blob: 31cb2657d34e33fa62685fecfd6490353f788018 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15#include <linux/list.h>
16#include <linux/hashtable.h>
17#include <linux/sched/signal.h>
18#include <linux/sched/mm.h>
19#include <linux/mm.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
31#include <linux/hugetlb.h>
32
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38};
39
40/*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 *
44 * Locking order:
45 * fd_wqh.lock
46 * fault_pending_wqh.lock
47 * fault_wqh.lock
48 * event_wqh.lock
49 *
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
53 */
54struct userfaultfd_ctx {
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh;
57 /* waitqueue head for the userfaults */
58 wait_queue_head_t fault_wqh;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh;
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh;
63 /* a refile sequence protected by fault_pending_wqh lock */
64 struct seqcount refile_seq;
65 /* pseudo fd refcounting */
66 atomic_t refcount;
67 /* userfaultfd syscall flags */
68 unsigned int flags;
69 /* features requested from the userspace */
70 unsigned int features;
71 /* state machine */
72 enum userfaultfd_state state;
73 /* released */
74 bool released;
75 /* memory mappings are changing because of non-cooperative event */
76 bool mmap_changing;
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
78 struct mm_struct *mm;
79};
80
81struct userfaultfd_fork_ctx {
82 struct userfaultfd_ctx *orig;
83 struct userfaultfd_ctx *new;
84 struct list_head list;
85};
86
87struct userfaultfd_unmap_ctx {
88 struct userfaultfd_ctx *ctx;
89 unsigned long start;
90 unsigned long end;
91 struct list_head list;
92};
93
94struct userfaultfd_wait_queue {
95 struct uffd_msg msg;
96 wait_queue_entry_t wq;
97 struct userfaultfd_ctx *ctx;
98 bool waken;
99};
100
101struct userfaultfd_wake_range {
102 unsigned long start;
103 unsigned long len;
104};
105
106static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107 int wake_flags, void *key)
108{
109 struct userfaultfd_wake_range *range = key;
110 int ret;
111 struct userfaultfd_wait_queue *uwq;
112 unsigned long start, len;
113
114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 ret = 0;
116 /* len == 0 means wake all */
117 start = range->start;
118 len = range->len;
119 if (len && (start > uwq->msg.arg.pagefault.address ||
120 start + len <= uwq->msg.arg.pagefault.address))
121 goto out;
122 WRITE_ONCE(uwq->waken, true);
123 /*
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
126 */
127 ret = wake_up_state(wq->private, mode);
128 if (ret) {
129 /*
130 * Wake only once, autoremove behavior.
131 *
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
135 *
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
139 */
140 list_del_init(&wq->entry);
141 }
142out:
143 return ret;
144}
145
146/**
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148 * context.
149 * @ctx: [in] Pointer to the userfaultfd context.
150 */
151static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152{
153 if (!atomic_inc_not_zero(&ctx->refcount))
154 BUG();
155}
156
157/**
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * context.
160 * @ctx: [in] Pointer to userfaultfd context.
161 *
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 */
165static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166{
167 if (atomic_dec_and_test(&ctx->refcount)) {
168 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
172 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
174 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
176 mmdrop(ctx->mm);
177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
178 }
179}
180
181static inline void msg_init(struct uffd_msg *msg)
182{
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 /*
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
187 */
188 memset(msg, 0, sizeof(struct uffd_msg));
189}
190
191static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned int flags,
193 unsigned long reason,
194 unsigned int features)
195{
196 struct uffd_msg msg;
197 msg_init(&msg);
198 msg.event = UFFD_EVENT_PAGEFAULT;
199 msg.arg.pagefault.address = address;
200 if (flags & FAULT_FLAG_WRITE)
201 /*
202 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
203 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
204 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
205 * was a read fault, otherwise if set it means it's
206 * a write fault.
207 */
208 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
209 if (reason & VM_UFFD_WP)
210 /*
211 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
212 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
213 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
214 * a missing fault, otherwise if set it means it's a
215 * write protect fault.
216 */
217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218 if (features & UFFD_FEATURE_THREAD_ID)
219 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
220 return msg;
221}
222
223#ifdef CONFIG_HUGETLB_PAGE
224/*
225 * Same functionality as userfaultfd_must_wait below with modifications for
226 * hugepmd ranges.
227 */
228static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
229 struct vm_area_struct *vma,
230 unsigned long address,
231 unsigned long flags,
232 unsigned long reason)
233{
234 struct mm_struct *mm = ctx->mm;
235 pte_t *ptep, pte;
236 bool ret = true;
237
238 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
239
240 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
241
242 if (!ptep)
243 goto out;
244
245 ret = false;
246 pte = huge_ptep_get(ptep);
247
248 /*
249 * Lockless access: we're in a wait_event so it's ok if it
250 * changes under us.
251 */
252 if (huge_pte_none(pte))
253 ret = true;
254 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
255 ret = true;
256out:
257 return ret;
258}
259#else
260static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
261 struct vm_area_struct *vma,
262 unsigned long address,
263 unsigned long flags,
264 unsigned long reason)
265{
266 return false; /* should never get here */
267}
268#endif /* CONFIG_HUGETLB_PAGE */
269
270/*
271 * Verify the pagetables are still not ok after having reigstered into
272 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
273 * userfault that has already been resolved, if userfaultfd_read and
274 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
275 * threads.
276 */
277static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
278 unsigned long address,
279 unsigned long flags,
280 unsigned long reason)
281{
282 struct mm_struct *mm = ctx->mm;
283 pgd_t *pgd;
284 p4d_t *p4d;
285 pud_t *pud;
286 pmd_t *pmd, _pmd;
287 pte_t *pte;
288 bool ret = true;
289
290 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
291
292 pgd = pgd_offset(mm, address);
293 if (!pgd_present(*pgd))
294 goto out;
295 p4d = p4d_offset(pgd, address);
296 if (!p4d_present(*p4d))
297 goto out;
298 pud = pud_offset(p4d, address);
299 if (!pud_present(*pud))
300 goto out;
301 pmd = pmd_offset(pud, address);
302 /*
303 * READ_ONCE must function as a barrier with narrower scope
304 * and it must be equivalent to:
305 * _pmd = *pmd; barrier();
306 *
307 * This is to deal with the instability (as in
308 * pmd_trans_unstable) of the pmd.
309 */
310 _pmd = READ_ONCE(*pmd);
311 if (pmd_none(_pmd))
312 goto out;
313
314 ret = false;
315 if (!pmd_present(_pmd))
316 goto out;
317
318 if (pmd_trans_huge(_pmd))
319 goto out;
320
321 /*
322 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
323 * and use the standard pte_offset_map() instead of parsing _pmd.
324 */
325 pte = pte_offset_map(pmd, address);
326 /*
327 * Lockless access: we're in a wait_event so it's ok if it
328 * changes under us.
329 */
330 if (pte_none(*pte))
331 ret = true;
332 pte_unmap(pte);
333
334out:
335 return ret;
336}
337
338/*
339 * The locking rules involved in returning VM_FAULT_RETRY depending on
340 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
341 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
342 * recommendation in __lock_page_or_retry is not an understatement.
343 *
344 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
345 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
346 * not set.
347 *
348 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
349 * set, VM_FAULT_RETRY can still be returned if and only if there are
350 * fatal_signal_pending()s, and the mmap_sem must be released before
351 * returning it.
352 */
353vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
354{
355 struct mm_struct *mm = vmf->vma->vm_mm;
356 struct userfaultfd_ctx *ctx;
357 struct userfaultfd_wait_queue uwq;
358 vm_fault_t ret = VM_FAULT_SIGBUS;
359 bool must_wait, return_to_userland;
360 long blocking_state;
361
362 /*
363 * We don't do userfault handling for the final child pid update.
364 *
365 * We also don't do userfault handling during
366 * coredumping. hugetlbfs has the special
367 * follow_hugetlb_page() to skip missing pages in the
368 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
369 * the no_page_table() helper in follow_page_mask(), but the
370 * shmem_vm_ops->fault method is invoked even during
371 * coredumping without mmap_sem and it ends up here.
372 */
373 if (current->flags & (PF_EXITING|PF_DUMPCORE))
374 goto out;
375
376 /*
377 * Coredumping runs without mmap_sem so we can only check that
378 * the mmap_sem is held, if PF_DUMPCORE was not set.
379 */
380 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
381
382 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
383 if (!ctx)
384 goto out;
385
386 BUG_ON(ctx->mm != mm);
387
388 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
389 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
390
391 if (ctx->features & UFFD_FEATURE_SIGBUS)
392 goto out;
393
394 /*
395 * If it's already released don't get it. This avoids to loop
396 * in __get_user_pages if userfaultfd_release waits on the
397 * caller of handle_userfault to release the mmap_sem.
398 */
399 if (unlikely(READ_ONCE(ctx->released))) {
400 /*
401 * Don't return VM_FAULT_SIGBUS in this case, so a non
402 * cooperative manager can close the uffd after the
403 * last UFFDIO_COPY, without risking to trigger an
404 * involuntary SIGBUS if the process was starting the
405 * userfaultfd while the userfaultfd was still armed
406 * (but after the last UFFDIO_COPY). If the uffd
407 * wasn't already closed when the userfault reached
408 * this point, that would normally be solved by
409 * userfaultfd_must_wait returning 'false'.
410 *
411 * If we were to return VM_FAULT_SIGBUS here, the non
412 * cooperative manager would be instead forced to
413 * always call UFFDIO_UNREGISTER before it can safely
414 * close the uffd.
415 */
416 ret = VM_FAULT_NOPAGE;
417 goto out;
418 }
419
420 /*
421 * Check that we can return VM_FAULT_RETRY.
422 *
423 * NOTE: it should become possible to return VM_FAULT_RETRY
424 * even if FAULT_FLAG_TRIED is set without leading to gup()
425 * -EBUSY failures, if the userfaultfd is to be extended for
426 * VM_UFFD_WP tracking and we intend to arm the userfault
427 * without first stopping userland access to the memory. For
428 * VM_UFFD_MISSING userfaults this is enough for now.
429 */
430 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
431 /*
432 * Validate the invariant that nowait must allow retry
433 * to be sure not to return SIGBUS erroneously on
434 * nowait invocations.
435 */
436 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
437#ifdef CONFIG_DEBUG_VM
438 if (printk_ratelimit()) {
439 printk(KERN_WARNING
440 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
441 vmf->flags);
442 dump_stack();
443 }
444#endif
445 goto out;
446 }
447
448 /*
449 * Handle nowait, not much to do other than tell it to retry
450 * and wait.
451 */
452 ret = VM_FAULT_RETRY;
453 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
454 goto out;
455
456 /* take the reference before dropping the mmap_sem */
457 userfaultfd_ctx_get(ctx);
458
459 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
460 uwq.wq.private = current;
461 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
462 ctx->features);
463 uwq.ctx = ctx;
464 uwq.waken = false;
465
466 return_to_userland =
467 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
468 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
469 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
470 TASK_KILLABLE;
471
472 spin_lock_irq(&ctx->fault_pending_wqh.lock);
473 /*
474 * After the __add_wait_queue the uwq is visible to userland
475 * through poll/read().
476 */
477 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
478 /*
479 * The smp_mb() after __set_current_state prevents the reads
480 * following the spin_unlock to happen before the list_add in
481 * __add_wait_queue.
482 */
483 set_current_state(blocking_state);
484 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
485
486 if (!is_vm_hugetlb_page(vmf->vma))
487 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
488 reason);
489 else
490 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
491 vmf->address,
492 vmf->flags, reason);
493 up_read(&mm->mmap_sem);
494
495 if (likely(must_wait && !READ_ONCE(ctx->released) &&
496 (return_to_userland ? !signal_pending(current) :
497 !fatal_signal_pending(current)))) {
498 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
499 schedule();
500 ret |= VM_FAULT_MAJOR;
501
502 /*
503 * False wakeups can orginate even from rwsem before
504 * up_read() however userfaults will wait either for a
505 * targeted wakeup on the specific uwq waitqueue from
506 * wake_userfault() or for signals or for uffd
507 * release.
508 */
509 while (!READ_ONCE(uwq.waken)) {
510 /*
511 * This needs the full smp_store_mb()
512 * guarantee as the state write must be
513 * visible to other CPUs before reading
514 * uwq.waken from other CPUs.
515 */
516 set_current_state(blocking_state);
517 if (READ_ONCE(uwq.waken) ||
518 READ_ONCE(ctx->released) ||
519 (return_to_userland ? signal_pending(current) :
520 fatal_signal_pending(current)))
521 break;
522 schedule();
523 }
524 }
525
526 __set_current_state(TASK_RUNNING);
527
528 if (return_to_userland) {
529 if (signal_pending(current) &&
530 !fatal_signal_pending(current)) {
531 /*
532 * If we got a SIGSTOP or SIGCONT and this is
533 * a normal userland page fault, just let
534 * userland return so the signal will be
535 * handled and gdb debugging works. The page
536 * fault code immediately after we return from
537 * this function is going to release the
538 * mmap_sem and it's not depending on it
539 * (unlike gup would if we were not to return
540 * VM_FAULT_RETRY).
541 *
542 * If a fatal signal is pending we still take
543 * the streamlined VM_FAULT_RETRY failure path
544 * and there's no need to retake the mmap_sem
545 * in such case.
546 */
547 down_read(&mm->mmap_sem);
548 ret = VM_FAULT_NOPAGE;
549 }
550 }
551
552 /*
553 * Here we race with the list_del; list_add in
554 * userfaultfd_ctx_read(), however because we don't ever run
555 * list_del_init() to refile across the two lists, the prev
556 * and next pointers will never point to self. list_add also
557 * would never let any of the two pointers to point to
558 * self. So list_empty_careful won't risk to see both pointers
559 * pointing to self at any time during the list refile. The
560 * only case where list_del_init() is called is the full
561 * removal in the wake function and there we don't re-list_add
562 * and it's fine not to block on the spinlock. The uwq on this
563 * kernel stack can be released after the list_del_init.
564 */
565 if (!list_empty_careful(&uwq.wq.entry)) {
566 spin_lock_irq(&ctx->fault_pending_wqh.lock);
567 /*
568 * No need of list_del_init(), the uwq on the stack
569 * will be freed shortly anyway.
570 */
571 list_del(&uwq.wq.entry);
572 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
573 }
574
575 /*
576 * ctx may go away after this if the userfault pseudo fd is
577 * already released.
578 */
579 userfaultfd_ctx_put(ctx);
580
581out:
582 return ret;
583}
584
585static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
586 struct userfaultfd_wait_queue *ewq)
587{
588 struct userfaultfd_ctx *release_new_ctx;
589
590 if (WARN_ON_ONCE(current->flags & PF_EXITING))
591 goto out;
592
593 ewq->ctx = ctx;
594 init_waitqueue_entry(&ewq->wq, current);
595 release_new_ctx = NULL;
596
597 spin_lock_irq(&ctx->event_wqh.lock);
598 /*
599 * After the __add_wait_queue the uwq is visible to userland
600 * through poll/read().
601 */
602 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
603 for (;;) {
604 set_current_state(TASK_KILLABLE);
605 if (ewq->msg.event == 0)
606 break;
607 if (READ_ONCE(ctx->released) ||
608 fatal_signal_pending(current)) {
609 /*
610 * &ewq->wq may be queued in fork_event, but
611 * __remove_wait_queue ignores the head
612 * parameter. It would be a problem if it
613 * didn't.
614 */
615 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
616 if (ewq->msg.event == UFFD_EVENT_FORK) {
617 struct userfaultfd_ctx *new;
618
619 new = (struct userfaultfd_ctx *)
620 (unsigned long)
621 ewq->msg.arg.reserved.reserved1;
622 release_new_ctx = new;
623 }
624 break;
625 }
626
627 spin_unlock_irq(&ctx->event_wqh.lock);
628
629 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
630 schedule();
631
632 spin_lock_irq(&ctx->event_wqh.lock);
633 }
634 __set_current_state(TASK_RUNNING);
635 spin_unlock_irq(&ctx->event_wqh.lock);
636
637 if (release_new_ctx) {
638 struct vm_area_struct *vma;
639 struct mm_struct *mm = release_new_ctx->mm;
640
641 /* the various vma->vm_userfaultfd_ctx still points to it */
642 down_write(&mm->mmap_sem);
643 /* no task can run (and in turn coredump) yet */
644 VM_WARN_ON(!mmget_still_valid(mm));
645 for (vma = mm->mmap; vma; vma = vma->vm_next)
646 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
647 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
648 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
649 }
650 up_write(&mm->mmap_sem);
651
652 userfaultfd_ctx_put(release_new_ctx);
653 }
654
655 /*
656 * ctx may go away after this if the userfault pseudo fd is
657 * already released.
658 */
659out:
660 WRITE_ONCE(ctx->mmap_changing, false);
661 userfaultfd_ctx_put(ctx);
662}
663
664static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
665 struct userfaultfd_wait_queue *ewq)
666{
667 ewq->msg.event = 0;
668 wake_up_locked(&ctx->event_wqh);
669 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
670}
671
672int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
673{
674 struct userfaultfd_ctx *ctx = NULL, *octx;
675 struct userfaultfd_fork_ctx *fctx;
676
677 octx = vma->vm_userfaultfd_ctx.ctx;
678 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
679 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
680 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
681 return 0;
682 }
683
684 list_for_each_entry(fctx, fcs, list)
685 if (fctx->orig == octx) {
686 ctx = fctx->new;
687 break;
688 }
689
690 if (!ctx) {
691 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
692 if (!fctx)
693 return -ENOMEM;
694
695 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
696 if (!ctx) {
697 kfree(fctx);
698 return -ENOMEM;
699 }
700
701 atomic_set(&ctx->refcount, 1);
702 ctx->flags = octx->flags;
703 ctx->state = UFFD_STATE_RUNNING;
704 ctx->features = octx->features;
705 ctx->released = false;
706 ctx->mmap_changing = false;
707 ctx->mm = vma->vm_mm;
708 mmgrab(ctx->mm);
709
710 userfaultfd_ctx_get(octx);
711 WRITE_ONCE(octx->mmap_changing, true);
712 fctx->orig = octx;
713 fctx->new = ctx;
714 list_add_tail(&fctx->list, fcs);
715 }
716
717 vma->vm_userfaultfd_ctx.ctx = ctx;
718 return 0;
719}
720
721static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
722{
723 struct userfaultfd_ctx *ctx = fctx->orig;
724 struct userfaultfd_wait_queue ewq;
725
726 msg_init(&ewq.msg);
727
728 ewq.msg.event = UFFD_EVENT_FORK;
729 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
730
731 userfaultfd_event_wait_completion(ctx, &ewq);
732}
733
734void dup_userfaultfd_complete(struct list_head *fcs)
735{
736 struct userfaultfd_fork_ctx *fctx, *n;
737
738 list_for_each_entry_safe(fctx, n, fcs, list) {
739 dup_fctx(fctx);
740 list_del(&fctx->list);
741 kfree(fctx);
742 }
743}
744
745void mremap_userfaultfd_prep(struct vm_area_struct *vma,
746 struct vm_userfaultfd_ctx *vm_ctx)
747{
748 struct userfaultfd_ctx *ctx;
749
750 ctx = vma->vm_userfaultfd_ctx.ctx;
751
752 if (!ctx)
753 return;
754
755 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
756 vm_ctx->ctx = ctx;
757 userfaultfd_ctx_get(ctx);
758 WRITE_ONCE(ctx->mmap_changing, true);
759 } else {
760 /* Drop uffd context if remap feature not enabled */
761 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
762 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
763 }
764}
765
766void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
767 unsigned long from, unsigned long to,
768 unsigned long len)
769{
770 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
771 struct userfaultfd_wait_queue ewq;
772
773 if (!ctx)
774 return;
775
776 if (to & ~PAGE_MASK) {
777 userfaultfd_ctx_put(ctx);
778 return;
779 }
780
781 msg_init(&ewq.msg);
782
783 ewq.msg.event = UFFD_EVENT_REMAP;
784 ewq.msg.arg.remap.from = from;
785 ewq.msg.arg.remap.to = to;
786 ewq.msg.arg.remap.len = len;
787
788 userfaultfd_event_wait_completion(ctx, &ewq);
789}
790
791bool userfaultfd_remove(struct vm_area_struct *vma,
792 unsigned long start, unsigned long end)
793{
794 struct mm_struct *mm = vma->vm_mm;
795 struct userfaultfd_ctx *ctx;
796 struct userfaultfd_wait_queue ewq;
797
798 ctx = vma->vm_userfaultfd_ctx.ctx;
799 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
800 return true;
801
802 userfaultfd_ctx_get(ctx);
803 WRITE_ONCE(ctx->mmap_changing, true);
804 up_read(&mm->mmap_sem);
805
806 msg_init(&ewq.msg);
807
808 ewq.msg.event = UFFD_EVENT_REMOVE;
809 ewq.msg.arg.remove.start = start;
810 ewq.msg.arg.remove.end = end;
811
812 userfaultfd_event_wait_completion(ctx, &ewq);
813
814 return false;
815}
816
817static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
818 unsigned long start, unsigned long end)
819{
820 struct userfaultfd_unmap_ctx *unmap_ctx;
821
822 list_for_each_entry(unmap_ctx, unmaps, list)
823 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
824 unmap_ctx->end == end)
825 return true;
826
827 return false;
828}
829
830int userfaultfd_unmap_prep(struct vm_area_struct *vma,
831 unsigned long start, unsigned long end,
832 struct list_head *unmaps)
833{
834 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
835 struct userfaultfd_unmap_ctx *unmap_ctx;
836 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
837
838 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
839 has_unmap_ctx(ctx, unmaps, start, end))
840 continue;
841
842 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
843 if (!unmap_ctx)
844 return -ENOMEM;
845
846 userfaultfd_ctx_get(ctx);
847 WRITE_ONCE(ctx->mmap_changing, true);
848 unmap_ctx->ctx = ctx;
849 unmap_ctx->start = start;
850 unmap_ctx->end = end;
851 list_add_tail(&unmap_ctx->list, unmaps);
852 }
853
854 return 0;
855}
856
857void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
858{
859 struct userfaultfd_unmap_ctx *ctx, *n;
860 struct userfaultfd_wait_queue ewq;
861
862 list_for_each_entry_safe(ctx, n, uf, list) {
863 msg_init(&ewq.msg);
864
865 ewq.msg.event = UFFD_EVENT_UNMAP;
866 ewq.msg.arg.remove.start = ctx->start;
867 ewq.msg.arg.remove.end = ctx->end;
868
869 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
870
871 list_del(&ctx->list);
872 kfree(ctx);
873 }
874}
875
876static int userfaultfd_release(struct inode *inode, struct file *file)
877{
878 struct userfaultfd_ctx *ctx = file->private_data;
879 struct mm_struct *mm = ctx->mm;
880 struct vm_area_struct *vma, *prev;
881 /* len == 0 means wake all */
882 struct userfaultfd_wake_range range = { .len = 0, };
883 unsigned long new_flags;
884 bool still_valid;
885
886 WRITE_ONCE(ctx->released, true);
887
888 if (!mmget_not_zero(mm))
889 goto wakeup;
890
891 /*
892 * Flush page faults out of all CPUs. NOTE: all page faults
893 * must be retried without returning VM_FAULT_SIGBUS if
894 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
895 * changes while handle_userfault released the mmap_sem. So
896 * it's critical that released is set to true (above), before
897 * taking the mmap_sem for writing.
898 */
899 down_write(&mm->mmap_sem);
900 still_valid = mmget_still_valid(mm);
901 prev = NULL;
902 for (vma = mm->mmap; vma; vma = vma->vm_next) {
903 cond_resched();
904 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
905 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
906 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
907 prev = vma;
908 continue;
909 }
910 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
911 if (still_valid) {
912 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
913 new_flags, vma->anon_vma,
914 vma->vm_file, vma->vm_pgoff,
915 vma_policy(vma),
916 NULL_VM_UFFD_CTX,
917 vma_get_anon_name(vma));
918 if (prev)
919 vma = prev;
920 else
921 prev = vma;
922 }
923 vma->vm_flags = new_flags;
924 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
925 }
926 up_write(&mm->mmap_sem);
927 mmput(mm);
928wakeup:
929 /*
930 * After no new page faults can wait on this fault_*wqh, flush
931 * the last page faults that may have been already waiting on
932 * the fault_*wqh.
933 */
934 spin_lock_irq(&ctx->fault_pending_wqh.lock);
935 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
936 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
937 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
938
939 /* Flush pending events that may still wait on event_wqh */
940 wake_up_all(&ctx->event_wqh);
941
942 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
943 userfaultfd_ctx_put(ctx);
944 return 0;
945}
946
947/* fault_pending_wqh.lock must be hold by the caller */
948static inline struct userfaultfd_wait_queue *find_userfault_in(
949 wait_queue_head_t *wqh)
950{
951 wait_queue_entry_t *wq;
952 struct userfaultfd_wait_queue *uwq;
953
954 VM_BUG_ON(!spin_is_locked(&wqh->lock));
955
956 uwq = NULL;
957 if (!waitqueue_active(wqh))
958 goto out;
959 /* walk in reverse to provide FIFO behavior to read userfaults */
960 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
961 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
962out:
963 return uwq;
964}
965
966static inline struct userfaultfd_wait_queue *find_userfault(
967 struct userfaultfd_ctx *ctx)
968{
969 return find_userfault_in(&ctx->fault_pending_wqh);
970}
971
972static inline struct userfaultfd_wait_queue *find_userfault_evt(
973 struct userfaultfd_ctx *ctx)
974{
975 return find_userfault_in(&ctx->event_wqh);
976}
977
978static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
979{
980 struct userfaultfd_ctx *ctx = file->private_data;
981 __poll_t ret;
982
983 poll_wait(file, &ctx->fd_wqh, wait);
984
985 switch (ctx->state) {
986 case UFFD_STATE_WAIT_API:
987 return EPOLLERR;
988 case UFFD_STATE_RUNNING:
989 /*
990 * poll() never guarantees that read won't block.
991 * userfaults can be waken before they're read().
992 */
993 if (unlikely(!(file->f_flags & O_NONBLOCK)))
994 return EPOLLERR;
995 /*
996 * lockless access to see if there are pending faults
997 * __pollwait last action is the add_wait_queue but
998 * the spin_unlock would allow the waitqueue_active to
999 * pass above the actual list_add inside
1000 * add_wait_queue critical section. So use a full
1001 * memory barrier to serialize the list_add write of
1002 * add_wait_queue() with the waitqueue_active read
1003 * below.
1004 */
1005 ret = 0;
1006 smp_mb();
1007 if (waitqueue_active(&ctx->fault_pending_wqh))
1008 ret = EPOLLIN;
1009 else if (waitqueue_active(&ctx->event_wqh))
1010 ret = EPOLLIN;
1011
1012 return ret;
1013 default:
1014 WARN_ON_ONCE(1);
1015 return EPOLLERR;
1016 }
1017}
1018
1019static const struct file_operations userfaultfd_fops;
1020
1021static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1022 struct userfaultfd_ctx *new,
1023 struct uffd_msg *msg)
1024{
1025 int fd;
1026
1027 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1028 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1029 if (fd < 0)
1030 return fd;
1031
1032 msg->arg.reserved.reserved1 = 0;
1033 msg->arg.fork.ufd = fd;
1034 return 0;
1035}
1036
1037static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1038 struct uffd_msg *msg)
1039{
1040 ssize_t ret;
1041 DECLARE_WAITQUEUE(wait, current);
1042 struct userfaultfd_wait_queue *uwq;
1043 /*
1044 * Handling fork event requires sleeping operations, so
1045 * we drop the event_wqh lock, then do these ops, then
1046 * lock it back and wake up the waiter. While the lock is
1047 * dropped the ewq may go away so we keep track of it
1048 * carefully.
1049 */
1050 LIST_HEAD(fork_event);
1051 struct userfaultfd_ctx *fork_nctx = NULL;
1052
1053 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1054 spin_lock_irq(&ctx->fd_wqh.lock);
1055 __add_wait_queue(&ctx->fd_wqh, &wait);
1056 for (;;) {
1057 set_current_state(TASK_INTERRUPTIBLE);
1058 spin_lock(&ctx->fault_pending_wqh.lock);
1059 uwq = find_userfault(ctx);
1060 if (uwq) {
1061 /*
1062 * Use a seqcount to repeat the lockless check
1063 * in wake_userfault() to avoid missing
1064 * wakeups because during the refile both
1065 * waitqueue could become empty if this is the
1066 * only userfault.
1067 */
1068 write_seqcount_begin(&ctx->refile_seq);
1069
1070 /*
1071 * The fault_pending_wqh.lock prevents the uwq
1072 * to disappear from under us.
1073 *
1074 * Refile this userfault from
1075 * fault_pending_wqh to fault_wqh, it's not
1076 * pending anymore after we read it.
1077 *
1078 * Use list_del() by hand (as
1079 * userfaultfd_wake_function also uses
1080 * list_del_init() by hand) to be sure nobody
1081 * changes __remove_wait_queue() to use
1082 * list_del_init() in turn breaking the
1083 * !list_empty_careful() check in
1084 * handle_userfault(). The uwq->wq.head list
1085 * must never be empty at any time during the
1086 * refile, or the waitqueue could disappear
1087 * from under us. The "wait_queue_head_t"
1088 * parameter of __remove_wait_queue() is unused
1089 * anyway.
1090 */
1091 list_del(&uwq->wq.entry);
1092 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1093
1094 write_seqcount_end(&ctx->refile_seq);
1095
1096 /* careful to always initialize msg if ret == 0 */
1097 *msg = uwq->msg;
1098 spin_unlock(&ctx->fault_pending_wqh.lock);
1099 ret = 0;
1100 break;
1101 }
1102 spin_unlock(&ctx->fault_pending_wqh.lock);
1103
1104 spin_lock(&ctx->event_wqh.lock);
1105 uwq = find_userfault_evt(ctx);
1106 if (uwq) {
1107 *msg = uwq->msg;
1108
1109 if (uwq->msg.event == UFFD_EVENT_FORK) {
1110 fork_nctx = (struct userfaultfd_ctx *)
1111 (unsigned long)
1112 uwq->msg.arg.reserved.reserved1;
1113 list_move(&uwq->wq.entry, &fork_event);
1114 /*
1115 * fork_nctx can be freed as soon as
1116 * we drop the lock, unless we take a
1117 * reference on it.
1118 */
1119 userfaultfd_ctx_get(fork_nctx);
1120 spin_unlock(&ctx->event_wqh.lock);
1121 ret = 0;
1122 break;
1123 }
1124
1125 userfaultfd_event_complete(ctx, uwq);
1126 spin_unlock(&ctx->event_wqh.lock);
1127 ret = 0;
1128 break;
1129 }
1130 spin_unlock(&ctx->event_wqh.lock);
1131
1132 if (signal_pending(current)) {
1133 ret = -ERESTARTSYS;
1134 break;
1135 }
1136 if (no_wait) {
1137 ret = -EAGAIN;
1138 break;
1139 }
1140 spin_unlock_irq(&ctx->fd_wqh.lock);
1141 schedule();
1142 spin_lock_irq(&ctx->fd_wqh.lock);
1143 }
1144 __remove_wait_queue(&ctx->fd_wqh, &wait);
1145 __set_current_state(TASK_RUNNING);
1146 spin_unlock_irq(&ctx->fd_wqh.lock);
1147
1148 if (!ret && msg->event == UFFD_EVENT_FORK) {
1149 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1150 spin_lock_irq(&ctx->event_wqh.lock);
1151 if (!list_empty(&fork_event)) {
1152 /*
1153 * The fork thread didn't abort, so we can
1154 * drop the temporary refcount.
1155 */
1156 userfaultfd_ctx_put(fork_nctx);
1157
1158 uwq = list_first_entry(&fork_event,
1159 typeof(*uwq),
1160 wq.entry);
1161 /*
1162 * If fork_event list wasn't empty and in turn
1163 * the event wasn't already released by fork
1164 * (the event is allocated on fork kernel
1165 * stack), put the event back to its place in
1166 * the event_wq. fork_event head will be freed
1167 * as soon as we return so the event cannot
1168 * stay queued there no matter the current
1169 * "ret" value.
1170 */
1171 list_del(&uwq->wq.entry);
1172 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1173
1174 /*
1175 * Leave the event in the waitqueue and report
1176 * error to userland if we failed to resolve
1177 * the userfault fork.
1178 */
1179 if (likely(!ret))
1180 userfaultfd_event_complete(ctx, uwq);
1181 } else {
1182 /*
1183 * Here the fork thread aborted and the
1184 * refcount from the fork thread on fork_nctx
1185 * has already been released. We still hold
1186 * the reference we took before releasing the
1187 * lock above. If resolve_userfault_fork
1188 * failed we've to drop it because the
1189 * fork_nctx has to be freed in such case. If
1190 * it succeeded we'll hold it because the new
1191 * uffd references it.
1192 */
1193 if (ret)
1194 userfaultfd_ctx_put(fork_nctx);
1195 }
1196 spin_unlock_irq(&ctx->event_wqh.lock);
1197 }
1198
1199 return ret;
1200}
1201
1202static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1203 size_t count, loff_t *ppos)
1204{
1205 struct userfaultfd_ctx *ctx = file->private_data;
1206 ssize_t _ret, ret = 0;
1207 struct uffd_msg msg;
1208 int no_wait = file->f_flags & O_NONBLOCK;
1209
1210 if (ctx->state == UFFD_STATE_WAIT_API)
1211 return -EINVAL;
1212
1213 for (;;) {
1214 if (count < sizeof(msg))
1215 return ret ? ret : -EINVAL;
1216 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1217 if (_ret < 0)
1218 return ret ? ret : _ret;
1219 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1220 return ret ? ret : -EFAULT;
1221 ret += sizeof(msg);
1222 buf += sizeof(msg);
1223 count -= sizeof(msg);
1224 /*
1225 * Allow to read more than one fault at time but only
1226 * block if waiting for the very first one.
1227 */
1228 no_wait = O_NONBLOCK;
1229 }
1230}
1231
1232static void __wake_userfault(struct userfaultfd_ctx *ctx,
1233 struct userfaultfd_wake_range *range)
1234{
1235 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1236 /* wake all in the range and autoremove */
1237 if (waitqueue_active(&ctx->fault_pending_wqh))
1238 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1239 range);
1240 if (waitqueue_active(&ctx->fault_wqh))
1241 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1242 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1243}
1244
1245static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1246 struct userfaultfd_wake_range *range)
1247{
1248 unsigned seq;
1249 bool need_wakeup;
1250
1251 /*
1252 * To be sure waitqueue_active() is not reordered by the CPU
1253 * before the pagetable update, use an explicit SMP memory
1254 * barrier here. PT lock release or up_read(mmap_sem) still
1255 * have release semantics that can allow the
1256 * waitqueue_active() to be reordered before the pte update.
1257 */
1258 smp_mb();
1259
1260 /*
1261 * Use waitqueue_active because it's very frequent to
1262 * change the address space atomically even if there are no
1263 * userfaults yet. So we take the spinlock only when we're
1264 * sure we've userfaults to wake.
1265 */
1266 do {
1267 seq = read_seqcount_begin(&ctx->refile_seq);
1268 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1269 waitqueue_active(&ctx->fault_wqh);
1270 cond_resched();
1271 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1272 if (need_wakeup)
1273 __wake_userfault(ctx, range);
1274}
1275
1276static __always_inline int validate_range(struct mm_struct *mm,
1277 __u64 *start, __u64 len)
1278{
1279 __u64 task_size = mm->task_size;
1280
1281 *start = untagged_addr(*start);
1282
1283 if (*start & ~PAGE_MASK)
1284 return -EINVAL;
1285 if (len & ~PAGE_MASK)
1286 return -EINVAL;
1287 if (!len)
1288 return -EINVAL;
1289 if (*start < mmap_min_addr)
1290 return -EINVAL;
1291 if (*start >= task_size)
1292 return -EINVAL;
1293 if (len > task_size - *start)
1294 return -EINVAL;
1295 return 0;
1296}
1297
1298static inline bool vma_can_userfault(struct vm_area_struct *vma)
1299{
1300 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1301 vma_is_shmem(vma);
1302}
1303
1304static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1305 unsigned long arg)
1306{
1307 struct mm_struct *mm = ctx->mm;
1308 struct vm_area_struct *vma, *prev, *cur;
1309 int ret;
1310 struct uffdio_register uffdio_register;
1311 struct uffdio_register __user *user_uffdio_register;
1312 unsigned long vm_flags, new_flags;
1313 bool found;
1314 bool basic_ioctls;
1315 unsigned long start, end, vma_end;
1316
1317 user_uffdio_register = (struct uffdio_register __user *) arg;
1318
1319 ret = -EFAULT;
1320 if (copy_from_user(&uffdio_register, user_uffdio_register,
1321 sizeof(uffdio_register)-sizeof(__u64)))
1322 goto out;
1323
1324 ret = -EINVAL;
1325 if (!uffdio_register.mode)
1326 goto out;
1327 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1328 UFFDIO_REGISTER_MODE_WP))
1329 goto out;
1330 vm_flags = 0;
1331 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1332 vm_flags |= VM_UFFD_MISSING;
1333 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1334 vm_flags |= VM_UFFD_WP;
1335 /*
1336 * FIXME: remove the below error constraint by
1337 * implementing the wprotect tracking mode.
1338 */
1339 ret = -EINVAL;
1340 goto out;
1341 }
1342
1343 ret = validate_range(mm, &uffdio_register.range.start,
1344 uffdio_register.range.len);
1345 if (ret)
1346 goto out;
1347
1348 start = uffdio_register.range.start;
1349 end = start + uffdio_register.range.len;
1350
1351 ret = -ENOMEM;
1352 if (!mmget_not_zero(mm))
1353 goto out;
1354
1355 down_write(&mm->mmap_sem);
1356 if (!mmget_still_valid(mm))
1357 goto out_unlock;
1358 vma = find_vma_prev(mm, start, &prev);
1359 if (!vma)
1360 goto out_unlock;
1361
1362 /* check that there's at least one vma in the range */
1363 ret = -EINVAL;
1364 if (vma->vm_start >= end)
1365 goto out_unlock;
1366
1367 /*
1368 * If the first vma contains huge pages, make sure start address
1369 * is aligned to huge page size.
1370 */
1371 if (is_vm_hugetlb_page(vma)) {
1372 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1373
1374 if (start & (vma_hpagesize - 1))
1375 goto out_unlock;
1376 }
1377
1378 /*
1379 * Search for not compatible vmas.
1380 */
1381 found = false;
1382 basic_ioctls = false;
1383 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1384 cond_resched();
1385
1386 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1387 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1388
1389 /* check not compatible vmas */
1390 ret = -EINVAL;
1391 if (!vma_can_userfault(cur))
1392 goto out_unlock;
1393
1394 /*
1395 * UFFDIO_COPY will fill file holes even without
1396 * PROT_WRITE. This check enforces that if this is a
1397 * MAP_SHARED, the process has write permission to the backing
1398 * file. If VM_MAYWRITE is set it also enforces that on a
1399 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1400 * F_WRITE_SEAL can be taken until the vma is destroyed.
1401 */
1402 ret = -EPERM;
1403 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1404 goto out_unlock;
1405
1406 /*
1407 * If this vma contains ending address, and huge pages
1408 * check alignment.
1409 */
1410 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1411 end > cur->vm_start) {
1412 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1413
1414 ret = -EINVAL;
1415
1416 if (end & (vma_hpagesize - 1))
1417 goto out_unlock;
1418 }
1419
1420 /*
1421 * Check that this vma isn't already owned by a
1422 * different userfaultfd. We can't allow more than one
1423 * userfaultfd to own a single vma simultaneously or we
1424 * wouldn't know which one to deliver the userfaults to.
1425 */
1426 ret = -EBUSY;
1427 if (cur->vm_userfaultfd_ctx.ctx &&
1428 cur->vm_userfaultfd_ctx.ctx != ctx)
1429 goto out_unlock;
1430
1431 /*
1432 * Note vmas containing huge pages
1433 */
1434 if (is_vm_hugetlb_page(cur))
1435 basic_ioctls = true;
1436
1437 found = true;
1438 }
1439 BUG_ON(!found);
1440
1441 if (vma->vm_start < start)
1442 prev = vma;
1443
1444 ret = 0;
1445 do {
1446 cond_resched();
1447
1448 BUG_ON(!vma_can_userfault(vma));
1449 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1450 vma->vm_userfaultfd_ctx.ctx != ctx);
1451 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1452
1453 /*
1454 * Nothing to do: this vma is already registered into this
1455 * userfaultfd and with the right tracking mode too.
1456 */
1457 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1458 (vma->vm_flags & vm_flags) == vm_flags)
1459 goto skip;
1460
1461 if (vma->vm_start > start)
1462 start = vma->vm_start;
1463 vma_end = min(end, vma->vm_end);
1464
1465 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1466 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1467 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1468 vma_policy(vma),
1469 ((struct vm_userfaultfd_ctx){ ctx }),
1470 vma_get_anon_name(vma));
1471 if (prev) {
1472 vma = prev;
1473 goto next;
1474 }
1475 if (vma->vm_start < start) {
1476 ret = split_vma(mm, vma, start, 1);
1477 if (ret)
1478 break;
1479 }
1480 if (vma->vm_end > end) {
1481 ret = split_vma(mm, vma, end, 0);
1482 if (ret)
1483 break;
1484 }
1485 next:
1486 /*
1487 * In the vma_merge() successful mprotect-like case 8:
1488 * the next vma was merged into the current one and
1489 * the current one has not been updated yet.
1490 */
1491 vma->vm_flags = new_flags;
1492 vma->vm_userfaultfd_ctx.ctx = ctx;
1493
1494 skip:
1495 prev = vma;
1496 start = vma->vm_end;
1497 vma = vma->vm_next;
1498 } while (vma && vma->vm_start < end);
1499out_unlock:
1500 up_write(&mm->mmap_sem);
1501 mmput(mm);
1502 if (!ret) {
1503 /*
1504 * Now that we scanned all vmas we can already tell
1505 * userland which ioctls methods are guaranteed to
1506 * succeed on this range.
1507 */
1508 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1509 UFFD_API_RANGE_IOCTLS,
1510 &user_uffdio_register->ioctls))
1511 ret = -EFAULT;
1512 }
1513out:
1514 return ret;
1515}
1516
1517static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1518 unsigned long arg)
1519{
1520 struct mm_struct *mm = ctx->mm;
1521 struct vm_area_struct *vma, *prev, *cur;
1522 int ret;
1523 struct uffdio_range uffdio_unregister;
1524 unsigned long new_flags;
1525 bool found;
1526 unsigned long start, end, vma_end;
1527 const void __user *buf = (void __user *)arg;
1528
1529 ret = -EFAULT;
1530 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1531 goto out;
1532
1533 ret = validate_range(mm, &uffdio_unregister.start,
1534 uffdio_unregister.len);
1535 if (ret)
1536 goto out;
1537
1538 start = uffdio_unregister.start;
1539 end = start + uffdio_unregister.len;
1540
1541 ret = -ENOMEM;
1542 if (!mmget_not_zero(mm))
1543 goto out;
1544
1545 down_write(&mm->mmap_sem);
1546 if (!mmget_still_valid(mm))
1547 goto out_unlock;
1548 vma = find_vma_prev(mm, start, &prev);
1549 if (!vma)
1550 goto out_unlock;
1551
1552 /* check that there's at least one vma in the range */
1553 ret = -EINVAL;
1554 if (vma->vm_start >= end)
1555 goto out_unlock;
1556
1557 /*
1558 * If the first vma contains huge pages, make sure start address
1559 * is aligned to huge page size.
1560 */
1561 if (is_vm_hugetlb_page(vma)) {
1562 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1563
1564 if (start & (vma_hpagesize - 1))
1565 goto out_unlock;
1566 }
1567
1568 /*
1569 * Search for not compatible vmas.
1570 */
1571 found = false;
1572 ret = -EINVAL;
1573 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1574 cond_resched();
1575
1576 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1577 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1578
1579 /*
1580 * Check not compatible vmas, not strictly required
1581 * here as not compatible vmas cannot have an
1582 * userfaultfd_ctx registered on them, but this
1583 * provides for more strict behavior to notice
1584 * unregistration errors.
1585 */
1586 if (!vma_can_userfault(cur))
1587 goto out_unlock;
1588
1589 found = true;
1590 }
1591 BUG_ON(!found);
1592
1593 if (vma->vm_start < start)
1594 prev = vma;
1595
1596 ret = 0;
1597 do {
1598 cond_resched();
1599
1600 BUG_ON(!vma_can_userfault(vma));
1601
1602 /*
1603 * Nothing to do: this vma is already registered into this
1604 * userfaultfd and with the right tracking mode too.
1605 */
1606 if (!vma->vm_userfaultfd_ctx.ctx)
1607 goto skip;
1608
1609 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1610
1611 if (vma->vm_start > start)
1612 start = vma->vm_start;
1613 vma_end = min(end, vma->vm_end);
1614
1615 if (userfaultfd_missing(vma)) {
1616 /*
1617 * Wake any concurrent pending userfault while
1618 * we unregister, so they will not hang
1619 * permanently and it avoids userland to call
1620 * UFFDIO_WAKE explicitly.
1621 */
1622 struct userfaultfd_wake_range range;
1623 range.start = start;
1624 range.len = vma_end - start;
1625 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1626 }
1627
1628 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1629 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1630 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1631 vma_policy(vma),
1632 NULL_VM_UFFD_CTX,
1633 vma_get_anon_name(vma));
1634 if (prev) {
1635 vma = prev;
1636 goto next;
1637 }
1638 if (vma->vm_start < start) {
1639 ret = split_vma(mm, vma, start, 1);
1640 if (ret)
1641 break;
1642 }
1643 if (vma->vm_end > end) {
1644 ret = split_vma(mm, vma, end, 0);
1645 if (ret)
1646 break;
1647 }
1648 next:
1649 /*
1650 * In the vma_merge() successful mprotect-like case 8:
1651 * the next vma was merged into the current one and
1652 * the current one has not been updated yet.
1653 */
1654 vma->vm_flags = new_flags;
1655 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1656
1657 skip:
1658 prev = vma;
1659 start = vma->vm_end;
1660 vma = vma->vm_next;
1661 } while (vma && vma->vm_start < end);
1662out_unlock:
1663 up_write(&mm->mmap_sem);
1664 mmput(mm);
1665out:
1666 return ret;
1667}
1668
1669/*
1670 * userfaultfd_wake may be used in combination with the
1671 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1672 */
1673static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1674 unsigned long arg)
1675{
1676 int ret;
1677 struct uffdio_range uffdio_wake;
1678 struct userfaultfd_wake_range range;
1679 const void __user *buf = (void __user *)arg;
1680
1681 ret = -EFAULT;
1682 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1683 goto out;
1684
1685 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1686 if (ret)
1687 goto out;
1688
1689 range.start = uffdio_wake.start;
1690 range.len = uffdio_wake.len;
1691
1692 /*
1693 * len == 0 means wake all and we don't want to wake all here,
1694 * so check it again to be sure.
1695 */
1696 VM_BUG_ON(!range.len);
1697
1698 wake_userfault(ctx, &range);
1699 ret = 0;
1700
1701out:
1702 return ret;
1703}
1704
1705static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1706 unsigned long arg)
1707{
1708 __s64 ret;
1709 struct uffdio_copy uffdio_copy;
1710 struct uffdio_copy __user *user_uffdio_copy;
1711 struct userfaultfd_wake_range range;
1712
1713 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1714
1715 ret = -EAGAIN;
1716 if (READ_ONCE(ctx->mmap_changing))
1717 goto out;
1718
1719 ret = -EFAULT;
1720 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1721 /* don't copy "copy" last field */
1722 sizeof(uffdio_copy)-sizeof(__s64)))
1723 goto out;
1724
1725 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1726 if (ret)
1727 goto out;
1728 /*
1729 * double check for wraparound just in case. copy_from_user()
1730 * will later check uffdio_copy.src + uffdio_copy.len to fit
1731 * in the userland range.
1732 */
1733 ret = -EINVAL;
1734 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1735 goto out;
1736 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1737 goto out;
1738 if (mmget_not_zero(ctx->mm)) {
1739 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1740 uffdio_copy.len, &ctx->mmap_changing);
1741 mmput(ctx->mm);
1742 } else {
1743 return -ESRCH;
1744 }
1745 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1746 return -EFAULT;
1747 if (ret < 0)
1748 goto out;
1749 BUG_ON(!ret);
1750 /* len == 0 would wake all */
1751 range.len = ret;
1752 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1753 range.start = uffdio_copy.dst;
1754 wake_userfault(ctx, &range);
1755 }
1756 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1757out:
1758 return ret;
1759}
1760
1761static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1762 unsigned long arg)
1763{
1764 __s64 ret;
1765 struct uffdio_zeropage uffdio_zeropage;
1766 struct uffdio_zeropage __user *user_uffdio_zeropage;
1767 struct userfaultfd_wake_range range;
1768
1769 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1770
1771 ret = -EAGAIN;
1772 if (READ_ONCE(ctx->mmap_changing))
1773 goto out;
1774
1775 ret = -EFAULT;
1776 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1777 /* don't copy "zeropage" last field */
1778 sizeof(uffdio_zeropage)-sizeof(__s64)))
1779 goto out;
1780
1781 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1782 uffdio_zeropage.range.len);
1783 if (ret)
1784 goto out;
1785 ret = -EINVAL;
1786 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1787 goto out;
1788
1789 if (mmget_not_zero(ctx->mm)) {
1790 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1791 uffdio_zeropage.range.len,
1792 &ctx->mmap_changing);
1793 mmput(ctx->mm);
1794 } else {
1795 return -ESRCH;
1796 }
1797 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1798 return -EFAULT;
1799 if (ret < 0)
1800 goto out;
1801 /* len == 0 would wake all */
1802 BUG_ON(!ret);
1803 range.len = ret;
1804 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1805 range.start = uffdio_zeropage.range.start;
1806 wake_userfault(ctx, &range);
1807 }
1808 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1809out:
1810 return ret;
1811}
1812
1813static inline unsigned int uffd_ctx_features(__u64 user_features)
1814{
1815 /*
1816 * For the current set of features the bits just coincide
1817 */
1818 return (unsigned int)user_features;
1819}
1820
1821/*
1822 * userland asks for a certain API version and we return which bits
1823 * and ioctl commands are implemented in this kernel for such API
1824 * version or -EINVAL if unknown.
1825 */
1826static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1827 unsigned long arg)
1828{
1829 struct uffdio_api uffdio_api;
1830 void __user *buf = (void __user *)arg;
1831 int ret;
1832 __u64 features;
1833
1834 ret = -EINVAL;
1835 if (ctx->state != UFFD_STATE_WAIT_API)
1836 goto out;
1837 ret = -EFAULT;
1838 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1839 goto out;
1840 features = uffdio_api.features;
1841 ret = -EINVAL;
1842 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1843 goto err_out;
1844 ret = -EPERM;
1845 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1846 goto err_out;
1847 /* report all available features and ioctls to userland */
1848 uffdio_api.features = UFFD_API_FEATURES;
1849 uffdio_api.ioctls = UFFD_API_IOCTLS;
1850 ret = -EFAULT;
1851 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1852 goto out;
1853 ctx->state = UFFD_STATE_RUNNING;
1854 /* only enable the requested features for this uffd context */
1855 ctx->features = uffd_ctx_features(features);
1856 ret = 0;
1857out:
1858 return ret;
1859err_out:
1860 memset(&uffdio_api, 0, sizeof(uffdio_api));
1861 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1862 ret = -EFAULT;
1863 goto out;
1864}
1865
1866static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1867 unsigned long arg)
1868{
1869 int ret = -EINVAL;
1870 struct userfaultfd_ctx *ctx = file->private_data;
1871
1872 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1873 return -EINVAL;
1874
1875 switch(cmd) {
1876 case UFFDIO_API:
1877 ret = userfaultfd_api(ctx, arg);
1878 break;
1879 case UFFDIO_REGISTER:
1880 ret = userfaultfd_register(ctx, arg);
1881 break;
1882 case UFFDIO_UNREGISTER:
1883 ret = userfaultfd_unregister(ctx, arg);
1884 break;
1885 case UFFDIO_WAKE:
1886 ret = userfaultfd_wake(ctx, arg);
1887 break;
1888 case UFFDIO_COPY:
1889 ret = userfaultfd_copy(ctx, arg);
1890 break;
1891 case UFFDIO_ZEROPAGE:
1892 ret = userfaultfd_zeropage(ctx, arg);
1893 break;
1894 }
1895 return ret;
1896}
1897
1898#ifdef CONFIG_PROC_FS
1899static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1900{
1901 struct userfaultfd_ctx *ctx = f->private_data;
1902 wait_queue_entry_t *wq;
1903 unsigned long pending = 0, total = 0;
1904
1905 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1906 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1907 pending++;
1908 total++;
1909 }
1910 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1911 total++;
1912 }
1913 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1914
1915 /*
1916 * If more protocols will be added, there will be all shown
1917 * separated by a space. Like this:
1918 * protocols: aa:... bb:...
1919 */
1920 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1921 pending, total, UFFD_API, ctx->features,
1922 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1923}
1924#endif
1925
1926static const struct file_operations userfaultfd_fops = {
1927#ifdef CONFIG_PROC_FS
1928 .show_fdinfo = userfaultfd_show_fdinfo,
1929#endif
1930 .release = userfaultfd_release,
1931 .poll = userfaultfd_poll,
1932 .read = userfaultfd_read,
1933 .unlocked_ioctl = userfaultfd_ioctl,
1934 .compat_ioctl = userfaultfd_ioctl,
1935 .llseek = noop_llseek,
1936};
1937
1938static void init_once_userfaultfd_ctx(void *mem)
1939{
1940 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1941
1942 init_waitqueue_head(&ctx->fault_pending_wqh);
1943 init_waitqueue_head(&ctx->fault_wqh);
1944 init_waitqueue_head(&ctx->event_wqh);
1945 init_waitqueue_head(&ctx->fd_wqh);
1946 seqcount_init(&ctx->refile_seq);
1947}
1948
1949SYSCALL_DEFINE1(userfaultfd, int, flags)
1950{
1951 struct userfaultfd_ctx *ctx;
1952 int fd;
1953
1954 BUG_ON(!current->mm);
1955
1956 /* Check the UFFD_* constants for consistency. */
1957 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1958 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1959
1960 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1961 return -EINVAL;
1962
1963 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1964 if (!ctx)
1965 return -ENOMEM;
1966
1967 atomic_set(&ctx->refcount, 1);
1968 ctx->flags = flags;
1969 ctx->features = 0;
1970 ctx->state = UFFD_STATE_WAIT_API;
1971 ctx->released = false;
1972 ctx->mmap_changing = false;
1973 ctx->mm = current->mm;
1974 /* prevent the mm struct to be freed */
1975 mmgrab(ctx->mm);
1976
1977 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1978 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1979 if (fd < 0) {
1980 mmdrop(ctx->mm);
1981 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1982 }
1983 return fd;
1984}
1985
1986static int __init userfaultfd_init(void)
1987{
1988 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1989 sizeof(struct userfaultfd_ctx),
1990 0,
1991 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1992 init_once_userfaultfd_ctx);
1993 return 0;
1994}
1995__initcall(userfaultfd_init);