trylock(&parent->d_lock)))
605 return parent;
606 return __lock_parent(dentry);
607}
608
609static inline bool retain_dentry(struct dentry *dentry)
610{
611 WARN_ON(d_in_lookup(dentry));
612
613 /* Unreachable? Get rid of it */
614 if (unlikely(d_unhashed(dentry)))
615 return false;
616
617 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
618 return false;
619
620 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
621 if (dentry->d_op->d_delete(dentry))
622 return false;
623 }
624 /* retain; LRU fodder */
625 dentry->d_lockref.count--;
626 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
627 d_lru_add(dentry);
628 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
629 dentry->d_flags |= DCACHE_REFERENCED;
630 return true;
631}
632
633/*
634 * Finish off a dentry we've decided to kill.
635 * dentry->d_lock must be held, returns with it unlocked.
636 * Returns dentry requiring refcount drop, or NULL if we're done.
637 */
638static struct dentry *dentry_kill(struct dentry *dentry)
639 __releases(dentry->d_lock)
640{
641 struct inode *inode = dentry->d_inode;
642 struct dentry *parent = NULL;
643
644 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
645 goto slow_positive;
646
647 if (!IS_ROOT(dentry)) {
648 parent = dentry->d_parent;
649 if (unlikely(!spin_trylock(&parent->d_lock))) {
650 parent = __lock_parent(dentry);
651 if (likely(inode || !dentry->d_inode))
652 goto got_locks;
653 /* negative that became positive */
654 if (parent)
655 spin_unlock(&parent->d_lock);
656 inode = dentry->d_inode;
657 goto slow_positive;
658 }
659 }
660 __dentry_kill(dentry);
661 return parent;
662
663slow_positive:
664 spin_unlock(&dentry->d_lock);
665 spin_lock(&inode->i_lock);
666 spin_lock(&dentry->d_lock);
667 parent = lock_parent(dentry);
668got_locks:
669 if (unlikely(dentry->d_lockref.count != 1)) {
670 dentry->d_lockref.count--;
671 } else if (likely(!retain_dentry(dentry))) {
672 __dentry_kill(dentry);
673 return parent;
674 }
675 /* we are keeping it, after all */
676 if (inode)
677 spin_unlock(&inode->i_lock);
678 if (parent)
679 spin_unlock(&parent->d_lock);
680 spin_unlock(&dentry->d_lock);
681 return NULL;
682}
683
684/*
685 * Try to do a lockless dput(), and return whether that was successful.
686 *
687 * If unsuccessful, we return false, having already taken the dentry lock.
688 *
689 * The caller needs to hold the RCU read lock, so that the dentry is
690 * guaranteed to stay around even if the refcount goes down to zero!
691 */
692static inline bool fast_dput(struct dentry *dentry)
693{
694 int ret;
695 unsigned int d_flags;
696
697 /*
698 * If we have a d_op->d_delete() operation, we sould not
699 * let the dentry count go to zero, so use "put_or_lock".
700 */
701 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
702 return lockref_put_or_lock(&dentry->d_lockref);
703
704 /*
705 * .. otherwise, we can try to just decrement the
706 * lockref optimistically.
707 */
708 ret = lockref_put_return(&dentry->d_lockref);
709
710 /*
711 * If the lockref_put_return() failed due to the lock being held
712 * by somebody else, the fast path has failed. We will need to
713 * get the lock, and then check the count again.
714 */
715 if (unlikely(ret < 0)) {
716 spin_lock(&dentry->d_lock);
717 if (dentry->d_lockref.count > 1) {
718 dentry->d_lockref.count--;
719 spin_unlock(&dentry->d_lock);
720 return true;
721 }
722 return false;
723 }
724
725 /*
726 * If we weren't the last ref, we're done.
727 */
728 if (ret)
729 return true;
730
731 /*
732 * Careful, careful. The reference count went down
733 * to zero, but we don't hold the dentry lock, so
734 * somebody else could get it again, and do another
735 * dput(), and we need to not race with that.
736 *
737 * However, there is a very special and common case
738 * where we don't care, because there is nothing to
739 * do: the dentry is still hashed, it does not have
740 * a 'delete' op, and it's referenced and already on
741 * the LRU list.
742 *
743 * NOTE! Since we aren't locked, these values are
744 * not "stable". However, it is sufficient that at
745 * some point after we dropped the reference the
746 * dentry was hashed and the flags had the proper
747 * value. Other dentry users may have re-gotten
748 * a reference to the dentry and change that, but
749 * our work is done - we can leave the dentry
750 * around with a zero refcount.
751 */
752 smp_rmb();
753 d_flags = READ_ONCE(dentry->d_flags);
754 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
755
756 /* Nothing to do? Dropping the reference was all we needed? */
757 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
758 return true;
759
760 /*
761 * Not the fast normal case? Get the lock. We've already decremented
762 * the refcount, but we'll need to re-check the situation after
763 * getting the lock.
764 */
765 spin_lock(&dentry->d_lock);
766
767 /*
768 * Did somebody else grab a reference to it in the meantime, and
769 * we're no longer the last user after all? Alternatively, somebody
770 * else could have killed it and marked it dead. Either way, we
771 * don't need to do anything else.
772 */
773 if (dentry->d_lockref.count) {
774 spin_unlock(&dentry->d_lock);
775 return true;
776 }
777
778 /*
779 * Re-get the reference we optimistically dropped. We hold the
780 * lock, and we just tested that it was zero, so we can just
781 * set it to 1.
782 */
783 dentry->d_lockref.count = 1;
784 return false;
785}
786
787
788/*
789 * This is dput
790 *
791 * This is complicated by the fact that we do not want to put
792 * dentries that are no longer on any hash chain on the unused
793 * list: we'd much rather just get rid of them immediately.
794 *
795 * However, that implies that we have to traverse the dentry
796 * tree upwards to the parents which might _also_ now be
797 * scheduled for deletion (it may have been only waiting for
798 * its last child to go away).
799 *
800 * This tail recursion is done by hand as we don't want to depend
801 * on the compiler to always get this right (gcc generally doesn't).
802 * Real recursion would eat up our stack space.
803 */
804
805/*
806 * dput - release a dentry
807 * @dentry: dentry to release
808 *
809 * Release a dentry. This will drop the usage count and if appropriate
810 * call the dentry unlink method as well as removing it from the queues and
811 * releasing its resources. If the parent dentries were scheduled for release
812 * they too may now get deleted.
813 */
814void dput(struct dentry *dentry)
815{
816 while (dentry) {
817 might_sleep();
818
819 rcu_read_lock();
820 if (likely(fast_dput(dentry))) {
821 rcu_read_unlock();
822 return;
823 }
824
825 /* Slow case: now with the dentry lock held */
826 rcu_read_unlock();
827
828 if (likely(retain_dentry(dentry))) {
829 spin_unlock(&dentry->d_lock);
830 return;
831 }
832
833 dentry = dentry_kill(dentry);
834 }
835}
836EXPORT_SYMBOL(dput);
837
838
839/* This must be called with d_lock held */
840static inline void __dget_dlock(struct dentry *dentry)
841{
842 dentry->d_lockref.count++;
843}
844
845static inline void __dget(struct dentry *dentry)
846{
847 lockref_get(&dentry->d_lockref);
848}
849
850struct dentry *dget_parent(struct dentry *dentry)
851{
852 int gotref;
853 struct dentry *ret;
854
855 /*
856 * Do optimistic parent lookup without any
857 * locking.
858 */
859 rcu_read_lock();
860 ret = READ_ONCE(dentry->d_parent);
861 gotref = lockref_get_not_zero(&ret->d_lockref);
862 rcu_read_unlock();
863 if (likely(gotref)) {
864 if (likely(ret == READ_ONCE(dentry->d_parent)))
865 return ret;
866 dput(ret);
867 }
868
869repeat:
870 /*
871 * Don't need rcu_dereference because we re-check it was correct under
872 * the lock.
873 */
874 rcu_read_lock();
875 ret = dentry->d_parent;
876 spin_lock(&ret->d_lock);
877 if (unlikely(ret != dentry->d_parent)) {
878 spin_unlock(&ret->d_lock);
879 rcu_read_unlock();
880 goto repeat;
881 }
882 rcu_read_unlock();
883 BUG_ON(!ret->d_lockref.count);
884 ret->d_lockref.count++;
885 spin_unlock(&ret->d_lock);
886 return ret;
887}
888EXPORT_SYMBOL(dget_parent);
889
890static struct dentry * __d_find_any_alias(struct inode *inode)
891{
892 struct dentry *alias;
893
894 if (hlist_empty(&inode->i_dentry))
895 return NULL;
896 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
897 __dget(alias);
898 return alias;
899}
900
901/**
902 * d_find_any_alias - find any alias for a given inode
903 * @inode: inode to find an alias for
904 *
905 * If any aliases exist for the given inode, take and return a
906 * reference for one of them. If no aliases exist, return %NULL.
907 */
908struct dentry *d_find_any_alias(struct inode *inode)
909{
910 struct dentry *de;
911
912 spin_lock(&inode->i_lock);
913 de = __d_find_any_alias(inode);
914 spin_unlock(&inode->i_lock);
915 return de;
916}
917EXPORT_SYMBOL(d_find_any_alias);
918
919/**
920 * d_find_alias - grab a hashed alias of inode
921 * @inode: inode in question
922 *
923 * If inode has a hashed alias, or is a directory and has any alias,
924 * acquire the reference to alias and return it. Otherwise return NULL.
925 * Notice that if inode is a directory there can be only one alias and
926 * it can be unhashed only if it has no children, or if it is the root
927 * of a filesystem, or if the directory was renamed and d_revalidate
928 * was the first vfs operation to notice.
929 *
930 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
931 * any other hashed alias over that one.
932 */
933static struct dentry *__d_find_alias(struct inode *inode)
934{
935 struct dentry *alias;
936
937 if (S_ISDIR(inode->i_mode))
938 return __d_find_any_alias(inode);
939
940 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
941 spin_lock(&alias->d_lock);
942 if (!d_unhashed(alias)) {
943 __dget_dlock(alias);
944 spin_unlock(&alias->d_lock);
945 return alias;
946 }
947 spin_unlock(&alias->d_lock);
948 }
949 return NULL;
950}
951
952struct dentry *d_find_alias(struct inode *inode)
953{
954 struct dentry *de = NULL;
955
956 if (!hlist_empty(&inode->i_dentry)) {
957 spin_lock(&inode->i_lock);
958 de = __d_find_alias(inode);
959 spin_unlock(&inode->i_lock);
960 }
961 return de;
962}
963EXPORT_SYMBOL(d_find_alias);
964
965/*
966 * Try to kill dentries associated with this inode.
967 * WARNING: you must own a reference to inode.
968 */
969void d_prune_aliases(struct inode *inode)
970{
971 struct dentry *dentry;
972restart:
973 spin_lock(&inode->i_lock);
974 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
975 spin_lock(&dentry->d_lock);
976 if (!dentry->d_lockref.count) {
977 struct dentry *parent = lock_parent(dentry);
978 if (likely(!dentry->d_lockref.count)) {
979 __dentry_kill(dentry);
980 dput(parent);
981 goto restart;
982 }
983 if (parent)
984 spin_unlock(&parent->d_lock);
985 }
986 spin_unlock(&dentry->d_lock);
987 }
988 spin_unlock(&inode->i_lock);
989}
990EXPORT_SYMBOL(d_prune_aliases);
991
992/*
993 * Lock a dentry from shrink list.
994 * Called under rcu_read_lock() and dentry->d_lock; the former
995 * guarantees that nothing we access will be freed under us.
996 * Note that dentry is *not* protected from concurrent dentry_kill(),
997 * d_delete(), etc.
998 *
999 * Return false if dentry has been disrupted or grabbed, leaving
1000 * the caller to kick it off-list. Otherwise, return true and have
1001 * that dentry's inode and parent both locked.
1002 */
1003static bool shrink_lock_dentry(struct dentry *dentry)
1004{
1005 struct inode *inode;
1006 struct dentry *parent;
1007
1008 if (dentry->d_lockref.count)
1009 return false;
1010
1011 inode = dentry->d_inode;
1012 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1013 spin_unlock(&dentry->d_lock);
1014 spin_lock(&inode->i_lock);
1015 spin_lock(&dentry->d_lock);
1016 if (unlikely(dentry->d_lockref.count))
1017 goto out;
1018 /* changed inode means that somebody had grabbed it */
1019 if (unlikely(inode != dentry->d_inode))
1020 goto out;
1021 }
1022
1023 parent = dentry->d_parent;
1024 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1025 return true;
1026
1027 spin_unlock(&dentry->d_lock);
1028 spin_lock(&parent->d_lock);
1029 if (unlikely(parent != dentry->d_parent)) {
1030 spin_unlock(&parent->d_lock);
1031 spin_lock(&dentry->d_lock);
1032 goto out;
1033 }
1034 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1035 if (likely(!dentry->d_lockref.count))
1036 return true;
1037 spin_unlock(&parent->d_lock);
1038out:
1039 if (inode)
1040 spin_unlock(&inode->i_lock);
1041 return false;
1042}
1043
1044static void shrink_dentry_list(struct list_head *list)
1045{
1046 while (!list_empty(list)) {
1047 struct dentry *dentry, *parent;
1048
1049 dentry = list_entry(list->prev, struct dentry, d_lru);
1050 spin_lock(&dentry->d_lock);
1051 rcu_read_lock();
1052 if (!shrink_lock_dentry(dentry)) {
1053 bool can_free = false;
1054 rcu_read_unlock();
1055 d_shrink_del(dentry);
1056 if (dentry->d_lockref.count < 0)
1057 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1058 spin_unlock(&dentry->d_lock);
1059 if (can_free)
1060 dentry_free(dentry);
1061 continue;
1062 }
1063 rcu_read_unlock();
1064 d_shrink_del(dentry);
1065 parent = dentry->d_parent;
1066 __dentry_kill(dentry);
1067 if (parent == dentry)
1068 continue;
1069 /*
1070 * We need to prune ancestors too. This is necessary to prevent
1071 * quadratic behavior of shrink_dcache_parent(), but is also
1072 * expected to be beneficial in reducing dentry cache
1073 * fragmentation.
1074 */
1075 dentry = parent;
1076 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1077 dentry = dentry_kill(dentry);
1078 }
1079}
1080
1081static enum lru_status dentry_lru_isolate(struct list_head *item,
1082 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1083{
1084 struct list_head *freeable = arg;
1085 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1086
1087
1088 /*
1089 * we are inverting the lru lock/dentry->d_lock here,
1090 * so use a trylock. If we fail to get the lock, just skip
1091 * it
1092 */
1093 if (!spin_trylock(&dentry->d_lock))
1094 return LRU_SKIP;
1095
1096 /*
1097 * Referenced dentries are still in use. If they have active
1098 * counts, just remove them from the LRU. Otherwise give them
1099 * another pass through the LRU.
1100 */
1101 if (dentry->d_lockref.count) {
1102 d_lru_isolate(lru, dentry);
1103 spin_unlock(&dentry->d_lock);
1104 return LRU_REMOVED;
1105 }
1106
1107 if (dentry->d_flags & DCACHE_REFERENCED) {
1108 dentry->d_flags &= ~DCACHE_REFERENCED;
1109 spin_unlock(&dentry->d_lock);
1110
1111 /*
1112 * The list move itself will be made by the common LRU code. At
1113 * this point, we've dropped the dentry->d_lock but keep the
1114 * lru lock. This is safe to do, since every list movement is
1115 * protected by the lru lock even if both locks are held.
1116 *
1117 * This is guaranteed by the fact that all LRU management
1118 * functions are intermediated by the LRU API calls like
1119 * list_lru_add and list_lru_del. List movement in this file
1120 * only ever occur through this functions or through callbacks
1121 * like this one, that are called from the LRU API.
1122 *
1123 * The only exceptions to this are functions like
1124 * shrink_dentry_list, and code that first checks for the
1125 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1126 * operating only with stack provided lists after they are
1127 * properly isolated from the main list. It is thus, always a
1128 * local access.
1129 */
1130 return LRU_ROTATE;
1131 }
1132
1133 d_lru_shrink_move(lru, dentry, freeable);
1134 spin_unlock(&dentry->d_lock);
1135
1136 return LRU_REMOVED;
1137}
1138
1139/**
1140 * prune_dcache_sb - shrink the dcache
1141 * @sb: superblock
1142 * @sc: shrink control, passed to list_lru_shrink_walk()
1143 *
1144 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1145 * is done when we need more memory and called from the superblock shrinker
1146 * function.
1147 *
1148 * This function may fail to free any resources if all the dentries are in
1149 * use.
1150 */
1151long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1152{
1153 LIST_HEAD(dispose);
1154 long freed;
1155
1156 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1157 dentry_lru_isolate, &dispose);
1158 shrink_dentry_list(&dispose);
1159 return freed;
1160}
1161
1162static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1163 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1164{
1165 struct list_head *freeable = arg;
1166 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1167
1168 /*
1169 * we are inverting the lru lock/dentry->d_lock here,
1170 * so use a trylock. If we fail to get the lock, just skip
1171 * it
1172 */
1173 if (!spin_trylock(&dentry->d_lock))
1174 return LRU_SKIP;
1175
1176 d_lru_shrink_move(lru, dentry, freeable);
1177 spin_unlock(&dentry->d_lock);
1178
1179 return LRU_REMOVED;
1180}
1181
1182
1183/**
1184 * shrink_dcache_sb - shrink dcache for a superblock
1185 * @sb: superblock
1186 *
1187 * Shrink the dcache for the specified super block. This is used to free
1188 * the dcache before unmounting a file system.
1189 */
1190void shrink_dcache_sb(struct super_block *sb)
1191{
1192 do {
1193 LIST_HEAD(dispose);
1194
1195 list_lru_walk(&sb->s_dentry_lru,
1196 dentry_lru_isolate_shrink, &dispose, 1024);
1197 shrink_dentry_list(&dispose);
1198 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1199}
1200EXPORT_SYMBOL(shrink_dcache_sb);
1201
1202/**
1203 * enum d_walk_ret - action to talke during tree walk
1204 * @D_WALK_CONTINUE: contrinue walk
1205 * @D_WALK_QUIT: quit walk
1206 * @D_WALK_NORETRY: quit when retry is needed
1207 * @D_WALK_SKIP: skip this dentry and its children
1208 */
1209enum d_walk_ret {
1210 D_WALK_CONTINUE,
1211 D_WALK_QUIT,
1212 D_WALK_NORETRY,
1213 D_WALK_SKIP,
1214};
1215
1216/**
1217 * d_walk - walk the dentry tree
1218 * @parent: start of walk
1219 * @data: data passed to @enter() and @finish()
1220 * @enter: callback when first entering the dentry
1221 *
1222 * The @enter() callbacks are called with d_lock held.
1223 */
1224static void d_walk(struct dentry *parent, void *data,
1225 enum d_walk_ret (*enter)(void *, struct dentry *))
1226{
1227 struct dentry *this_parent;
1228 struct list_head *next;
1229 unsigned seq = 0;
1230 enum d_walk_ret ret;
1231 bool retry = true;
1232
1233again:
1234 read_seqbegin_or_lock(&rename_lock, &seq);
1235 this_parent = parent;
1236 spin_lock(&this_parent->d_lock);
1237
1238 ret = enter(data, this_parent);
1239 switch (ret) {
1240 case D_WALK_CONTINUE:
1241 break;
1242 case D_WALK_QUIT:
1243 case D_WALK_SKIP:
1244 goto out_unlock;
1245 case D_WALK_NORETRY:
1246 retry = false;
1247 break;
1248 }
1249repeat:
1250 next = this_parent->d_subdirs.next;
1251resume:
1252 while (next != &this_parent->d_subdirs) {
1253 struct list_head *tmp = next;
1254 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1255 next = tmp->next;
1256
1257 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1258 continue;
1259
1260 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1261
1262 ret = enter(data, dentry);
1263 switch (ret) {
1264 case D_WALK_CONTINUE:
1265 break;
1266 case D_WALK_QUIT:
1267 spin_unlock(&dentry->d_lock);
1268 goto out_unlock;
1269 case D_WALK_NORETRY:
1270 retry = false;
1271 break;
1272 case D_WALK_SKIP:
1273 spin_unlock(&dentry->d_lock);
1274 continue;
1275 }
1276
1277 if (!list_empty(&dentry->d_subdirs)) {
1278 spin_unlock(&this_parent->d_lock);
1279 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1280 this_parent = dentry;
1281 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1282 goto repeat;
1283 }
1284 spin_unlock(&dentry->d_lock);
1285 }
1286 /*
1287 * All done at this level ... ascend and resume the search.
1288 */
1289 rcu_read_lock();
1290ascend:
1291 if (this_parent != parent) {
1292 struct dentry *child = this_parent;
1293 this_parent = child->d_parent;
1294
1295 spin_unlock(&child->d_lock);
1296 spin_lock(&this_parent->d_lock);
1297
1298 /* might go back up the wrong parent if we have had a rename. */
1299 if (need_seqretry(&rename_lock, seq))
1300 goto rename_retry;
1301 /* go into the first sibling still alive */
1302 do {
1303 next = child->d_child.next;
1304 if (next == &this_parent->d_subdirs)
1305 goto ascend;
1306 child = list_entry(next, struct dentry, d_child);
1307 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1308 rcu_read_unlock();
1309 goto resume;
1310 }
1311 if (need_seqretry(&rename_lock, seq))
1312 goto rename_retry;
1313 rcu_read_unlock();
1314
1315out_unlock:
1316 spin_unlock(&this_parent->d_lock);
1317 done_seqretry(&rename_lock, seq);
1318 return;
1319
1320rename_retry:
1321 spin_unlock(&this_parent->d_lock);
1322 rcu_read_unlock();
1323 BUG_ON(seq & 1);
1324 if (!retry)
1325 return;
1326 seq = 1;
1327 goto again;
1328}
1329
1330struct check_mount {
1331 struct vfsmount *mnt;
1332 unsigned int mounted;
1333};
1334
1335static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1336{
1337 struct check_mount *info = data;
1338 struct path path = { .mnt = info->mnt, .dentry = dentry };
1339
1340 if (likely(!d_mountpoint(dentry)))
1341 return D_WALK_CONTINUE;
1342 if (__path_is_mountpoint(&path)) {
1343 info->mounted = 1;
1344 return D_WALK_QUIT;
1345 }
1346 return D_WALK_CONTINUE;
1347}
1348
1349/**
1350 * path_has_submounts - check for mounts over a dentry in the
1351 * current namespace.
1352 * @parent: path to check.
1353 *
1354 * Return true if the parent or its subdirectories contain
1355 * a mount point in the current namespace.
1356 */
1357int path_has_submounts(const struct path *parent)
1358{
1359 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1360
1361 read_seqlock_excl(&mount_lock);
1362 d_walk(parent->dentry, &data, path_check_mount);
1363 read_sequnlock_excl(&mount_lock);
1364
1365 return data.mounted;
1366}
1367EXPORT_SYMBOL(path_has_submounts);
1368
1369/*
1370 * Called by mount code to set a mountpoint and check if the mountpoint is
1371 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1372 * subtree can become unreachable).
1373 *
1374 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1375 * this reason take rename_lock and d_lock on dentry and ancestors.
1376 */
1377int d_set_mounted(struct dentry *dentry)
1378{
1379 struct dentry *p;
1380 int ret = -ENOENT;
1381 write_seqlock(&rename_lock);
1382 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1383 /* Need exclusion wrt. d_invalidate() */
1384 spin_lock(&p->d_lock);
1385 if (unlikely(d_unhashed(p))) {
1386 spin_unlock(&p->d_lock);
1387 goto out;
1388 }
1389 spin_unlock(&p->d_lock);
1390 }
1391 spin_lock(&dentry->d_lock);
1392 if (!d_unlinked(dentry)) {
1393 ret = -EBUSY;
1394 if (!d_mountpoint(dentry)) {
1395 dentry->d_flags |= DCACHE_MOUNTED;
1396 ret = 0;
1397 }
1398 }
1399 spin_unlock(&dentry->d_lock);
1400out:
1401 write_sequnlock(&rename_lock);
1402 return ret;
1403}
1404
1405/*
1406 * Search the dentry child list of the specified parent,
1407 * and move any unused dentries to the end of the unused
1408 * list for prune_dcache(). We descend to the next level
1409 * whenever the d_subdirs list is non-empty and continue
1410 * searching.
1411 *
1412 * It returns zero iff there are no unused children,
1413 * otherwise it returns the number of children moved to
1414 * the end of the unused list. This may not be the total
1415 * number of unused children, because select_parent can
1416 * drop the lock and return early due to latency
1417 * constraints.
1418 */
1419
1420struct select_data {
1421 struct dentry *start;
1422 struct list_head dispose;
1423 int found;
1424};
1425
1426static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1427{
1428 struct select_data *data = _data;
1429 enum d_walk_ret ret = D_WALK_CONTINUE;
1430
1431 if (data->start == dentry)
1432 goto out;
1433
1434 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1435 data->found++;
1436 } else {
1437 if (dentry->d_flags & DCACHE_LRU_LIST)
1438 d_lru_del(dentry);
1439 if (!dentry->d_lockref.count) {
1440 d_shrink_add(dentry, &data->dispose);
1441 data->found++;
1442 }
1443 }
1444 /*
1445 * We can return to the caller if we have found some (this
1446 * ensures forward progress). We'll be coming back to find
1447 * the rest.
1448 */
1449 if (!list_empty(&data->dispose))
1450 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1451out:
1452 return ret;
1453}
1454
1455/**
1456 * shrink_dcache_parent - prune dcache
1457 * @parent: parent of entries to prune
1458 *
1459 * Prune the dcache to remove unused children of the parent dentry.
1460 */
1461void shrink_dcache_parent(struct dentry *parent)
1462{
1463 for (;;) {
1464 struct select_data data;
1465
1466 INIT_LIST_HEAD(&data.dispose);
1467 data.start = parent;
1468 data.found = 0;
1469
1470 d_walk(parent, &data, select_collect);
1471
1472 if (!list_empty(&data.dispose)) {
1473 shrink_dentry_list(&data.dispose);
1474 continue;
1475 }
1476
1477 cond_resched();
1478 if (!data.found)
1479 break;
1480 }
1481}
1482EXPORT_SYMBOL(shrink_dcache_parent);
1483
1484static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1485{
1486 /* it has busy descendents; complain about those instead */
1487 if (!list_empty(&dentry->d_subdirs))
1488 return D_WALK_CONTINUE;
1489
1490 /* root with refcount 1 is fine */
1491 if (dentry == _data && dentry->d_lockref.count == 1)
1492 return D_WALK_CONTINUE;
1493
1494 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1495 " still in use (%d) [unmount of %s %s]\n",
1496 dentry,
1497 dentry->d_inode ?
1498 dentry->d_inode->i_ino : 0UL,
1499 dentry,
1500 dentry->d_lockref.count,
1501 dentry->d_sb->s_type->name,
1502 dentry->d_sb->s_id);
1503 WARN_ON(1);
1504 return D_WALK_CONTINUE;
1505}
1506
1507static void do_one_tree(struct dentry *dentry)
1508{
1509 shrink_dcache_parent(dentry);
1510 d_walk(dentry, dentry, umount_check);
1511 d_drop(dentry);
1512 dput(dentry);
1513}
1514
1515/*
1516 * destroy the dentries attached to a superblock on unmounting
1517 */
1518void shrink_dcache_for_umount(struct super_block *sb)
1519{
1520 struct dentry *dentry;
1521
1522 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1523
1524 dentry = sb->s_root;
1525 sb->s_root = NULL;
1526 do_one_tree(dentry);
1527
1528 while (!hlist_bl_empty(&sb->s_roots)) {
1529 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1530 do_one_tree(dentry);
1531 }
1532}
1533
1534static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1535{
1536 struct dentry **victim = _data;
1537 if (d_mountpoint(dentry)) {
1538 __dget_dlock(dentry);
1539 *victim = dentry;
1540 return D_WALK_QUIT;
1541 }
1542 return D_WALK_CONTINUE;
1543}
1544
1545/**
1546 * d_invalidate - detach submounts, prune dcache, and drop
1547 * @dentry: dentry to invalidate (aka detach, prune and drop)
1548 */
1549void d_invalidate(struct dentry *dentry)
1550{
1551 bool had_submounts = false;
1552 spin_lock(&dentry->d_lock);
1553 if (d_unhashed(dentry)) {
1554 spin_unlock(&dentry->d_lock);
1555 return;
1556 }
1557 __d_drop(dentry);
1558 spin_unlock(&dentry->d_lock);
1559
1560 /* Negative dentries can be dropped without further checks */
1561 if (!dentry->d_inode)
1562 return;
1563
1564 shrink_dcache_parent(dentry);
1565 for (;;) {
1566 struct dentry *victim = NULL;
1567 d_walk(dentry, &victim, find_submount);
1568 if (!victim) {
1569 if (had_submounts)
1570 shrink_dcache_parent(dentry);
1571 return;
1572 }
1573 had_submounts = true;
1574 detach_mounts(victim);
1575 dput(victim);
1576 }
1577}
1578EXPORT_SYMBOL(d_invalidate);
1579
1580/**
1581 * __d_alloc - allocate a dcache entry
1582 * @sb: filesystem it will belong to
1583 * @name: qstr of the name
1584 *
1585 * Allocates a dentry. It returns %NULL if there is insufficient memory
1586 * available. On a success the dentry is returned. The name passed in is
1587 * copied and the copy passed in may be reused after this call.
1588 */
1589
1590struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1591{
1592 struct dentry *dentry;
1593 char *dname;
1594 int err;
1595
1596 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1597 if (!dentry)
1598 return NULL;
1599
1600 /*
1601 * We guarantee that the inline name is always NUL-terminated.
1602 * This way the memcpy() done by the name switching in rename
1603 * will still always have a NUL at the end, even if we might
1604 * be overwriting an internal NUL character
1605 */
1606 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1607 if (unlikely(!name)) {
1608 name = &slash_name;
1609 dname = dentry->d_iname;
1610 } else if (name->len > DNAME_INLINE_LEN-1) {
1611 size_t size = offsetof(struct external_name, name[1]);
1612 struct external_name *p = kmalloc(size + name->len,
1613 GFP_KERNEL_ACCOUNT |
1614 __GFP_RECLAIMABLE);
1615 if (!p) {
1616 kmem_cache_free(dentry_cache, dentry);
1617 return NULL;
1618 }
1619 atomic_set(&p->u.count, 1);
1620 dname = p->name;
1621 } else {
1622 dname = dentry->d_iname;
1623 }
1624
1625 dentry->d_name.len = name->len;
1626 dentry->d_name.hash = name->hash;
1627 memcpy(dname, name->name, name->len);
1628 dname[name->len] = 0;
1629
1630 /* Make sure we always see the terminating NUL character */
1631 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1632
1633 dentry->d_lockref.count = 1;
1634 dentry->d_flags = 0;
1635 spin_lock_init(&dentry->d_lock);
1636 seqcount_init(&dentry->d_seq);
1637 dentry->d_inode = NULL;
1638 dentry->d_parent = dentry;
1639 dentry->d_sb = sb;
1640 dentry->d_op = NULL;
1641 dentry->d_fsdata = NULL;
1642 INIT_HLIST_BL_NODE(&dentry->d_hash);
1643 INIT_LIST_HEAD(&dentry->d_lru);
1644 INIT_LIST_HEAD(&dentry->d_subdirs);
1645 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1646 INIT_LIST_HEAD(&dentry->d_child);
1647 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1648
1649 if (dentry->d_op && dentry->d_op->d_init) {
1650 err = dentry->d_op->d_init(dentry);
1651 if (err) {
1652 if (dname_external(dentry))
1653 kfree(external_name(dentry));
1654 kmem_cache_free(dentry_cache, dentry);
1655 return NULL;
1656 }
1657 }
1658
1659 this_cpu_inc(nr_dentry);
1660
1661 return dentry;
1662}
1663
1664/**
1665 * d_alloc - allocate a dcache entry
1666 * @parent: parent of entry to allocate
1667 * @name: qstr of the name
1668 *
1669 * Allocates a dentry. It returns %NULL if there is insufficient memory
1670 * available. On a success the dentry is returned. The name passed in is
1671 * copied and the copy passed in may be reused after this call.
1672 */
1673struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1674{
1675 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1676 if (!dentry)
1677 return NULL;
1678 spin_lock(&parent->d_lock);
1679 /*
1680 * don't need child lock because it is not subject
1681 * to concurrency here
1682 */
1683 __dget_dlock(parent);
1684 dentry->d_parent = parent;
1685 list_add(&dentry->d_child, &parent->d_subdirs);
1686 spin_unlock(&parent->d_lock);
1687
1688 return dentry;
1689}
1690EXPORT_SYMBOL(d_alloc);
1691
1692struct dentry *d_alloc_anon(struct super_block *sb)
1693{
1694 return __d_alloc(sb, NULL);
1695}
1696EXPORT_SYMBOL(d_alloc_anon);
1697
1698struct dentry *d_alloc_cursor(struct dentry * parent)
1699{
1700 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1701 if (dentry) {
1702 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1703 dentry->d_parent = dget(parent);
1704 }
1705 return dentry;
1706}
1707
1708/**
1709 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1710 * @sb: the superblock
1711 * @name: qstr of the name
1712 *
1713 * For a filesystem that just pins its dentries in memory and never
1714 * performs lookups at all, return an unhashed IS_ROOT dentry.
1715 * This is used for pipes, sockets et.al. - the stuff that should
1716 * never be anyone's children or parents. Unlike all other
1717 * dentries, these will not have RCU delay between dropping the
1718 * last reference and freeing them.
1719 */
1720struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1721{
1722 struct dentry *dentry = __d_alloc(sb, name);
1723 if (likely(dentry))
1724 dentry->d_flags |= DCACHE_NORCU;
1725 return dentry;
1726}
1727EXPORT_SYMBOL(d_alloc_pseudo);
1728
1729struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1730{
1731 struct qstr q;
1732
1733 q.name = name;
1734 q.hash_len = hashlen_string(parent, name);
1735 return d_alloc(parent, &q);
1736}
1737EXPORT_SYMBOL(d_alloc_name);
1738
1739void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1740{
1741 WARN_ON_ONCE(dentry->d_op);
1742 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1743 DCACHE_OP_COMPARE |
1744 DCACHE_OP_REVALIDATE |
1745 DCACHE_OP_WEAK_REVALIDATE |
1746 DCACHE_OP_DELETE |
1747 DCACHE_OP_REAL));
1748 dentry->d_op = op;
1749 if (!op)
1750 return;
1751 if (op->d_hash)
1752 dentry->d_flags |= DCACHE_OP_HASH;
1753 if (op->d_compare)
1754 dentry->d_flags |= DCACHE_OP_COMPARE;
1755 if (op->d_revalidate)
1756 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1757 if (op->d_weak_revalidate)
1758 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1759 if (op->d_delete)
1760 dentry->d_flags |= DCACHE_OP_DELETE;
1761 if (op->d_prune)
1762 dentry->d_flags |= DCACHE_OP_PRUNE;
1763 if (op->d_real)
1764 dentry->d_flags |= DCACHE_OP_REAL;
1765
1766}
1767EXPORT_SYMBOL(d_set_d_op);
1768
1769
1770/*
1771 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1772 * @dentry - The dentry to mark
1773 *
1774 * Mark a dentry as falling through to the lower layer (as set with
1775 * d_pin_lower()). This flag may be recorded on the medium.
1776 */
1777void d_set_fallthru(struct dentry *dentry)
1778{
1779 spin_lock(&dentry->d_lock);
1780 dentry->d_flags |= DCACHE_FALLTHRU;
1781 spin_unlock(&dentry->d_lock);
1782}
1783EXPORT_SYMBOL(d_set_fallthru);
1784
1785static unsigned d_flags_for_inode(struct inode *inode)
1786{
1787 unsigned add_flags = DCACHE_REGULAR_TYPE;
1788
1789 if (!inode)
1790 return DCACHE_MISS_TYPE;
1791
1792 if (S_ISDIR(inode->i_mode)) {
1793 add_flags = DCACHE_DIRECTORY_TYPE;
1794 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1795 if (unlikely(!inode->i_op->lookup))
1796 add_flags = DCACHE_AUTODIR_TYPE;
1797 else
1798 inode->i_opflags |= IOP_LOOKUP;
1799 }
1800 goto type_determined;
1801 }
1802
1803 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1804 if (unlikely(inode->i_op->get_link)) {
1805 add_flags = DCACHE_SYMLINK_TYPE;
1806 goto type_determined;
1807 }
1808 inode->i_opflags |= IOP_NOFOLLOW;
1809 }
1810
1811 if (unlikely(!S_ISREG(inode->i_mode)))
1812 add_flags = DCACHE_SPECIAL_TYPE;
1813
1814type_determined:
1815 if (unlikely(IS_AUTOMOUNT(inode)))
1816 add_flags |= DCACHE_NEED_AUTOMOUNT;
1817 return add_flags;
1818}
1819
1820static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1821{
1822 unsigned add_flags = d_flags_for_inode(inode);
1823 WARN_ON(d_in_lookup(dentry));
1824
1825 spin_lock(&dentry->d_lock);
1826 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1827 raw_write_seqcount_begin(&dentry->d_seq);
1828 __d_set_inode_and_type(dentry, inode, add_flags);
1829 raw_write_seqcount_end(&dentry->d_seq);
1830 fsnotify_update_flags(dentry);
1831 spin_unlock(&dentry->d_lock);
1832}
1833
1834/**
1835 * d_instantiate - fill in inode information for a dentry
1836 * @entry: dentry to complete
1837 * @inode: inode to attach to this dentry
1838 *
1839 * Fill in inode information in the entry.
1840 *
1841 * This turns negative dentries into productive full members
1842 * of society.
1843 *
1844 * NOTE! This assumes that the inode count has been incremented
1845 * (or otherwise set) by the caller to indicate that it is now
1846 * in use by the dcache.
1847 */
1848
1849void d_instantiate(struct dentry *entry, struct inode * inode)
1850{
1851 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1852 if (inode) {
1853 security_d_instantiate(entry, inode);
1854 spin_lock(&inode->i_lock);
1855 __d_instantiate(entry, inode);
1856 spin_unlock(&inode->i_lock);
1857 }
1858}
1859EXPORT_SYMBOL(d_instantiate);
1860
1861/*
1862 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1863 * with lockdep-related part of unlock_new_inode() done before
1864 * anything else. Use that instead of open-coding d_instantiate()/
1865 * unlock_new_inode() combinations.
1866 */
1867void d_instantiate_new(struct dentry *entry, struct inode *inode)
1868{
1869 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1870 BUG_ON(!inode);
1871 lockdep_annotate_inode_mutex_key(inode);
1872 security_d_instantiate(entry, inode);
1873 spin_lock(&inode->i_lock);
1874 __d_instantiate(entry, inode);
1875 WARN_ON(!(inode->i_state & I_NEW));
1876 inode->i_state &= ~I_NEW & ~I_CREATING;
1877 smp_mb();
1878 wake_up_bit(&inode->i_state, __I_NEW);
1879 spin_unlock(&inode->i_lock);
1880}
1881EXPORT_SYMBOL(d_instantiate_new);
1882
1883struct dentry *d_make_root(struct inode *root_inode)
1884{
1885 struct dentry *res = NULL;
1886
1887 if (root_inode) {
1888 res = d_alloc_anon(root_inode->i_sb);
1889 if (res)
1890 d_instantiate(res, root_inode);
1891 else
1892 iput(root_inode);
1893 }
1894 return res;
1895}
1896EXPORT_SYMBOL(d_make_root);
1897
1898static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1899 struct inode *inode,
1900 bool disconnected)
1901{
1902 struct dentry *res;
1903 unsigned add_flags;
1904
1905 security_d_instantiate(dentry, inode);
1906 spin_lock(&inode->i_lock);
1907 res = __d_find_any_alias(inode);
1908 if (res) {
1909 spin_unlock(&inode->i_lock);
1910 dput(dentry);
1911 goto out_iput;
1912 }
1913
1914 /* attach a disconnected dentry */
1915 add_flags = d_flags_for_inode(inode);
1916
1917 if (disconnected)
1918 add_flags |= DCACHE_DISCONNECTED;
1919
1920 spin_lock(&dentry->d_lock);
1921 __d_set_inode_and_type(dentry, inode, add_flags);
1922 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1923 if (!disconnected) {
1924 hlist_bl_lock(&dentry->d_sb->s_roots);
1925 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1926 hlist_bl_unlock(&dentry->d_sb->s_roots);
1927 }
1928 spin_unlock(&dentry->d_lock);
1929 spin_unlock(&inode->i_lock);
1930
1931 return dentry;
1932
1933 out_iput:
1934 iput(inode);
1935 return res;
1936}
1937
1938struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1939{
1940 return __d_instantiate_anon(dentry, inode, true);
1941}
1942EXPORT_SYMBOL(d_instantiate_anon);
1943
1944static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1945{
1946 struct dentry *tmp;
1947 struct dentry *res;
1948
1949 if (!inode)
1950 return ERR_PTR(-ESTALE);
1951 if (IS_ERR(inode))
1952 return ERR_CAST(inode);
1953
1954 res = d_find_any_alias(inode);
1955 if (res)
1956 goto out_iput;
1957
1958 tmp = d_alloc_anon(inode->i_sb);
1959 if (!tmp) {
1960 res = ERR_PTR(-ENOMEM);
1961 goto out_iput;
1962 }
1963
1964 return __d_instantiate_anon(tmp, inode, disconnected);
1965
1966out_iput:
1967 iput(inode);
1968 return res;
1969}
1970
1971/**
1972 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1973 * @inode: inode to allocate the dentry for
1974 *
1975 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1976 * similar open by handle operations. The returned dentry may be anonymous,
1977 * or may have a full name (if the inode was already in the cache).
1978 *
1979 * When called on a directory inode, we must ensure that the inode only ever
1980 * has one dentry. If a dentry is found, that is returned instead of
1981 * allocating a new one.
1982 *
1983 * On successful return, the reference to the inode has been transferred
1984 * to the dentry. In case of an error the reference on the inode is released.
1985 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1986 * be passed in and the error will be propagated to the return value,
1987 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1988 */
1989struct dentry *d_obtain_alias(struct inode *inode)
1990{
1991 return __d_obtain_alias(inode, true);
1992}
1993EXPORT_SYMBOL(d_obtain_alias);
1994
1995/**
1996 * d_obtain_root - find or allocate a dentry for a given inode
1997 * @inode: inode to allocate the dentry for
1998 *
1999 * Obtain an IS_ROOT dentry for the root of a filesystem.
2000 *
2001 * We must ensure that directory inodes only ever have one dentry. If a
2002 * dentry is found, that is returned instead of allocating a new one.
2003 *
2004 * On successful return, the reference to the inode has been transferred
2005 * to the dentry. In case of an error the reference on the inode is
2006 * released. A %NULL or IS_ERR inode may be passed in and will be the
2007 * error will be propagate to the return value, with a %NULL @inode
2008 * replaced by ERR_PTR(-ESTALE).
2009 */
2010struct dentry *d_obtain_root(struct inode *inode)
2011{
2012 return __d_obtain_alias(inode, false);
2013}
2014EXPORT_SYMBOL(d_obtain_root);
2015
2016/**
2017 * d_add_ci - lookup or allocate new dentry with case-exact name
2018 * @inode: the inode case-insensitive lookup has found
2019 * @dentry: the negative dentry that was passed to the parent's lookup func
2020 * @name: the case-exact name to be associated with the returned dentry
2021 *
2022 * This is to avoid filling the dcache with case-insensitive names to the
2023 * same inode, only the actual correct case is stored in the dcache for
2024 * case-insensitive filesystems.
2025 *
2026 * For a case-insensitive lookup match and if the the case-exact dentry
2027 * already exists in in the dcache, use it and return it.
2028 *
2029 * If no entry exists with the exact case name, allocate new dentry with
2030 * the exact case, and return the spliced entry.
2031 */
2032struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2033 struct qstr *name)
2034{
2035 struct dentry *found, *res;
2036
2037 /*
2038 * First check if a dentry matching the name already exists,
2039 * if not go ahead and create it now.
2040 */
2041 found = d_hash_and_lookup(dentry->d_parent, name);
2042 if (found) {
2043 iput(inode);
2044 return found;
2045 }
2046 if (d_in_lookup(dentry)) {
2047 found = d_alloc_parallel(dentry->d_parent, name,
2048 dentry->d_wait);
2049 if (IS_ERR(found) || !d_in_lookup(found)) {
2050 iput(inode);
2051 return found;
2052 }
2053 } else {
2054 found = d_alloc(dentry->d_parent, name);
2055 if (!found) {
2056 iput(inode);
2057 return ERR_PTR(-ENOMEM);
2058 }
2059 }
2060 res = d_splice_alias(inode, found);
2061 if (res) {
2062 dput(found);
2063 return res;
2064 }
2065 return found;
2066}
2067EXPORT_SYMBOL(d_add_ci);
2068
2069
2070static inline bool d_same_name(const struct dentry *dentry,
2071 const struct dentry *parent,
2072 const struct qstr *name)
2073{
2074 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2075 if (dentry->d_name.len != name->len)
2076 return false;
2077 return dentry_cmp(dentry, name->name, name->len) == 0;
2078 }
2079 return parent->d_op->d_compare(dentry,
2080 dentry->d_name.len, dentry->d_name.name,
2081 name) == 0;
2082}
2083
2084/**
2085 * __d_lookup_rcu - search for a dentry (racy, store-free)
2086 * @parent: parent dentry
2087 * @name: qstr of name we wish to find
2088 * @seqp: returns d_seq value at the point where the dentry was found
2089 * Returns: dentry, or NULL
2090 *
2091 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2092 * resolution (store-free path walking) design described in
2093 * Documentation/filesystems/path-lookup.txt.
2094 *
2095 * This is not to be used outside core vfs.
2096 *
2097 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2098 * held, and rcu_read_lock held. The returned dentry must not be stored into
2099 * without taking d_lock and checking d_seq sequence count against @seq
2100 * returned here.
2101 *
2102 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2103 * function.
2104 *
2105 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2106 * the returned dentry, so long as its parent's seqlock is checked after the
2107 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2108 * is formed, giving integrity down the path walk.
2109 *
2110 * NOTE! The caller *has* to check the resulting dentry against the sequence
2111 * number we've returned before using any of the resulting dentry state!
2112 */
2113struct dentry *__d_lookup_rcu(const struct dentry *parent,
2114 const struct qstr *name,
2115 unsigned *seqp)
2116{
2117 u64 hashlen = name->hash_len;
2118 const unsigned char *str = name->name;
2119 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2120 struct hlist_bl_node *node;
2121 struct dentry *dentry;
2122
2123 /*
2124 * Note: There is significant duplication with __d_lookup_rcu which is
2125 * required to prevent single threaded performance regressions
2126 * especially on architectures where smp_rmb (in seqcounts) are costly.
2127 * Keep the two functions in sync.
2128 */
2129
2130 /*
2131 * The hash list is protected using RCU.
2132 *
2133 * Carefully use d_seq when comparing a candidate dentry, to avoid
2134 * races with d_move().
2135 *
2136 * It is possible that concurrent renames can mess up our list
2137 * walk here and result in missing our dentry, resulting in the
2138 * false-negative result. d_lookup() protects against concurrent
2139 * renames using rename_lock seqlock.
2140 *
2141 * See Documentation/filesystems/path-lookup.txt for more details.
2142 */
2143 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2144 unsigned seq;
2145
2146seqretry:
2147 /*
2148 * The dentry sequence count protects us from concurrent
2149 * renames, and thus protects parent and name fields.
2150 *
2151 * The caller must perform a seqcount check in order
2152 * to do anything useful with the returned dentry.
2153 *
2154 * NOTE! We do a "raw" seqcount_begin here. That means that
2155 * we don't wait for the sequence count to stabilize if it
2156 * is in the middle of a sequence change. If we do the slow
2157 * dentry compare, we will do seqretries until it is stable,
2158 * and if we end up with a successful lookup, we actually
2159 * want to exit RCU lookup anyway.
2160 *
2161 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2162 * we are still guaranteed NUL-termination of ->d_name.name.
2163 */
2164 seq = raw_seqcount_begin(&dentry->d_seq);
2165 if (dentry->d_parent != parent)
2166 continue;
2167 if (d_unhashed(dentry))
2168 continue;
2169
2170 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2171 int tlen;
2172 const char *tname;
2173 if (dentry->d_name.hash != hashlen_hash(hashlen))
2174 continue;
2175 tlen = dentry->d_name.len;
2176 tname = dentry->d_name.name;
2177 /* we want a consistent (name,len) pair */
2178 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2179 cpu_relax();
2180 goto seqretry;
2181 }
2182 if (parent->d_op->d_compare(dentry,
2183 tlen, tname, name) != 0)
2184 continue;
2185 } else {
2186 if (dentry->d_name.hash_len != hashlen)
2187 continue;
2188 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2189 continue;
2190 }
2191 *seqp = seq;
2192 return dentry;
2193 }
2194 return NULL;
2195}
2196
2197/**
2198 * d_lookup - search for a dentry
2199 * @parent: parent dentry
2200 * @name: qstr of name we wish to find
2201 * Returns: dentry, or NULL
2202 *
2203 * d_lookup searches the children of the parent dentry for the name in
2204 * question. If the dentry is found its reference count is incremented and the
2205 * dentry is returned. The caller must use dput to free the entry when it has
2206 * finished using it. %NULL is returned if the dentry does not exist.
2207 */
2208struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2209{
2210 struct dentry *dentry;
2211 unsigned seq;
2212
2213 do {
2214 seq = read_seqbegin(&rename_lock);
2215 dentry = __d_lookup(parent, name);
2216 if (dentry)
2217 break;
2218 } while (read_seqretry(&rename_lock, seq));
2219 return dentry;
2220}
2221EXPORT_SYMBOL(d_lookup);
2222
2223/**
2224 * __d_lookup - search for a dentry (racy)
2225 * @parent: parent dentry
2226 * @name: qstr of name we wish to find
2227 * Returns: dentry, or NULL
2228 *
2229 * __d_lookup is like d_lookup, however it may (rarely) return a
2230 * false-negative result due to unrelated rename activity.
2231 *
2232 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2233 * however it must be used carefully, eg. with a following d_lookup in
2234 * the case of failure.
2235 *
2236 * __d_lookup callers must be commented.
2237 */
2238struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2239{
2240 unsigned int hash = name->hash;
2241 struct hlist_bl_head *b = d_hash(hash);
2242 struct hlist_bl_node *node;
2243 struct dentry *found = NULL;
2244 struct dentry *dentry;
2245
2246 /*
2247 * Note: There is significant duplication with __d_lookup_rcu which is
2248 * required to prevent single threaded performance regressions
2249 * especially on architectures where smp_rmb (in seqcounts) are costly.
2250 * Keep the two functions in sync.
2251 */
2252
2253 /*
2254 * The hash list is protected using RCU.
2255 *
2256 * Take d_lock when comparing a candidate dentry, to avoid races
2257 * with d_move().
2258 *
2259 * It is possible that concurrent renames can mess up our list
2260 * walk here and result in missing our dentry, resulting in the
2261 * false-negative result. d_lookup() protects against concurrent
2262 * renames using rename_lock seqlock.
2263 *
2264 * See Documentation/filesystems/path-lookup.txt for more details.
2265 */
2266 rcu_read_lock();
2267
2268 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2269
2270 if (dentry->d_name.hash != hash)
2271 continue;
2272
2273 spin_lock(&dentry->d_lock);
2274 if (dentry->d_parent != parent)
2275 goto next;
2276 if (d_unhashed(dentry))
2277 goto next;
2278
2279 if (!d_same_name(dentry, parent, name))
2280 goto next;
2281
2282 dentry->d_lockref.count++;
2283 found = dentry;
2284 spin_unlock(&dentry->d_lock);
2285 break;
2286next:
2287 spin_unlock(&dentry->d_lock);
2288 }
2289 rcu_read_unlock();
2290
2291 return found;
2292}
2293
2294/**
2295 * d_hash_and_lookup - hash the qstr then search for a dentry
2296 * @dir: Directory to search in
2297 * @name: qstr of name we wish to find
2298 *
2299 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2300 */
2301struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2302{
2303 /*
2304 * Check for a fs-specific hash function. Note that we must
2305 * calculate the standard hash first, as the d_op->d_hash()
2306 * routine may choose to leave the hash value unchanged.
2307 */
2308 name->hash = full_name_hash(dir, name->name, name->len);
2309 if (dir->d_flags & DCACHE_OP_HASH) {
2310 int err = dir->d_op->d_hash(dir, name);
2311 if (unlikely(err < 0))
2312 return ERR_PTR(err);
2313 }
2314 return d_lookup(dir, name);
2315}
2316EXPORT_SYMBOL(d_hash_and_lookup);
2317
2318/*
2319 * When a file is deleted, we have two options:
2320 * - turn this dentry into a negative dentry
2321 * - unhash this dentry and free it.
2322 *
2323 * Usually, we want to just turn this into
2324 * a negative dentry, but if anybody else is
2325 * currently using the dentry or the inode
2326 * we can't do that and we fall back on removing
2327 * it from the hash queues and waiting for
2328 * it to be deleted later when it has no users
2329 */
2330
2331/**
2332 * d_delete - delete a dentry
2333 * @dentry: The dentry to delete
2334 *
2335 * Turn the dentry into a negative dentry if possible, otherwise
2336 * remove it from the hash queues so it can be deleted later
2337 */
2338
2339void d_delete(struct dentry * dentry)
2340{
2341 struct inode *inode = dentry->d_inode;
2342 int isdir = d_is_dir(dentry);
2343
2344 spin_lock(&inode->i_lock);
2345 spin_lock(&dentry->d_lock);
2346 /*
2347 * Are we the only user?
2348 */
2349 if (dentry->d_lockref.count == 1) {
2350 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2351 dentry_unlink_inode(dentry);
2352 } else {
2353 __d_drop(dentry);
2354 spin_unlock(&dentry->d_lock);
2355 spin_unlock(&inode->i_lock);
2356 }
2357 fsnotify_nameremove(dentry, isdir);
2358}
2359EXPORT_SYMBOL(d_delete);
2360
2361static void __d_rehash(struct dentry *entry)
2362{
2363 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2364
2365 hlist_bl_lock(b);
2366 hlist_bl_add_head_rcu(&entry->d_hash, b);
2367 hlist_bl_unlock(b);
2368}
2369
2370/**
2371 * d_rehash - add an entry back to the hash
2372 * @entry: dentry to add to the hash
2373 *
2374 * Adds a dentry to the hash according to its name.
2375 */
2376
2377void d_rehash(struct dentry * entry)
2378{
2379 spin_lock(&entry->d_lock);
2380 __d_rehash(entry);
2381 spin_unlock(&entry->d_lock);
2382}
2383EXPORT_SYMBOL(d_rehash);
2384
2385static inline unsigned start_dir_add(struct inode *dir)
2386{
2387
2388 for (;;) {
2389 unsigned n = dir->i_dir_seq;
2390 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2391 return n;
2392 cpu_relax();
2393 }
2394}
2395
2396static inline void end_dir_add(struct inode *dir, unsigned n)
2397{
2398 smp_store_release(&dir->i_dir_seq, n + 2);
2399}
2400
2401static void d_wait_lookup(struct dentry *dentry)
2402{
2403 if (d_in_lookup(dentry)) {
2404 DECLARE_WAITQUEUE(wait, current);
2405 add_wait_queue(dentry->d_wait, &wait);
2406 do {
2407 set_current_state(TASK_UNINTERRUPTIBLE);
2408 spin_unlock(&dentry->d_lock);
2409 schedule();
2410 spin_lock(&dentry->d_lock);
2411 } while (d_in_lookup(dentry));
2412 }
2413}
2414
2415struct dentry *d_alloc_parallel(struct dentry *parent,
2416 const struct qstr *name,
2417 wait_queue_head_t *wq)
2418{
2419 unsigned int hash = name->hash;
2420 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2421 struct hlist_bl_node *node;
2422 struct dentry *new = d_alloc(parent, name);
2423 struct dentry *dentry;
2424 unsigned seq, r_seq, d_seq;
2425
2426 if (unlikely(!new))
2427 return ERR_PTR(-ENOMEM);
2428
2429retry:
2430 rcu_read_lock();
2431 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2432 r_seq = read_seqbegin(&rename_lock);
2433 dentry = __d_lookup_rcu(parent, name, &d_seq);
2434 if (unlikely(dentry)) {
2435 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2436 rcu_read_unlock();
2437 goto retry;
2438 }
2439 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2440 rcu_read_unlock();
2441 dput(dentry);
2442 goto retry;
2443 }
2444 rcu_read_unlock();
2445 dput(new);
2446 return dentry;
2447 }
2448 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2449 rcu_read_unlock();
2450 goto retry;
2451 }
2452
2453 if (unlikely(seq & 1)) {
2454 rcu_read_unlock();
2455 goto retry;
2456 }
2457
2458 hlist_bl_lock(b);
2459 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2460 hlist_bl_unlock(b);
2461 rcu_read_unlock();
2462 goto retry;
2463 }
2464 /*
2465 * No changes for the parent since the beginning of d_lookup().
2466 * Since all removals from the chain happen with hlist_bl_lock(),
2467 * any potential in-lookup matches are going to stay here until
2468 * we unlock the chain. All fields are stable in everything
2469 * we encounter.
2470 */
2471 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2472 if (dentry->d_name.hash != hash)
2473 continue;
2474 if (dentry->d_parent != parent)
2475 continue;
2476 if (!d_same_name(dentry, parent, name))
2477 continue;
2478 hlist_bl_unlock(b);
2479 /* now we can try to grab a reference */
2480 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2481 rcu_read_unlock();
2482 goto retry;
2483 }
2484
2485 rcu_read_unlock();
2486 /*
2487 * somebody is likely to be still doing lookup for it;
2488 * wait for them to finish
2489 */
2490 spin_lock(&dentry->d_lock);
2491 d_wait_lookup(dentry);
2492 /*
2493 * it's not in-lookup anymore; in principle we should repeat
2494 * everything from dcache lookup, but it's likely to be what
2495 * d_lookup() would've found anyway. If it is, just return it;
2496 * otherwise we really have to repeat the whole thing.
2497 */
2498 if (unlikely(dentry->d_name.hash != hash))
2499 goto mismatch;
2500 if (unlikely(dentry->d_parent != parent))
2501 goto mismatch;
2502 if (unlikely(d_unhashed(dentry)))
2503 goto mismatch;
2504 if (unlikely(!d_same_name(dentry, parent, name)))
2505 goto mismatch;
2506 /* OK, it *is* a hashed match; return it */
2507 spin_unlock(&dentry->d_lock);
2508 dput(new);
2509 return dentry;
2510 }
2511 rcu_read_unlock();
2512 /* we can't take ->d_lock here; it's OK, though. */
2513 new->d_flags |= DCACHE_PAR_LOOKUP;
2514 new->d_wait = wq;
2515 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2516 hlist_bl_unlock(b);
2517 return new;
2518mismatch:
2519 spin_unlock(&dentry->d_lock);
2520 dput(dentry);
2521 goto retry;
2522}
2523EXPORT_SYMBOL(d_alloc_parallel);
2524
2525void __d_lookup_done(struct dentry *dentry)
2526{
2527 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2528 dentry->d_name.hash);
2529 hlist_bl_lock(b);
2530 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2531 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2532 wake_up_all(dentry->d_wait);
2533 dentry->d_wait = NULL;
2534 hlist_bl_unlock(b);
2535 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2536 INIT_LIST_HEAD(&dentry->d_lru);
2537}
2538EXPORT_SYMBOL(__d_lookup_done);
2539
2540/* inode->i_lock held if inode is non-NULL */
2541
2542static inline void __d_add(struct dentry *dentry, struct inode *inode)
2543{
2544 struct inode *dir = NULL;
2545 unsigned n;
2546 spin_lock(&dentry->d_lock);
2547 if (unlikely(d_in_lookup(dentry))) {
2548 dir = dentry->d_parent->d_inode;
2549 n = start_dir_add(dir);
2550 __d_lookup_done(dentry);
2551 }
2552 if (inode) {
2553 unsigned add_flags = d_flags_for_inode(inode);
2554 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2555 raw_write_seqcount_begin(&dentry->d_seq);
2556 __d_set_inode_and_type(dentry, inode, add_flags);
2557 raw_write_seqcount_end(&dentry->d_seq);
2558 fsnotify_update_flags(dentry);
2559 }
2560 __d_rehash(dentry);
2561 if (dir)
2562 end_dir_add(dir, n);
2563 spin_unlock(&dentry->d_lock);
2564 if (inode)
2565 spin_unlock(&inode->i_lock);
2566}
2567
2568/**
2569 * d_add - add dentry to hash queues
2570 * @entry: dentry to add
2571 * @inode: The inode to attach to this dentry
2572 *
2573 * This adds the entry to the hash queues and initializes @inode.
2574 * The entry was actually filled in earlier during d_alloc().
2575 */
2576
2577void d_add(struct dentry *entry, struct inode *inode)
2578{
2579 if (inode) {
2580 security_d_instantiate(entry, inode);
2581 spin_lock(&inode->i_lock);
2582 }
2583 __d_add(entry, inode);
2584}
2585EXPORT_SYMBOL(d_add);
2586
2587/**
2588 * d_exact_alias - find and hash an exact unhashed alias
2589 * @entry: dentry to add
2590 * @inode: The inode to go with this dentry
2591 *
2592 * If an unhashed dentry with the same name/parent and desired
2593 * inode already exists, hash and return it. Otherwise, return
2594 * NULL.
2595 *
2596 * Parent directory should be locked.
2597 */
2598struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2599{
2600 struct dentry *alias;
2601 unsigned int hash = entry->d_name.hash;
2602
2603 spin_lock(&inode->i_lock);
2604 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2605 /*
2606 * Don't need alias->d_lock here, because aliases with
2607 * d_parent == entry->d_parent are not subject to name or
2608 * parent changes, because the parent inode i_mutex is held.
2609 */
2610 if (alias->d_name.hash != hash)
2611 continue;
2612 if (alias->d_parent != entry->d_parent)
2613 continue;
2614 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2615 continue;
2616 spin_lock(&alias->d_lock);
2617 if (!d_unhashed(alias)) {
2618 spin_unlock(&alias->d_lock);
2619 alias = NULL;
2620 } else {
2621 __dget_dlock(alias);
2622 __d_rehash(alias);
2623 spin_unlock(&alias->d_lock);
2624 }
2625 spin_unlock(&inode->i_lock);
2626 return alias;
2627 }
2628 spin_unlock(&inode->i_lock);
2629 return NULL;
2630}
2631EXPORT_SYMBOL(d_exact_alias);
2632
2633static void swap_names(struct dentry *dentry, struct dentry *target)
2634{
2635 if (unlikely(dname_external(target))) {
2636 if (unlikely(dname_external(dentry))) {
2637 /*
2638 * Both external: swap the pointers
2639 */
2640 swap(target->d_name.name, dentry->d_name.name);
2641 } else {
2642 /*
2643 * dentry:internal, target:external. Steal target's
2644 * storage and make target internal.
2645 */
2646 memcpy(target->d_iname, dentry->d_name.name,
2647 dentry->d_name.len + 1);
2648 dentry->d_name.name = target->d_name.name;
2649 target->d_name.name = target->d_iname;
2650 }
2651 } else {
2652 if (unlikely(dname_external(dentry))) {
2653 /*
2654 * dentry:external, target:internal. Give dentry's
2655 * storage to target and make dentry internal
2656 */
2657 memcpy(dentry->d_iname, target->d_name.name,
2658 target->d_name.len + 1);
2659 target->d_name.name = dentry->d_name.name;
2660 dentry->d_name.name = dentry->d_iname;
2661 } else {
2662 /*
2663 * Both are internal.
2664 */
2665 unsigned int i;
2666 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2667 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2668 swap(((long *) &dentry->d_iname)[i],
2669 ((long *) &target->d_iname)[i]);
2670 }
2671 }
2672 }
2673 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2674}
2675
2676static void copy_name(struct dentry *dentry, struct dentry *target)
2677{
2678 struct external_name *old_name = NULL;
2679 if (unlikely(dname_external(dentry)))
2680 old_name = external_name(dentry);
2681 if (unlikely(dname_external(target))) {
2682 atomic_inc(&external_name(target)->u.count);
2683 dentry->d_name = target->d_name;
2684 } else {
2685 memcpy(dentry->d_iname, target->d_name.name,
2686 target->d_name.len + 1);
2687 dentry->d_name.name = dentry->d_iname;
2688 dentry->d_name.hash_len = target->d_name.hash_len;
2689 }
2690 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2691 kfree_rcu(old_name, u.head);
2692}
2693
2694/*
2695 * __d_move - move a dentry
2696 * @dentry: entry to move
2697 * @target: new dentry
2698 * @exchange: exchange the two dentries
2699 *
2700 * Update the dcache to reflect the move of a file name. Negative
2701 * dcache entries should not be moved in this way. Caller must hold
2702 * rename_lock, the i_mutex of the source and target directories,
2703 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2704 */
2705static void __d_move(struct dentry *dentry, struct dentry *target,
2706 bool exchange)
2707{
2708 struct dentry *old_parent, *p;
2709 struct inode *dir = NULL;
2710 unsigned n;
2711
2712 WARN_ON(!dentry->d_inode);
2713 if (WARN_ON(dentry == target))
2714 return;
2715
2716 BUG_ON(d_ancestor(target, dentry));
2717 old_parent = dentry->d_parent;
2718 p = d_ancestor(old_parent, target);
2719 if (IS_ROOT(dentry)) {
2720 BUG_ON(p);
2721 spin_lock(&target->d_parent->d_lock);
2722 } else if (!p) {
2723 /* target is not a descendent of dentry->d_parent */
2724 spin_lock(&target->d_parent->d_lock);
2725 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2726 } else {
2727 BUG_ON(p == dentry);
2728 spin_lock(&old_parent->d_lock);
2729 if (p != target)
2730 spin_lock_nested(&target->d_parent->d_lock,
2731 DENTRY_D_LOCK_NESTED);
2732 }
2733 spin_lock_nested(&dentry->d_lock, 2);
2734 spin_lock_nested(&target->d_lock, 3);
2735
2736 if (unlikely(d_in_lookup(target))) {
2737 dir = target->d_parent->d_inode;
2738 n = start_dir_add(dir);
2739 __d_lookup_done(target);
2740 }
2741
2742 write_seqcount_begin(&dentry->d_seq);
2743 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2744
2745 /* unhash both */
2746 if (!d_unhashed(dentry))
2747 ___d_drop(dentry);
2748 if (!d_unhashed(target))
2749 ___d_drop(target);
2750
2751 /* ... and switch them in the tree */
2752 dentry->d_parent = target->d_parent;
2753 if (!exchange) {
2754 copy_name(dentry, target);
2755 target->d_hash.pprev = NULL;
2756 dentry->d_parent->d_lockref.count++;
2757 if (dentry != old_parent) /* wasn't IS_ROOT */
2758 WARN_ON(!--old_parent->d_lockref.count);
2759 } else {
2760 target->d_parent = old_parent;
2761 swap_names(dentry, target);
2762 list_move(&target->d_child, &target->d_parent->d_subdirs);
2763 __d_rehash(target);
2764 fsnotify_update_flags(target);
2765 }
2766 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2767 __d_rehash(dentry);
2768 fsnotify_update_flags(dentry);
2769 fscrypt_handle_d_move(dentry);
2770
2771 write_seqcount_end(&target->d_seq);
2772 write_seqcount_end(&dentry->d_seq);
2773
2774 if (dir)
2775 end_dir_add(dir, n);
2776
2777 if (dentry->d_parent != old_parent)
2778 spin_unlock(&dentry->d_parent->d_lock);
2779 if (dentry != old_parent)
2780 spin_unlock(&old_parent->d_lock);
2781 spin_unlock(&target->d_lock);
2782 spin_unlock(&dentry->d_lock);
2783}
2784
2785/*
2786 * d_move - move a dentry
2787 * @dentry: entry to move
2788 * @target: new dentry
2789 *
2790 * Update the dcache to reflect the move of a file name. Negative
2791 * dcache entries should not be moved in this way. See the locking
2792 * requirements for __d_move.
2793 */
2794void d_move(struct dentry *dentry, struct dentry *target)
2795{
2796 write_seqlock(&rename_lock);
2797 __d_move(dentry, target, false);
2798 write_sequnlock(&rename_lock);
2799}
2800EXPORT_SYMBOL(d_move);
2801
2802/*
2803 * d_exchange - exchange two dentries
2804 * @dentry1: first dentry
2805 * @dentry2: second dentry
2806 */
2807void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2808{
2809 write_seqlock(&rename_lock);
2810
2811 WARN_ON(!dentry1->d_inode);
2812 WARN_ON(!dentry2->d_inode);
2813 WARN_ON(IS_ROOT(dentry1));
2814 WARN_ON(IS_ROOT(dentry2));
2815
2816 __d_move(dentry1, dentry2, true);
2817
2818 write_sequnlock(&rename_lock);
2819}
2820
2821/**
2822 * d_ancestor - search for an ancestor
2823 * @p1: ancestor dentry
2824 * @p2: child dentry
2825 *
2826 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2827 * an ancestor of p2, else NULL.
2828 */
2829struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2830{
2831 struct dentry *p;
2832
2833 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2834 if (p->d_parent == p1)
2835 return p;
2836 }
2837 return NULL;
2838}
2839
2840/*
2841 * This helper attempts to cope with remotely renamed directories
2842 *
2843 * It assumes that the caller is already holding
2844 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2845 *
2846 * Note: If ever the locking in lock_rename() changes, then please
2847 * remember to update this too...
2848 */
2849static int __d_unalias(struct inode *inode,
2850 struct dentry *dentry, struct dentry *alias)
2851{
2852 struct mutex *m1 = NULL;
2853 struct rw_semaphore *m2 = NULL;
2854 int ret = -ESTALE;
2855
2856 /* If alias and dentry share a parent, then no extra locks required */
2857 if (alias->d_parent == dentry->d_parent)
2858 goto out_unalias;
2859
2860 /* See lock_rename() */
2861 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2862 goto out_err;
2863 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2864 if (!inode_trylock_shared(alias->d_parent->d_inode))
2865 goto out_err;
2866 m2 = &alias->d_parent->d_inode->i_rwsem;
2867out_unalias:
2868 __d_move(alias, dentry, false);
2869 ret = 0;
2870out_err:
2871 if (m2)
2872 up_read(m2);
2873 if (m1)
2874 mutex_unlock(m1);
2875 return ret;
2876}
2877
2878/**
2879 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2880 * @inode: the inode which may have a disconnected dentry
2881 * @dentry: a negative dentry which we want to point to the inode.
2882 *
2883 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2884 * place of the given dentry and return it, else simply d_add the inode
2885 * to the dentry and return NULL.
2886 *
2887 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2888 * we should error out: directories can't have multiple aliases.
2889 *
2890 * This is needed in the lookup routine of any filesystem that is exportable
2891 * (via knfsd) so that we can build dcache paths to directories effectively.
2892 *
2893 * If a dentry was found and moved, then it is returned. Otherwise NULL
2894 * is returned. This matches the expected return value of ->lookup.
2895 *
2896 * Cluster filesystems may call this function with a negative, hashed dentry.
2897 * In that case, we know that the inode will be a regular file, and also this
2898 * will only occur during atomic_open. So we need to check for the dentry
2899 * being already hashed only in the final case.
2900 */
2901struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2902{
2903 if (IS_ERR(inode))
2904 return ERR_CAST(inode);
2905
2906 BUG_ON(!d_unhashed(dentry));
2907
2908 if (!inode)
2909 goto out;
2910
2911 security_d_instantiate(dentry, inode);
2912 spin_lock(&inode->i_lock);
2913 if (S_ISDIR(inode->i_mode)) {
2914 struct dentry *new = __d_find_any_alias(inode);
2915 if (unlikely(new)) {
2916 /* The reference to new ensures it remains an alias */
2917 spin_unlock(&inode->i_lock);
2918 write_seqlock(&rename_lock);
2919 if (unlikely(d_ancestor(new, dentry))) {
2920 write_sequnlock(&rename_lock);
2921 dput(new);
2922 new = ERR_PTR(-ELOOP);
2923 pr_warn_ratelimited(
2924 "VFS: Lookup of '%s' in %s %s"
2925 " would have caused loop\n",
2926 dentry->d_name.name,
2927 inode->i_sb->s_type->name,
2928 inode->i_sb->s_id);
2929 } else if (!IS_ROOT(new)) {
2930 struct dentry *old_parent = dget(new->d_parent);
2931 int err = __d_unalias(inode, dentry, new);
2932 write_sequnlock(&rename_lock);
2933 if (err) {
2934 dput(new);
2935 new = ERR_PTR(err);
2936 }
2937 dput(old_parent);
2938 } else {
2939 __d_move(new, dentry, false);
2940 write_sequnlock(&rename_lock);
2941 }
2942 iput(inode);
2943 return new;
2944 }
2945 }
2946out:
2947 __d_add(dentry, inode);
2948 return NULL;
2949}
2950EXPORT_SYMBOL(d_splice_alias);
2951
2952/*
2953 * Test whether new_dentry is a subdirectory of old_dentry.
2954 *
2955 * Trivially implemented using the dcache structure
2956 */
2957
2958/**
2959 * is_subdir - is new dentry a subdirectory of old_dentry
2960 * @new_dentry: new dentry
2961 * @old_dentry: old dentry
2962 *
2963 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2964 * Returns false otherwise.
2965 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2966 */
2967
2968bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2969{
2970 bool result;
2971 unsigned seq;
2972
2973 if (new_dentry == old_dentry)
2974 return true;
2975
2976 do {
2977 /* for restarting inner loop in case of seq retry */
2978 seq = read_seqbegin(&rename_lock);
2979 /*
2980 * Need rcu_readlock to protect against the d_parent trashing
2981 * due to d_move
2982 */
2983 rcu_read_lock();
2984 if (d_ancestor(old_dentry, new_dentry))
2985 result = true;
2986 else
2987 result = false;
2988 rcu_read_unlock();
2989 } while (read_seqretry(&rename_lock, seq));
2990
2991 return result;
2992}
2993EXPORT_SYMBOL(is_subdir);
2994
2995static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
2996{
2997 struct dentry *root = data;
2998 if (dentry != root) {
2999 if (d_unhashed(dentry) || !dentry->d_inode)
3000 return D_WALK_SKIP;
3001
3002 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3003 dentry->d_flags |= DCACHE_GENOCIDE;
3004 dentry->d_lockref.count--;
3005 }
3006 }
3007 return D_WALK_CONTINUE;
3008}
3009
3010void d_genocide(struct dentry *parent)
3011{
3012 d_walk(parent, parent, d_genocide_kill);
3013}
3014
3015EXPORT_SYMBOL(d_genocide);
3016
3017void d_tmpfile(struct dentry *dentry, struct inode *inode)
3018{
3019 inode_dec_link_count(inode);
3020 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3021 !hlist_unhashed(&dentry->d_u.d_alias) ||
3022 !d_unlinked(dentry));
3023 spin_lock(&dentry->d_parent->d_lock);
3024 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3025 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3026 (unsigned long long)inode->i_ino);
3027 spin_unlock(&dentry->d_lock);
3028 spin_unlock(&dentry->d_parent->d_lock);
3029 d_instantiate(dentry, inode);
3030}
3031EXPORT_SYMBOL(d_tmpfile);
3032
3033static __initdata unsigned long dhash_entries;
3034static int __init set_dhash_entries(char *str)
3035{
3036 if (!str)
3037 return 0;
3038 dhash_entries = simple_strtoul(str, &str, 0);
3039 return 1;
3040}
3041__setup("dhash_entries=", set_dhash_entries);
3042
3043static void __init dcache_init_early(void)
3044{
3045 /* If hashes are distributed across NUMA nodes, defer
3046 * hash allocation until vmalloc space is available.
3047 */
3048 if (hashdist)
3049 return;
3050
3051 dentry_hashtable =
3052 alloc_large_system_hash("Dentry cache",
3053 sizeof(struct hlist_bl_head),
3054 dhash_entries,
3055 13,
3056 HASH_EARLY | HASH_ZERO,
3057 &d_hash_shift,
3058 NULL,
3059 0,
3060 0);
3061 d_hash_shift = 32 - d_hash_shift;
3062}
3063
3064static void __init dcache_init(void)
3065{
3066 /*
3067 * A constructor could be added for stable state like the lists,
3068 * but it is probably not worth it because of the cache nature
3069 * of the dcache.
3070 */
3071 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3072 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3073 d_iname);
3074
3075 /* Hash may have been set up in dcache_init_early */
3076 if (!hashdist)
3077 return;
3078
3079 dentry_hashtable =
3080 alloc_large_system_hash("Dentry cache",
3081 sizeof(struct hlist_bl_head),
3082 dhash_entries,
3083 13,
3084 HASH_ZERO,
3085 &d_hash_shift,
3086 NULL,
3087 0,
3088 0);
3089 d_hash_shift = 32 - d_hash_shift;
3090}
3091
3092/* SLAB cache for __getname() consumers */
3093struct kmem_cache *names_cachep __read_mostly;
3094EXPORT_SYMBOL(names_cachep);
3095
3096void __init vfs_caches_init_early(void)
3097{
3098 int i;
3099
3100 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3101 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3102
3103 dcache_init_early();
3104 inode_init_early();
3105}
3106
3107void __init vfs_caches_init(void)
3108{
3109 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3110 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3111
3112 dcache_init();
3113 inode_init();
3114 files_init();
3115 files_maxfiles_init();
3116 mnt_init();
3117 bdev_cache_init();
3118 chrdev_init();
3119}