blob: 055daab8652a58cafd652fb91c9e98db0d3a9bac [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * High-level sync()-related operations
4 */
5
6#include <linux/kernel.h>
7#include <linux/file.h>
8#include <linux/fs.h>
9#include <linux/slab.h>
10#include <linux/export.h>
11#include <linux/namei.h>
12#include <linux/sched/xacct.h>
13#include <linux/writeback.h>
14#include <linux/syscalls.h>
15#include <linux/linkage.h>
16#include <linux/pagemap.h>
17#include <linux/quotaops.h>
18#include <linux/backing-dev.h>
19#include "internal.h"
20
21#define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
22 SYNC_FILE_RANGE_WAIT_AFTER)
23
24/*
25 * Do the filesystem syncing work. For simple filesystems
26 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
27 * submit IO for these buffers via __sync_blockdev(). This also speeds up the
28 * wait == 1 case since in that case write_inode() functions do
29 * sync_dirty_buffer() and thus effectively write one block at a time.
30 */
31static int __sync_filesystem(struct super_block *sb, int wait)
32{
33 if (wait)
34 sync_inodes_sb(sb);
35 else
36 writeback_inodes_sb(sb, WB_REASON_SYNC);
37
38 if (sb->s_op->sync_fs)
39 sb->s_op->sync_fs(sb, wait);
40 return __sync_blockdev(sb->s_bdev, wait);
41}
42
43/*
44 * Write out and wait upon all dirty data associated with this
45 * superblock. Filesystem data as well as the underlying block
46 * device. Takes the superblock lock.
47 */
48int sync_filesystem(struct super_block *sb)
49{
50 int ret;
51
52 /*
53 * We need to be protected against the filesystem going from
54 * r/o to r/w or vice versa.
55 */
56 WARN_ON(!rwsem_is_locked(&sb->s_umount));
57
58 /*
59 * No point in syncing out anything if the filesystem is read-only.
60 */
61 if (sb_rdonly(sb))
62 return 0;
63
64 ret = __sync_filesystem(sb, 0);
65 if (ret < 0)
66 return ret;
67 return __sync_filesystem(sb, 1);
68}
69EXPORT_SYMBOL(sync_filesystem);
70
71static void sync_inodes_one_sb(struct super_block *sb, void *arg)
72{
73 if (!sb_rdonly(sb))
74 sync_inodes_sb(sb);
75}
76
77static void sync_fs_one_sb(struct super_block *sb, void *arg)
78{
79 if (!sb_rdonly(sb) && sb->s_op->sync_fs)
80 sb->s_op->sync_fs(sb, *(int *)arg);
81}
82
83static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
84{
85 filemap_fdatawrite(bdev->bd_inode->i_mapping);
86}
87
88static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
89{
90 /*
91 * We keep the error status of individual mapping so that
92 * applications can catch the writeback error using fsync(2).
93 * See filemap_fdatawait_keep_errors() for details.
94 */
95 filemap_fdatawait_keep_errors(bdev->bd_inode->i_mapping);
96}
97
98/*
99 * Sync everything. We start by waking flusher threads so that most of
100 * writeback runs on all devices in parallel. Then we sync all inodes reliably
101 * which effectively also waits for all flusher threads to finish doing
102 * writeback. At this point all data is on disk so metadata should be stable
103 * and we tell filesystems to sync their metadata via ->sync_fs() calls.
104 * Finally, we writeout all block devices because some filesystems (e.g. ext2)
105 * just write metadata (such as inodes or bitmaps) to block device page cache
106 * and do not sync it on their own in ->sync_fs().
107 */
108void ksys_sync(void)
109{
110 int nowait = 0, wait = 1;
111
112 wakeup_flusher_threads(WB_REASON_SYNC);
113 iterate_supers(sync_inodes_one_sb, NULL);
114 iterate_supers(sync_fs_one_sb, &nowait);
115 iterate_supers(sync_fs_one_sb, &wait);
116 iterate_bdevs(fdatawrite_one_bdev, NULL);
117 iterate_bdevs(fdatawait_one_bdev, NULL);
118 if (unlikely(laptop_mode))
119 laptop_sync_completion();
120}
121
122SYSCALL_DEFINE0(sync)
123{
124 ksys_sync();
125 return 0;
126}
127
128static void do_sync_work(struct work_struct *work)
129{
130 int nowait = 0;
131
132 /*
133 * Sync twice to reduce the possibility we skipped some inodes / pages
134 * because they were temporarily locked
135 */
136 iterate_supers(sync_inodes_one_sb, &nowait);
137 iterate_supers(sync_fs_one_sb, &nowait);
138 iterate_bdevs(fdatawrite_one_bdev, NULL);
139 iterate_supers(sync_inodes_one_sb, &nowait);
140 iterate_supers(sync_fs_one_sb, &nowait);
141 iterate_bdevs(fdatawrite_one_bdev, NULL);
142 printk("Emergency Sync complete\n");
143 kfree(work);
144}
145
146void emergency_sync(void)
147{
148 struct work_struct *work;
149
150 work = kmalloc(sizeof(*work), GFP_ATOMIC);
151 if (work) {
152 INIT_WORK(work, do_sync_work);
153 schedule_work(work);
154 }
155}
156
157/*
158 * sync a single super
159 */
160SYSCALL_DEFINE1(syncfs, int, fd)
161{
162 struct fd f = fdget(fd);
163 struct super_block *sb;
164 int ret;
165
166 if (!f.file)
167 return -EBADF;
168 sb = f.file->f_path.dentry->d_sb;
169
170 down_read(&sb->s_umount);
171 ret = sync_filesystem(sb);
172 up_read(&sb->s_umount);
173
174 fdput(f);
175 return ret;
176}
177
178/**
179 * vfs_fsync_range - helper to sync a range of data & metadata to disk
180 * @file: file to sync
181 * @start: offset in bytes of the beginning of data range to sync
182 * @end: offset in bytes of the end of data range (inclusive)
183 * @datasync: perform only datasync
184 *
185 * Write back data in range @start..@end and metadata for @file to disk. If
186 * @datasync is set only metadata needed to access modified file data is
187 * written.
188 */
189int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
190{
191 struct inode *inode = file->f_mapping->host;
192
193 if (!file->f_op->fsync)
194 return -EINVAL;
195 if (!datasync && (inode->i_state & I_DIRTY_TIME))
196 mark_inode_dirty_sync(inode);
197 return file->f_op->fsync(file, start, end, datasync);
198}
199EXPORT_SYMBOL(vfs_fsync_range);
200
201/**
202 * vfs_fsync - perform a fsync or fdatasync on a file
203 * @file: file to sync
204 * @datasync: only perform a fdatasync operation
205 *
206 * Write back data and metadata for @file to disk. If @datasync is
207 * set only metadata needed to access modified file data is written.
208 */
209int vfs_fsync(struct file *file, int datasync)
210{
211 return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
212}
213EXPORT_SYMBOL(vfs_fsync);
214
215static int do_fsync(unsigned int fd, int datasync)
216{
217 struct fd f = fdget(fd);
218 int ret = -EBADF;
219
220 if (f.file) {
221 ret = vfs_fsync(f.file, datasync);
222 fdput(f);
223 inc_syscfs(current);
224 }
225 return ret;
226}
227
228SYSCALL_DEFINE1(fsync, unsigned int, fd)
229{
230 return do_fsync(fd, 0);
231}
232
233SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
234{
235 return do_fsync(fd, 1);
236}
237
238/*
239 * sys_sync_file_range() permits finely controlled syncing over a segment of
240 * a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is
241 * zero then sys_sync_file_range() will operate from offset out to EOF.
242 *
243 * The flag bits are:
244 *
245 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
246 * before performing the write.
247 *
248 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
249 * range which are not presently under writeback. Note that this may block for
250 * significant periods due to exhaustion of disk request structures.
251 *
252 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
253 * after performing the write.
254 *
255 * Useful combinations of the flag bits are:
256 *
257 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
258 * in the range which were dirty on entry to sys_sync_file_range() are placed
259 * under writeout. This is a start-write-for-data-integrity operation.
260 *
261 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
262 * are not presently under writeout. This is an asynchronous flush-to-disk
263 * operation. Not suitable for data integrity operations.
264 *
265 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
266 * completion of writeout of all pages in the range. This will be used after an
267 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
268 * for that operation to complete and to return the result.
269 *
270 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
271 * a traditional sync() operation. This is a write-for-data-integrity operation
272 * which will ensure that all pages in the range which were dirty on entry to
273 * sys_sync_file_range() are committed to disk.
274 *
275 *
276 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
277 * I/O errors or ENOSPC conditions and will return those to the caller, after
278 * clearing the EIO and ENOSPC flags in the address_space.
279 *
280 * It should be noted that none of these operations write out the file's
281 * metadata. So unless the application is strictly performing overwrites of
282 * already-instantiated disk blocks, there are no guarantees here that the data
283 * will be available after a crash.
284 */
285int ksys_sync_file_range(int fd, loff_t offset, loff_t nbytes,
286 unsigned int flags)
287{
288 int ret;
289 struct fd f;
290 struct address_space *mapping;
291 loff_t endbyte; /* inclusive */
292 umode_t i_mode;
293
294 ret = -EINVAL;
295 if (flags & ~VALID_FLAGS)
296 goto out;
297
298 endbyte = offset + nbytes;
299
300 if ((s64)offset < 0)
301 goto out;
302 if ((s64)endbyte < 0)
303 goto out;
304 if (endbyte < offset)
305 goto out;
306
307 if (sizeof(pgoff_t) == 4) {
308 if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
309 /*
310 * The range starts outside a 32 bit machine's
311 * pagecache addressing capabilities. Let it "succeed"
312 */
313 ret = 0;
314 goto out;
315 }
316 if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
317 /*
318 * Out to EOF
319 */
320 nbytes = 0;
321 }
322 }
323
324 if (nbytes == 0)
325 endbyte = LLONG_MAX;
326 else
327 endbyte--; /* inclusive */
328
329 ret = -EBADF;
330 f = fdget(fd);
331 if (!f.file)
332 goto out;
333
334 i_mode = file_inode(f.file)->i_mode;
335 ret = -ESPIPE;
336 if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
337 !S_ISLNK(i_mode))
338 goto out_put;
339
340 mapping = f.file->f_mapping;
341 ret = 0;
342 if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
343 ret = file_fdatawait_range(f.file, offset, endbyte);
344 if (ret < 0)
345 goto out_put;
346 }
347
348 if (flags & SYNC_FILE_RANGE_WRITE) {
349 ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
350 WB_SYNC_NONE);
351 if (ret < 0)
352 goto out_put;
353 }
354
355 if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
356 ret = file_fdatawait_range(f.file, offset, endbyte);
357
358out_put:
359 fdput(f);
360out:
361 return ret;
362}
363
364SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
365 unsigned int, flags)
366{
367 return ksys_sync_file_range(fd, offset, nbytes, flags);
368}
369
370/* It would be nice if people remember that not all the world's an i386
371 when they introduce new system calls */
372SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
373 loff_t, offset, loff_t, nbytes)
374{
375 return ksys_sync_file_range(fd, offset, nbytes, flags);
376}