blob: 69f8d447bb9030302716365ef0860cd5696281e6 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70#include <linux/mempolicy.h>
71#include <linux/mm.h>
72#include <linux/highmem.h>
73#include <linux/hugetlb.h>
74#include <linux/kernel.h>
75#include <linux/sched.h>
76#include <linux/sched/mm.h>
77#include <linux/sched/numa_balancing.h>
78#include <linux/sched/task.h>
79#include <linux/nodemask.h>
80#include <linux/cpuset.h>
81#include <linux/slab.h>
82#include <linux/string.h>
83#include <linux/export.h>
84#include <linux/nsproxy.h>
85#include <linux/interrupt.h>
86#include <linux/init.h>
87#include <linux/compat.h>
88#include <linux/ptrace.h>
89#include <linux/swap.h>
90#include <linux/seq_file.h>
91#include <linux/proc_fs.h>
92#include <linux/migrate.h>
93#include <linux/ksm.h>
94#include <linux/rmap.h>
95#include <linux/security.h>
96#include <linux/syscalls.h>
97#include <linux/ctype.h>
98#include <linux/mm_inline.h>
99#include <linux/mmu_notifier.h>
100#include <linux/printk.h>
101#include <linux/swapops.h>
102
103#include <asm/tlbflush.h>
104#include <linux/uaccess.h>
105
106#include "internal.h"
107
108/* Internal flags */
109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112static struct kmem_cache *policy_cache;
113static struct kmem_cache *sn_cache;
114
115/* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117enum zone_type policy_zone = 0;
118
119/*
120 * run-time system-wide default policy => local allocation
121 */
122static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126};
127
128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130struct mempolicy *get_task_policy(struct task_struct *p)
131{
132 struct mempolicy *pol = p->mempolicy;
133 int node;
134
135 if (pol)
136 return pol;
137
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
144 }
145
146 return &default_policy;
147}
148
149static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152} mpol_ops[MPOL_MAX];
153
154static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155{
156 return pol->flags & MPOL_MODE_FLAGS;
157}
158
159static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
161{
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
165}
166
167static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168{
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
173}
174
175static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176{
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
184}
185
186static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187{
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
192}
193
194/*
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
199 *
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
202 */
203static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
205{
206 int ret;
207
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
214
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
223
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
229 }
230
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
236}
237
238/*
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
241 */
242static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
244{
245 struct mempolicy *policy;
246
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
254 }
255 VM_BUG_ON(!nodes);
256
257 /*
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
261 */
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
267 }
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
282
283 return policy;
284}
285
286/* Slow path of a mpol destructor. */
287void __mpol_put(struct mempolicy *p)
288{
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
292}
293
294static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295{
296}
297
298static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299{
300 nodemask_t tmp;
301
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = *nodes;
310 }
311
312 if (nodes_empty(tmp))
313 tmp = *nodes;
314
315 pol->v.nodes = tmp;
316}
317
318static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
320{
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
325
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340}
341
342/*
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 *
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
348 */
349static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350{
351 if (!pol)
352 return;
353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
356
357 mpol_ops[pol->mode].rebind(pol, newmask);
358}
359
360/*
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
363 *
364 * Called with task's alloc_lock held.
365 */
366
367void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368{
369 mpol_rebind_policy(tsk->mempolicy, new);
370}
371
372/*
373 * Rebind each vma in mm to new nodemask.
374 *
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
376 */
377
378void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379{
380 struct vm_area_struct *vma;
381
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
386}
387
388static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
391 },
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
395 },
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
399 },
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
403 },
404};
405
406static int migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
408
409struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 struct vm_area_struct *prev;
414};
415
416/*
417 * Check if the page's nid is in qp->nmask.
418 *
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
421 */
422static inline bool queue_pages_required(struct page *page,
423 struct queue_pages *qp)
424{
425 int nid = page_to_nid(page);
426 unsigned long flags = qp->flags;
427
428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429}
430
431/*
432 * queue_pages_pmd() has four possible return values:
433 * 0 - pages are placed on the right node or queued successfully.
434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
435 * specified.
436 * 2 - THP was split.
437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
438 * existing page was already on a node that does not follow the
439 * policy.
440 */
441static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
442 unsigned long end, struct mm_walk *walk)
443{
444 int ret = 0;
445 struct page *page;
446 struct queue_pages *qp = walk->private;
447 unsigned long flags;
448
449 if (unlikely(is_pmd_migration_entry(*pmd))) {
450 ret = -EIO;
451 goto unlock;
452 }
453 page = pmd_page(*pmd);
454 if (is_huge_zero_page(page)) {
455 spin_unlock(ptl);
456 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
457 ret = 2;
458 goto out;
459 }
460 if (!queue_pages_required(page, qp))
461 goto unlock;
462
463 flags = qp->flags;
464 /* go to thp migration */
465 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
466 if (!vma_migratable(walk->vma) ||
467 migrate_page_add(page, qp->pagelist, flags)) {
468 ret = 1;
469 goto unlock;
470 }
471 } else
472 ret = -EIO;
473unlock:
474 spin_unlock(ptl);
475out:
476 return ret;
477}
478
479/*
480 * Scan through pages checking if pages follow certain conditions,
481 * and move them to the pagelist if they do.
482 *
483 * queue_pages_pte_range() has three possible return values:
484 * 0 - pages are placed on the right node or queued successfully.
485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
486 * specified.
487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
488 * on a node that does not follow the policy.
489 */
490static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
491 unsigned long end, struct mm_walk *walk)
492{
493 struct vm_area_struct *vma = walk->vma;
494 struct page *page;
495 struct queue_pages *qp = walk->private;
496 unsigned long flags = qp->flags;
497 int ret;
498 bool has_unmovable = false;
499 pte_t *pte;
500 spinlock_t *ptl;
501
502 ptl = pmd_trans_huge_lock(pmd, vma);
503 if (ptl) {
504 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
505 if (ret != 2)
506 return ret;
507 }
508 /* THP was split, fall through to pte walk */
509
510 if (pmd_trans_unstable(pmd))
511 return 0;
512
513 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
514 for (; addr != end; pte++, addr += PAGE_SIZE) {
515 if (!pte_present(*pte))
516 continue;
517 page = vm_normal_page(vma, addr, *pte);
518 if (!page)
519 continue;
520 /*
521 * vm_normal_page() filters out zero pages, but there might
522 * still be PageReserved pages to skip, perhaps in a VDSO.
523 */
524 if (PageReserved(page))
525 continue;
526 if (!queue_pages_required(page, qp))
527 continue;
528 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
529 /* MPOL_MF_STRICT must be specified if we get here */
530 if (!vma_migratable(vma)) {
531 has_unmovable = true;
532 break;
533 }
534
535 /*
536 * Do not abort immediately since there may be
537 * temporary off LRU pages in the range. Still
538 * need migrate other LRU pages.
539 */
540 if (migrate_page_add(page, qp->pagelist, flags))
541 has_unmovable = true;
542 } else
543 break;
544 }
545 pte_unmap_unlock(pte - 1, ptl);
546 cond_resched();
547
548 if (has_unmovable)
549 return 1;
550
551 return addr != end ? -EIO : 0;
552}
553
554static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
555 unsigned long addr, unsigned long end,
556 struct mm_walk *walk)
557{
558#ifdef CONFIG_HUGETLB_PAGE
559 struct queue_pages *qp = walk->private;
560 unsigned long flags = qp->flags;
561 struct page *page;
562 spinlock_t *ptl;
563 pte_t entry;
564
565 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
566 entry = huge_ptep_get(pte);
567 if (!pte_present(entry))
568 goto unlock;
569 page = pte_page(entry);
570 if (!queue_pages_required(page, qp))
571 goto unlock;
572 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
573 if (flags & (MPOL_MF_MOVE_ALL) ||
574 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
575 isolate_huge_page(page, qp->pagelist);
576unlock:
577 spin_unlock(ptl);
578#else
579 BUG();
580#endif
581 return 0;
582}
583
584#ifdef CONFIG_NUMA_BALANCING
585/*
586 * This is used to mark a range of virtual addresses to be inaccessible.
587 * These are later cleared by a NUMA hinting fault. Depending on these
588 * faults, pages may be migrated for better NUMA placement.
589 *
590 * This is assuming that NUMA faults are handled using PROT_NONE. If
591 * an architecture makes a different choice, it will need further
592 * changes to the core.
593 */
594unsigned long change_prot_numa(struct vm_area_struct *vma,
595 unsigned long addr, unsigned long end)
596{
597 int nr_updated;
598
599 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
600 if (nr_updated)
601 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
602
603 return nr_updated;
604}
605#else
606static unsigned long change_prot_numa(struct vm_area_struct *vma,
607 unsigned long addr, unsigned long end)
608{
609 return 0;
610}
611#endif /* CONFIG_NUMA_BALANCING */
612
613static int queue_pages_test_walk(unsigned long start, unsigned long end,
614 struct mm_walk *walk)
615{
616 struct vm_area_struct *vma = walk->vma;
617 struct queue_pages *qp = walk->private;
618 unsigned long endvma = vma->vm_end;
619 unsigned long flags = qp->flags;
620
621 /*
622 * Need check MPOL_MF_STRICT to return -EIO if possible
623 * regardless of vma_migratable
624 */
625 if (!vma_migratable(vma) &&
626 !(flags & MPOL_MF_STRICT))
627 return 1;
628
629 if (endvma > end)
630 endvma = end;
631 if (vma->vm_start > start)
632 start = vma->vm_start;
633
634 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
635 if (!vma->vm_next && vma->vm_end < end)
636 return -EFAULT;
637 if (qp->prev && qp->prev->vm_end < vma->vm_start)
638 return -EFAULT;
639 }
640
641 qp->prev = vma;
642
643 if (flags & MPOL_MF_LAZY) {
644 /* Similar to task_numa_work, skip inaccessible VMAs */
645 if (!is_vm_hugetlb_page(vma) &&
646 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
647 !(vma->vm_flags & VM_MIXEDMAP))
648 change_prot_numa(vma, start, endvma);
649 return 1;
650 }
651
652 /* queue pages from current vma */
653 if (flags & MPOL_MF_VALID)
654 return 0;
655 return 1;
656}
657
658/*
659 * Walk through page tables and collect pages to be migrated.
660 *
661 * If pages found in a given range are on a set of nodes (determined by
662 * @nodes and @flags,) it's isolated and queued to the pagelist which is
663 * passed via @private.
664 *
665 * queue_pages_range() has three possible return values:
666 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
667 * specified.
668 * 0 - queue pages successfully or no misplaced page.
669 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
670 * memory range specified by nodemask and maxnode points outside
671 * your accessible address space (-EFAULT)
672 */
673static int
674queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
675 nodemask_t *nodes, unsigned long flags,
676 struct list_head *pagelist)
677{
678 struct queue_pages qp = {
679 .pagelist = pagelist,
680 .flags = flags,
681 .nmask = nodes,
682 .prev = NULL,
683 };
684 struct mm_walk queue_pages_walk = {
685 .hugetlb_entry = queue_pages_hugetlb,
686 .pmd_entry = queue_pages_pte_range,
687 .test_walk = queue_pages_test_walk,
688 .mm = mm,
689 .private = &qp,
690 };
691
692 return walk_page_range(start, end, &queue_pages_walk);
693}
694
695/*
696 * Apply policy to a single VMA
697 * This must be called with the mmap_sem held for writing.
698 */
699static int vma_replace_policy(struct vm_area_struct *vma,
700 struct mempolicy *pol)
701{
702 int err;
703 struct mempolicy *old;
704 struct mempolicy *new;
705
706 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
707 vma->vm_start, vma->vm_end, vma->vm_pgoff,
708 vma->vm_ops, vma->vm_file,
709 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
710
711 new = mpol_dup(pol);
712 if (IS_ERR(new))
713 return PTR_ERR(new);
714
715 if (vma->vm_ops && vma->vm_ops->set_policy) {
716 err = vma->vm_ops->set_policy(vma, new);
717 if (err)
718 goto err_out;
719 }
720
721 old = vma->vm_policy;
722 vma->vm_policy = new; /* protected by mmap_sem */
723 mpol_put(old);
724
725 return 0;
726 err_out:
727 mpol_put(new);
728 return err;
729}
730
731/* Step 2: apply policy to a range and do splits. */
732static int mbind_range(struct mm_struct *mm, unsigned long start,
733 unsigned long end, struct mempolicy *new_pol)
734{
735 struct vm_area_struct *next;
736 struct vm_area_struct *prev;
737 struct vm_area_struct *vma;
738 int err = 0;
739 pgoff_t pgoff;
740 unsigned long vmstart;
741 unsigned long vmend;
742
743 vma = find_vma(mm, start);
744 if (!vma || vma->vm_start > start)
745 return -EFAULT;
746
747 prev = vma->vm_prev;
748 if (start > vma->vm_start)
749 prev = vma;
750
751 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
752 next = vma->vm_next;
753 vmstart = max(start, vma->vm_start);
754 vmend = min(end, vma->vm_end);
755
756 if (mpol_equal(vma_policy(vma), new_pol))
757 continue;
758
759 pgoff = vma->vm_pgoff +
760 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
761 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
762 vma->anon_vma, vma->vm_file, pgoff,
763 new_pol, vma->vm_userfaultfd_ctx,
764 vma_get_anon_name(vma));
765 if (prev) {
766 vma = prev;
767 next = vma->vm_next;
768 if (mpol_equal(vma_policy(vma), new_pol))
769 continue;
770 /* vma_merge() joined vma && vma->next, case 8 */
771 goto replace;
772 }
773 if (vma->vm_start != vmstart) {
774 err = split_vma(vma->vm_mm, vma, vmstart, 1);
775 if (err)
776 goto out;
777 }
778 if (vma->vm_end != vmend) {
779 err = split_vma(vma->vm_mm, vma, vmend, 0);
780 if (err)
781 goto out;
782 }
783 replace:
784 err = vma_replace_policy(vma, new_pol);
785 if (err)
786 goto out;
787 }
788
789 out:
790 return err;
791}
792
793/* Set the process memory policy */
794static long do_set_mempolicy(unsigned short mode, unsigned short flags,
795 nodemask_t *nodes)
796{
797 struct mempolicy *new, *old;
798 NODEMASK_SCRATCH(scratch);
799 int ret;
800
801 if (!scratch)
802 return -ENOMEM;
803
804 new = mpol_new(mode, flags, nodes);
805 if (IS_ERR(new)) {
806 ret = PTR_ERR(new);
807 goto out;
808 }
809
810 task_lock(current);
811 ret = mpol_set_nodemask(new, nodes, scratch);
812 if (ret) {
813 task_unlock(current);
814 mpol_put(new);
815 goto out;
816 }
817 old = current->mempolicy;
818 current->mempolicy = new;
819 if (new && new->mode == MPOL_INTERLEAVE)
820 current->il_prev = MAX_NUMNODES-1;
821 task_unlock(current);
822 mpol_put(old);
823 ret = 0;
824out:
825 NODEMASK_SCRATCH_FREE(scratch);
826 return ret;
827}
828
829/*
830 * Return nodemask for policy for get_mempolicy() query
831 *
832 * Called with task's alloc_lock held
833 */
834static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
835{
836 nodes_clear(*nodes);
837 if (p == &default_policy)
838 return;
839
840 switch (p->mode) {
841 case MPOL_BIND:
842 /* Fall through */
843 case MPOL_INTERLEAVE:
844 *nodes = p->v.nodes;
845 break;
846 case MPOL_PREFERRED:
847 if (!(p->flags & MPOL_F_LOCAL))
848 node_set(p->v.preferred_node, *nodes);
849 /* else return empty node mask for local allocation */
850 break;
851 default:
852 BUG();
853 }
854}
855
856static int lookup_node(unsigned long addr)
857{
858 struct page *p;
859 int err;
860
861 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
862 if (err >= 0) {
863 err = page_to_nid(p);
864 put_page(p);
865 }
866 return err;
867}
868
869/* Retrieve NUMA policy */
870static long do_get_mempolicy(int *policy, nodemask_t *nmask,
871 unsigned long addr, unsigned long flags)
872{
873 int err;
874 struct mm_struct *mm = current->mm;
875 struct vm_area_struct *vma = NULL;
876 struct mempolicy *pol = current->mempolicy;
877
878 if (flags &
879 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
880 return -EINVAL;
881
882 if (flags & MPOL_F_MEMS_ALLOWED) {
883 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
884 return -EINVAL;
885 *policy = 0; /* just so it's initialized */
886 task_lock(current);
887 *nmask = cpuset_current_mems_allowed;
888 task_unlock(current);
889 return 0;
890 }
891
892 if (flags & MPOL_F_ADDR) {
893 /*
894 * Do NOT fall back to task policy if the
895 * vma/shared policy at addr is NULL. We
896 * want to return MPOL_DEFAULT in this case.
897 */
898 down_read(&mm->mmap_sem);
899 vma = find_vma_intersection(mm, addr, addr+1);
900 if (!vma) {
901 up_read(&mm->mmap_sem);
902 return -EFAULT;
903 }
904 if (vma->vm_ops && vma->vm_ops->get_policy)
905 pol = vma->vm_ops->get_policy(vma, addr);
906 else
907 pol = vma->vm_policy;
908 } else if (addr)
909 return -EINVAL;
910
911 if (!pol)
912 pol = &default_policy; /* indicates default behavior */
913
914 if (flags & MPOL_F_NODE) {
915 if (flags & MPOL_F_ADDR) {
916 err = lookup_node(addr);
917 if (err < 0)
918 goto out;
919 *policy = err;
920 } else if (pol == current->mempolicy &&
921 pol->mode == MPOL_INTERLEAVE) {
922 *policy = next_node_in(current->il_prev, pol->v.nodes);
923 } else {
924 err = -EINVAL;
925 goto out;
926 }
927 } else {
928 *policy = pol == &default_policy ? MPOL_DEFAULT :
929 pol->mode;
930 /*
931 * Internal mempolicy flags must be masked off before exposing
932 * the policy to userspace.
933 */
934 *policy |= (pol->flags & MPOL_MODE_FLAGS);
935 }
936
937 err = 0;
938 if (nmask) {
939 if (mpol_store_user_nodemask(pol)) {
940 *nmask = pol->w.user_nodemask;
941 } else {
942 task_lock(current);
943 get_policy_nodemask(pol, nmask);
944 task_unlock(current);
945 }
946 }
947
948 out:
949 mpol_cond_put(pol);
950 if (vma)
951 up_read(&current->mm->mmap_sem);
952 return err;
953}
954
955#ifdef CONFIG_MIGRATION
956/*
957 * page migration, thp tail pages can be passed.
958 */
959static int migrate_page_add(struct page *page, struct list_head *pagelist,
960 unsigned long flags)
961{
962 struct page *head = compound_head(page);
963 /*
964 * Avoid migrating a page that is shared with others.
965 */
966 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
967 if (!isolate_lru_page(head)) {
968 list_add_tail(&head->lru, pagelist);
969 mod_node_page_state(page_pgdat(head),
970 NR_ISOLATED_ANON + page_is_file_cache(head),
971 hpage_nr_pages(head));
972 } else if (flags & MPOL_MF_STRICT) {
973 /*
974 * Non-movable page may reach here. And, there may be
975 * temporary off LRU pages or non-LRU movable pages.
976 * Treat them as unmovable pages since they can't be
977 * isolated, so they can't be moved at the moment. It
978 * should return -EIO for this case too.
979 */
980 return -EIO;
981 }
982 }
983
984 return 0;
985}
986
987/* page allocation callback for NUMA node migration */
988struct page *alloc_new_node_page(struct page *page, unsigned long node)
989{
990 if (PageHuge(page))
991 return alloc_huge_page_node(page_hstate(compound_head(page)),
992 node);
993 else if (PageTransHuge(page)) {
994 struct page *thp;
995
996 thp = alloc_pages_node(node,
997 (GFP_TRANSHUGE | __GFP_THISNODE),
998 HPAGE_PMD_ORDER);
999 if (!thp)
1000 return NULL;
1001 prep_transhuge_page(thp);
1002 return thp;
1003 } else
1004 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1005 __GFP_THISNODE, 0);
1006}
1007
1008/*
1009 * Migrate pages from one node to a target node.
1010 * Returns error or the number of pages not migrated.
1011 */
1012static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1013 int flags)
1014{
1015 nodemask_t nmask;
1016 LIST_HEAD(pagelist);
1017 int err = 0;
1018
1019 nodes_clear(nmask);
1020 node_set(source, nmask);
1021
1022 /*
1023 * This does not "check" the range but isolates all pages that
1024 * need migration. Between passing in the full user address
1025 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1026 */
1027 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1028 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1029 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1030
1031 if (!list_empty(&pagelist)) {
1032 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1033 MIGRATE_SYNC, MR_SYSCALL);
1034 if (err)
1035 putback_movable_pages(&pagelist);
1036 }
1037
1038 return err;
1039}
1040
1041/*
1042 * Move pages between the two nodesets so as to preserve the physical
1043 * layout as much as possible.
1044 *
1045 * Returns the number of page that could not be moved.
1046 */
1047int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1048 const nodemask_t *to, int flags)
1049{
1050 int busy = 0;
1051 int err;
1052 nodemask_t tmp;
1053
1054 err = migrate_prep();
1055 if (err)
1056 return err;
1057
1058 down_read(&mm->mmap_sem);
1059
1060 /*
1061 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1062 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1063 * bit in 'tmp', and return that <source, dest> pair for migration.
1064 * The pair of nodemasks 'to' and 'from' define the map.
1065 *
1066 * If no pair of bits is found that way, fallback to picking some
1067 * pair of 'source' and 'dest' bits that are not the same. If the
1068 * 'source' and 'dest' bits are the same, this represents a node
1069 * that will be migrating to itself, so no pages need move.
1070 *
1071 * If no bits are left in 'tmp', or if all remaining bits left
1072 * in 'tmp' correspond to the same bit in 'to', return false
1073 * (nothing left to migrate).
1074 *
1075 * This lets us pick a pair of nodes to migrate between, such that
1076 * if possible the dest node is not already occupied by some other
1077 * source node, minimizing the risk of overloading the memory on a
1078 * node that would happen if we migrated incoming memory to a node
1079 * before migrating outgoing memory source that same node.
1080 *
1081 * A single scan of tmp is sufficient. As we go, we remember the
1082 * most recent <s, d> pair that moved (s != d). If we find a pair
1083 * that not only moved, but what's better, moved to an empty slot
1084 * (d is not set in tmp), then we break out then, with that pair.
1085 * Otherwise when we finish scanning from_tmp, we at least have the
1086 * most recent <s, d> pair that moved. If we get all the way through
1087 * the scan of tmp without finding any node that moved, much less
1088 * moved to an empty node, then there is nothing left worth migrating.
1089 */
1090
1091 tmp = *from;
1092 while (!nodes_empty(tmp)) {
1093 int s,d;
1094 int source = NUMA_NO_NODE;
1095 int dest = 0;
1096
1097 for_each_node_mask(s, tmp) {
1098
1099 /*
1100 * do_migrate_pages() tries to maintain the relative
1101 * node relationship of the pages established between
1102 * threads and memory areas.
1103 *
1104 * However if the number of source nodes is not equal to
1105 * the number of destination nodes we can not preserve
1106 * this node relative relationship. In that case, skip
1107 * copying memory from a node that is in the destination
1108 * mask.
1109 *
1110 * Example: [2,3,4] -> [3,4,5] moves everything.
1111 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1112 */
1113
1114 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1115 (node_isset(s, *to)))
1116 continue;
1117
1118 d = node_remap(s, *from, *to);
1119 if (s == d)
1120 continue;
1121
1122 source = s; /* Node moved. Memorize */
1123 dest = d;
1124
1125 /* dest not in remaining from nodes? */
1126 if (!node_isset(dest, tmp))
1127 break;
1128 }
1129 if (source == NUMA_NO_NODE)
1130 break;
1131
1132 node_clear(source, tmp);
1133 err = migrate_to_node(mm, source, dest, flags);
1134 if (err > 0)
1135 busy += err;
1136 if (err < 0)
1137 break;
1138 }
1139 up_read(&mm->mmap_sem);
1140 if (err < 0)
1141 return err;
1142 return busy;
1143
1144}
1145
1146/*
1147 * Allocate a new page for page migration based on vma policy.
1148 * Start by assuming the page is mapped by the same vma as contains @start.
1149 * Search forward from there, if not. N.B., this assumes that the
1150 * list of pages handed to migrate_pages()--which is how we get here--
1151 * is in virtual address order.
1152 */
1153static struct page *new_page(struct page *page, unsigned long start)
1154{
1155 struct vm_area_struct *vma;
1156 unsigned long uninitialized_var(address);
1157
1158 vma = find_vma(current->mm, start);
1159 while (vma) {
1160 address = page_address_in_vma(page, vma);
1161 if (address != -EFAULT)
1162 break;
1163 vma = vma->vm_next;
1164 }
1165
1166 if (PageHuge(page)) {
1167 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1168 vma, address);
1169 } else if (PageTransHuge(page)) {
1170 struct page *thp;
1171
1172 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1173 HPAGE_PMD_ORDER);
1174 if (!thp)
1175 return NULL;
1176 prep_transhuge_page(thp);
1177 return thp;
1178 }
1179 /*
1180 * if !vma, alloc_page_vma() will use task or system default policy
1181 */
1182 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1183 vma, address);
1184}
1185#else
1186
1187static int migrate_page_add(struct page *page, struct list_head *pagelist,
1188 unsigned long flags)
1189{
1190 return -EIO;
1191}
1192
1193int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1194 const nodemask_t *to, int flags)
1195{
1196 return -ENOSYS;
1197}
1198
1199static struct page *new_page(struct page *page, unsigned long start)
1200{
1201 return NULL;
1202}
1203#endif
1204
1205static long do_mbind(unsigned long start, unsigned long len,
1206 unsigned short mode, unsigned short mode_flags,
1207 nodemask_t *nmask, unsigned long flags)
1208{
1209 struct mm_struct *mm = current->mm;
1210 struct mempolicy *new;
1211 unsigned long end;
1212 int err;
1213 int ret;
1214 LIST_HEAD(pagelist);
1215
1216 if (flags & ~(unsigned long)MPOL_MF_VALID)
1217 return -EINVAL;
1218 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1219 return -EPERM;
1220
1221 if (start & ~PAGE_MASK)
1222 return -EINVAL;
1223
1224 if (mode == MPOL_DEFAULT)
1225 flags &= ~MPOL_MF_STRICT;
1226
1227 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1228 end = start + len;
1229
1230 if (end < start)
1231 return -EINVAL;
1232 if (end == start)
1233 return 0;
1234
1235 new = mpol_new(mode, mode_flags, nmask);
1236 if (IS_ERR(new))
1237 return PTR_ERR(new);
1238
1239 if (flags & MPOL_MF_LAZY)
1240 new->flags |= MPOL_F_MOF;
1241
1242 /*
1243 * If we are using the default policy then operation
1244 * on discontinuous address spaces is okay after all
1245 */
1246 if (!new)
1247 flags |= MPOL_MF_DISCONTIG_OK;
1248
1249 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1250 start, start + len, mode, mode_flags,
1251 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1252
1253 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1254
1255 err = migrate_prep();
1256 if (err)
1257 goto mpol_out;
1258 }
1259 {
1260 NODEMASK_SCRATCH(scratch);
1261 if (scratch) {
1262 down_write(&mm->mmap_sem);
1263 task_lock(current);
1264 err = mpol_set_nodemask(new, nmask, scratch);
1265 task_unlock(current);
1266 if (err)
1267 up_write(&mm->mmap_sem);
1268 } else
1269 err = -ENOMEM;
1270 NODEMASK_SCRATCH_FREE(scratch);
1271 }
1272 if (err)
1273 goto mpol_out;
1274
1275 ret = queue_pages_range(mm, start, end, nmask,
1276 flags | MPOL_MF_INVERT, &pagelist);
1277
1278 if (ret < 0) {
1279 err = ret;
1280 goto up_out;
1281 }
1282
1283 err = mbind_range(mm, start, end, new);
1284
1285 if (!err) {
1286 int nr_failed = 0;
1287
1288 if (!list_empty(&pagelist)) {
1289 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1290 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1291 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1292 if (nr_failed)
1293 putback_movable_pages(&pagelist);
1294 }
1295
1296 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1297 err = -EIO;
1298 } else {
1299up_out:
1300 if (!list_empty(&pagelist))
1301 putback_movable_pages(&pagelist);
1302 }
1303
1304 up_write(&mm->mmap_sem);
1305mpol_out:
1306 mpol_put(new);
1307 return err;
1308}
1309
1310/*
1311 * User space interface with variable sized bitmaps for nodelists.
1312 */
1313
1314/* Copy a node mask from user space. */
1315static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1316 unsigned long maxnode)
1317{
1318 unsigned long k;
1319 unsigned long t;
1320 unsigned long nlongs;
1321 unsigned long endmask;
1322
1323 --maxnode;
1324 nodes_clear(*nodes);
1325 if (maxnode == 0 || !nmask)
1326 return 0;
1327 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1328 return -EINVAL;
1329
1330 nlongs = BITS_TO_LONGS(maxnode);
1331 if ((maxnode % BITS_PER_LONG) == 0)
1332 endmask = ~0UL;
1333 else
1334 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1335
1336 /*
1337 * When the user specified more nodes than supported just check
1338 * if the non supported part is all zero.
1339 *
1340 * If maxnode have more longs than MAX_NUMNODES, check
1341 * the bits in that area first. And then go through to
1342 * check the rest bits which equal or bigger than MAX_NUMNODES.
1343 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1344 */
1345 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1346 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1347 if (get_user(t, nmask + k))
1348 return -EFAULT;
1349 if (k == nlongs - 1) {
1350 if (t & endmask)
1351 return -EINVAL;
1352 } else if (t)
1353 return -EINVAL;
1354 }
1355 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1356 endmask = ~0UL;
1357 }
1358
1359 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1360 unsigned long valid_mask = endmask;
1361
1362 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1363 if (get_user(t, nmask + nlongs - 1))
1364 return -EFAULT;
1365 if (t & valid_mask)
1366 return -EINVAL;
1367 }
1368
1369 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1370 return -EFAULT;
1371 nodes_addr(*nodes)[nlongs-1] &= endmask;
1372 return 0;
1373}
1374
1375/* Copy a kernel node mask to user space */
1376static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1377 nodemask_t *nodes)
1378{
1379 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1380 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1381
1382 if (copy > nbytes) {
1383 if (copy > PAGE_SIZE)
1384 return -EINVAL;
1385 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1386 return -EFAULT;
1387 copy = nbytes;
1388 }
1389 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1390}
1391
1392static long kernel_mbind(unsigned long start, unsigned long len,
1393 unsigned long mode, const unsigned long __user *nmask,
1394 unsigned long maxnode, unsigned int flags)
1395{
1396 nodemask_t nodes;
1397 int err;
1398 unsigned short mode_flags;
1399
1400 start = untagged_addr(start);
1401 mode_flags = mode & MPOL_MODE_FLAGS;
1402 mode &= ~MPOL_MODE_FLAGS;
1403 if (mode >= MPOL_MAX)
1404 return -EINVAL;
1405 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1406 (mode_flags & MPOL_F_RELATIVE_NODES))
1407 return -EINVAL;
1408 err = get_nodes(&nodes, nmask, maxnode);
1409 if (err)
1410 return err;
1411 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1412}
1413
1414SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1415 unsigned long, mode, const unsigned long __user *, nmask,
1416 unsigned long, maxnode, unsigned int, flags)
1417{
1418 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1419}
1420
1421/* Set the process memory policy */
1422static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1423 unsigned long maxnode)
1424{
1425 int err;
1426 nodemask_t nodes;
1427 unsigned short flags;
1428
1429 flags = mode & MPOL_MODE_FLAGS;
1430 mode &= ~MPOL_MODE_FLAGS;
1431 if ((unsigned int)mode >= MPOL_MAX)
1432 return -EINVAL;
1433 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1434 return -EINVAL;
1435 err = get_nodes(&nodes, nmask, maxnode);
1436 if (err)
1437 return err;
1438 return do_set_mempolicy(mode, flags, &nodes);
1439}
1440
1441SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1442 unsigned long, maxnode)
1443{
1444 return kernel_set_mempolicy(mode, nmask, maxnode);
1445}
1446
1447static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1448 const unsigned long __user *old_nodes,
1449 const unsigned long __user *new_nodes)
1450{
1451 struct mm_struct *mm = NULL;
1452 struct task_struct *task;
1453 nodemask_t task_nodes;
1454 int err;
1455 nodemask_t *old;
1456 nodemask_t *new;
1457 NODEMASK_SCRATCH(scratch);
1458
1459 if (!scratch)
1460 return -ENOMEM;
1461
1462 old = &scratch->mask1;
1463 new = &scratch->mask2;
1464
1465 err = get_nodes(old, old_nodes, maxnode);
1466 if (err)
1467 goto out;
1468
1469 err = get_nodes(new, new_nodes, maxnode);
1470 if (err)
1471 goto out;
1472
1473 /* Find the mm_struct */
1474 rcu_read_lock();
1475 task = pid ? find_task_by_vpid(pid) : current;
1476 if (!task) {
1477 rcu_read_unlock();
1478 err = -ESRCH;
1479 goto out;
1480 }
1481 get_task_struct(task);
1482
1483 err = -EINVAL;
1484
1485 /*
1486 * Check if this process has the right to modify the specified process.
1487 * Use the regular "ptrace_may_access()" checks.
1488 */
1489 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1490 rcu_read_unlock();
1491 err = -EPERM;
1492 goto out_put;
1493 }
1494 rcu_read_unlock();
1495
1496 task_nodes = cpuset_mems_allowed(task);
1497 /* Is the user allowed to access the target nodes? */
1498 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1499 err = -EPERM;
1500 goto out_put;
1501 }
1502
1503 task_nodes = cpuset_mems_allowed(current);
1504 nodes_and(*new, *new, task_nodes);
1505 if (nodes_empty(*new))
1506 goto out_put;
1507
1508 nodes_and(*new, *new, node_states[N_MEMORY]);
1509 if (nodes_empty(*new))
1510 goto out_put;
1511
1512 err = security_task_movememory(task);
1513 if (err)
1514 goto out_put;
1515
1516 mm = get_task_mm(task);
1517 put_task_struct(task);
1518
1519 if (!mm) {
1520 err = -EINVAL;
1521 goto out;
1522 }
1523
1524 err = do_migrate_pages(mm, old, new,
1525 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1526
1527 mmput(mm);
1528out:
1529 NODEMASK_SCRATCH_FREE(scratch);
1530
1531 return err;
1532
1533out_put:
1534 put_task_struct(task);
1535 goto out;
1536
1537}
1538
1539SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1540 const unsigned long __user *, old_nodes,
1541 const unsigned long __user *, new_nodes)
1542{
1543 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1544}
1545
1546
1547/* Retrieve NUMA policy */
1548static int kernel_get_mempolicy(int __user *policy,
1549 unsigned long __user *nmask,
1550 unsigned long maxnode,
1551 unsigned long addr,
1552 unsigned long flags)
1553{
1554 int err;
1555 int uninitialized_var(pval);
1556 nodemask_t nodes;
1557
1558 addr = untagged_addr(addr);
1559
1560 if (nmask != NULL && maxnode < nr_node_ids)
1561 return -EINVAL;
1562
1563 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1564
1565 if (err)
1566 return err;
1567
1568 if (policy && put_user(pval, policy))
1569 return -EFAULT;
1570
1571 if (nmask)
1572 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1573
1574 return err;
1575}
1576
1577SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1578 unsigned long __user *, nmask, unsigned long, maxnode,
1579 unsigned long, addr, unsigned long, flags)
1580{
1581 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1582}
1583
1584#ifdef CONFIG_COMPAT
1585
1586COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1587 compat_ulong_t __user *, nmask,
1588 compat_ulong_t, maxnode,
1589 compat_ulong_t, addr, compat_ulong_t, flags)
1590{
1591 long err;
1592 unsigned long __user *nm = NULL;
1593 unsigned long nr_bits, alloc_size;
1594 DECLARE_BITMAP(bm, MAX_NUMNODES);
1595
1596 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1597 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1598
1599 if (nmask)
1600 nm = compat_alloc_user_space(alloc_size);
1601
1602 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1603
1604 if (!err && nmask) {
1605 unsigned long copy_size;
1606 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1607 err = copy_from_user(bm, nm, copy_size);
1608 /* ensure entire bitmap is zeroed */
1609 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1610 err |= compat_put_bitmap(nmask, bm, nr_bits);
1611 }
1612
1613 return err;
1614}
1615
1616COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1617 compat_ulong_t, maxnode)
1618{
1619 unsigned long __user *nm = NULL;
1620 unsigned long nr_bits, alloc_size;
1621 DECLARE_BITMAP(bm, MAX_NUMNODES);
1622
1623 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1624 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1625
1626 if (nmask) {
1627 if (compat_get_bitmap(bm, nmask, nr_bits))
1628 return -EFAULT;
1629 nm = compat_alloc_user_space(alloc_size);
1630 if (copy_to_user(nm, bm, alloc_size))
1631 return -EFAULT;
1632 }
1633
1634 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1635}
1636
1637COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1638 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1639 compat_ulong_t, maxnode, compat_ulong_t, flags)
1640{
1641 unsigned long __user *nm = NULL;
1642 unsigned long nr_bits, alloc_size;
1643 nodemask_t bm;
1644
1645 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1646 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1647
1648 if (nmask) {
1649 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1650 return -EFAULT;
1651 nm = compat_alloc_user_space(alloc_size);
1652 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1653 return -EFAULT;
1654 }
1655
1656 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1657}
1658
1659COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1660 compat_ulong_t, maxnode,
1661 const compat_ulong_t __user *, old_nodes,
1662 const compat_ulong_t __user *, new_nodes)
1663{
1664 unsigned long __user *old = NULL;
1665 unsigned long __user *new = NULL;
1666 nodemask_t tmp_mask;
1667 unsigned long nr_bits;
1668 unsigned long size;
1669
1670 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1671 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1672 if (old_nodes) {
1673 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1674 return -EFAULT;
1675 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1676 if (new_nodes)
1677 new = old + size / sizeof(unsigned long);
1678 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1679 return -EFAULT;
1680 }
1681 if (new_nodes) {
1682 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1683 return -EFAULT;
1684 if (new == NULL)
1685 new = compat_alloc_user_space(size);
1686 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1687 return -EFAULT;
1688 }
1689 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1690}
1691
1692#endif /* CONFIG_COMPAT */
1693
1694struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1695 unsigned long addr)
1696{
1697 struct mempolicy *pol = NULL;
1698
1699 if (vma) {
1700 if (vma->vm_ops && vma->vm_ops->get_policy) {
1701 pol = vma->vm_ops->get_policy(vma, addr);
1702 } else if (vma->vm_policy) {
1703 pol = vma->vm_policy;
1704
1705 /*
1706 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1707 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1708 * count on these policies which will be dropped by
1709 * mpol_cond_put() later
1710 */
1711 if (mpol_needs_cond_ref(pol))
1712 mpol_get(pol);
1713 }
1714 }
1715
1716 return pol;
1717}
1718
1719/*
1720 * get_vma_policy(@vma, @addr)
1721 * @vma: virtual memory area whose policy is sought
1722 * @addr: address in @vma for shared policy lookup
1723 *
1724 * Returns effective policy for a VMA at specified address.
1725 * Falls back to current->mempolicy or system default policy, as necessary.
1726 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1727 * count--added by the get_policy() vm_op, as appropriate--to protect against
1728 * freeing by another task. It is the caller's responsibility to free the
1729 * extra reference for shared policies.
1730 */
1731static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1732 unsigned long addr)
1733{
1734 struct mempolicy *pol = __get_vma_policy(vma, addr);
1735
1736 if (!pol)
1737 pol = get_task_policy(current);
1738
1739 return pol;
1740}
1741
1742bool vma_policy_mof(struct vm_area_struct *vma)
1743{
1744 struct mempolicy *pol;
1745
1746 if (vma->vm_ops && vma->vm_ops->get_policy) {
1747 bool ret = false;
1748
1749 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1750 if (pol && (pol->flags & MPOL_F_MOF))
1751 ret = true;
1752 mpol_cond_put(pol);
1753
1754 return ret;
1755 }
1756
1757 pol = vma->vm_policy;
1758 if (!pol)
1759 pol = get_task_policy(current);
1760
1761 return pol->flags & MPOL_F_MOF;
1762}
1763
1764static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1765{
1766 enum zone_type dynamic_policy_zone = policy_zone;
1767
1768 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1769
1770 /*
1771 * if policy->v.nodes has movable memory only,
1772 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1773 *
1774 * policy->v.nodes is intersect with node_states[N_MEMORY].
1775 * so if the following test faile, it implies
1776 * policy->v.nodes has movable memory only.
1777 */
1778 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1779 dynamic_policy_zone = ZONE_MOVABLE;
1780
1781 return zone >= dynamic_policy_zone;
1782}
1783
1784/*
1785 * Return a nodemask representing a mempolicy for filtering nodes for
1786 * page allocation
1787 */
1788static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1789{
1790 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1791 if (unlikely(policy->mode == MPOL_BIND) &&
1792 apply_policy_zone(policy, gfp_zone(gfp)) &&
1793 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1794 return &policy->v.nodes;
1795
1796 return NULL;
1797}
1798
1799/* Return the node id preferred by the given mempolicy, or the given id */
1800static int policy_node(gfp_t gfp, struct mempolicy *policy,
1801 int nd)
1802{
1803 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1804 nd = policy->v.preferred_node;
1805 else {
1806 /*
1807 * __GFP_THISNODE shouldn't even be used with the bind policy
1808 * because we might easily break the expectation to stay on the
1809 * requested node and not break the policy.
1810 */
1811 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1812 }
1813
1814 return nd;
1815}
1816
1817/* Do dynamic interleaving for a process */
1818static unsigned interleave_nodes(struct mempolicy *policy)
1819{
1820 unsigned next;
1821 struct task_struct *me = current;
1822
1823 next = next_node_in(me->il_prev, policy->v.nodes);
1824 if (next < MAX_NUMNODES)
1825 me->il_prev = next;
1826 return next;
1827}
1828
1829/*
1830 * Depending on the memory policy provide a node from which to allocate the
1831 * next slab entry.
1832 */
1833unsigned int mempolicy_slab_node(void)
1834{
1835 struct mempolicy *policy;
1836 int node = numa_mem_id();
1837
1838 if (in_interrupt())
1839 return node;
1840
1841 policy = current->mempolicy;
1842 if (!policy || policy->flags & MPOL_F_LOCAL)
1843 return node;
1844
1845 switch (policy->mode) {
1846 case MPOL_PREFERRED:
1847 /*
1848 * handled MPOL_F_LOCAL above
1849 */
1850 return policy->v.preferred_node;
1851
1852 case MPOL_INTERLEAVE:
1853 return interleave_nodes(policy);
1854
1855 case MPOL_BIND: {
1856 struct zoneref *z;
1857
1858 /*
1859 * Follow bind policy behavior and start allocation at the
1860 * first node.
1861 */
1862 struct zonelist *zonelist;
1863 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1864 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1865 z = first_zones_zonelist(zonelist, highest_zoneidx,
1866 &policy->v.nodes);
1867 return z->zone ? zone_to_nid(z->zone) : node;
1868 }
1869
1870 default:
1871 BUG();
1872 }
1873}
1874
1875/*
1876 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1877 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1878 * number of present nodes.
1879 */
1880static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1881{
1882 unsigned nnodes = nodes_weight(pol->v.nodes);
1883 unsigned target;
1884 int i;
1885 int nid;
1886
1887 if (!nnodes)
1888 return numa_node_id();
1889 target = (unsigned int)n % nnodes;
1890 nid = first_node(pol->v.nodes);
1891 for (i = 0; i < target; i++)
1892 nid = next_node(nid, pol->v.nodes);
1893 return nid;
1894}
1895
1896/* Determine a node number for interleave */
1897static inline unsigned interleave_nid(struct mempolicy *pol,
1898 struct vm_area_struct *vma, unsigned long addr, int shift)
1899{
1900 if (vma) {
1901 unsigned long off;
1902
1903 /*
1904 * for small pages, there is no difference between
1905 * shift and PAGE_SHIFT, so the bit-shift is safe.
1906 * for huge pages, since vm_pgoff is in units of small
1907 * pages, we need to shift off the always 0 bits to get
1908 * a useful offset.
1909 */
1910 BUG_ON(shift < PAGE_SHIFT);
1911 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1912 off += (addr - vma->vm_start) >> shift;
1913 return offset_il_node(pol, off);
1914 } else
1915 return interleave_nodes(pol);
1916}
1917
1918#ifdef CONFIG_HUGETLBFS
1919/*
1920 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1921 * @vma: virtual memory area whose policy is sought
1922 * @addr: address in @vma for shared policy lookup and interleave policy
1923 * @gfp_flags: for requested zone
1924 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1925 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1926 *
1927 * Returns a nid suitable for a huge page allocation and a pointer
1928 * to the struct mempolicy for conditional unref after allocation.
1929 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1930 * @nodemask for filtering the zonelist.
1931 *
1932 * Must be protected by read_mems_allowed_begin()
1933 */
1934int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1935 struct mempolicy **mpol, nodemask_t **nodemask)
1936{
1937 int nid;
1938
1939 *mpol = get_vma_policy(vma, addr);
1940 *nodemask = NULL; /* assume !MPOL_BIND */
1941
1942 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1943 nid = interleave_nid(*mpol, vma, addr,
1944 huge_page_shift(hstate_vma(vma)));
1945 } else {
1946 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1947 if ((*mpol)->mode == MPOL_BIND)
1948 *nodemask = &(*mpol)->v.nodes;
1949 }
1950 return nid;
1951}
1952
1953/*
1954 * init_nodemask_of_mempolicy
1955 *
1956 * If the current task's mempolicy is "default" [NULL], return 'false'
1957 * to indicate default policy. Otherwise, extract the policy nodemask
1958 * for 'bind' or 'interleave' policy into the argument nodemask, or
1959 * initialize the argument nodemask to contain the single node for
1960 * 'preferred' or 'local' policy and return 'true' to indicate presence
1961 * of non-default mempolicy.
1962 *
1963 * We don't bother with reference counting the mempolicy [mpol_get/put]
1964 * because the current task is examining it's own mempolicy and a task's
1965 * mempolicy is only ever changed by the task itself.
1966 *
1967 * N.B., it is the caller's responsibility to free a returned nodemask.
1968 */
1969bool init_nodemask_of_mempolicy(nodemask_t *mask)
1970{
1971 struct mempolicy *mempolicy;
1972 int nid;
1973
1974 if (!(mask && current->mempolicy))
1975 return false;
1976
1977 task_lock(current);
1978 mempolicy = current->mempolicy;
1979 switch (mempolicy->mode) {
1980 case MPOL_PREFERRED:
1981 if (mempolicy->flags & MPOL_F_LOCAL)
1982 nid = numa_node_id();
1983 else
1984 nid = mempolicy->v.preferred_node;
1985 init_nodemask_of_node(mask, nid);
1986 break;
1987
1988 case MPOL_BIND:
1989 /* Fall through */
1990 case MPOL_INTERLEAVE:
1991 *mask = mempolicy->v.nodes;
1992 break;
1993
1994 default:
1995 BUG();
1996 }
1997 task_unlock(current);
1998
1999 return true;
2000}
2001#endif
2002
2003/*
2004 * mempolicy_nodemask_intersects
2005 *
2006 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2007 * policy. Otherwise, check for intersection between mask and the policy
2008 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2009 * policy, always return true since it may allocate elsewhere on fallback.
2010 *
2011 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2012 */
2013bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2014 const nodemask_t *mask)
2015{
2016 struct mempolicy *mempolicy;
2017 bool ret = true;
2018
2019 if (!mask)
2020 return ret;
2021 task_lock(tsk);
2022 mempolicy = tsk->mempolicy;
2023 if (!mempolicy)
2024 goto out;
2025
2026 switch (mempolicy->mode) {
2027 case MPOL_PREFERRED:
2028 /*
2029 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2030 * allocate from, they may fallback to other nodes when oom.
2031 * Thus, it's possible for tsk to have allocated memory from
2032 * nodes in mask.
2033 */
2034 break;
2035 case MPOL_BIND:
2036 case MPOL_INTERLEAVE:
2037 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2038 break;
2039 default:
2040 BUG();
2041 }
2042out:
2043 task_unlock(tsk);
2044 return ret;
2045}
2046
2047/* Allocate a page in interleaved policy.
2048 Own path because it needs to do special accounting. */
2049static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2050 unsigned nid)
2051{
2052 struct page *page;
2053
2054 page = __alloc_pages(gfp, order, nid);
2055 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2056 if (!static_branch_likely(&vm_numa_stat_key))
2057 return page;
2058 if (page && page_to_nid(page) == nid) {
2059 preempt_disable();
2060 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2061 preempt_enable();
2062 }
2063 return page;
2064}
2065
2066/**
2067 * alloc_pages_vma - Allocate a page for a VMA.
2068 *
2069 * @gfp:
2070 * %GFP_USER user allocation.
2071 * %GFP_KERNEL kernel allocations,
2072 * %GFP_HIGHMEM highmem/user allocations,
2073 * %GFP_FS allocation should not call back into a file system.
2074 * %GFP_ATOMIC don't sleep.
2075 *
2076 * @order:Order of the GFP allocation.
2077 * @vma: Pointer to VMA or NULL if not available.
2078 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2079 * @node: Which node to prefer for allocation (modulo policy).
2080 * @hugepage: for hugepages try only the preferred node if possible
2081 *
2082 * This function allocates a page from the kernel page pool and applies
2083 * a NUMA policy associated with the VMA or the current process.
2084 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2085 * mm_struct of the VMA to prevent it from going away. Should be used for
2086 * all allocations for pages that will be mapped into user space. Returns
2087 * NULL when no page can be allocated.
2088 */
2089struct page *
2090alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2091 unsigned long addr, int node, bool hugepage)
2092{
2093 struct mempolicy *pol;
2094 struct page *page;
2095 int preferred_nid;
2096 nodemask_t *nmask;
2097
2098 pol = get_vma_policy(vma, addr);
2099
2100 if (pol->mode == MPOL_INTERLEAVE) {
2101 unsigned nid;
2102
2103 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2104 mpol_cond_put(pol);
2105 page = alloc_page_interleave(gfp, order, nid);
2106 goto out;
2107 }
2108
2109 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2110 int hpage_node = node;
2111
2112 /*
2113 * For hugepage allocation and non-interleave policy which
2114 * allows the current node (or other explicitly preferred
2115 * node) we only try to allocate from the current/preferred
2116 * node and don't fall back to other nodes, as the cost of
2117 * remote accesses would likely offset THP benefits.
2118 *
2119 * If the policy is interleave, or does not allow the current
2120 * node in its nodemask, we allocate the standard way.
2121 */
2122 if (pol->mode == MPOL_PREFERRED &&
2123 !(pol->flags & MPOL_F_LOCAL))
2124 hpage_node = pol->v.preferred_node;
2125
2126 nmask = policy_nodemask(gfp, pol);
2127 if (!nmask || node_isset(hpage_node, *nmask)) {
2128 mpol_cond_put(pol);
2129 /*
2130 * We cannot invoke reclaim if __GFP_THISNODE
2131 * is set. Invoking reclaim with
2132 * __GFP_THISNODE set, would cause THP
2133 * allocations to trigger heavy swapping
2134 * despite there may be tons of free memory
2135 * (including potentially plenty of THP
2136 * already available in the buddy) on all the
2137 * other NUMA nodes.
2138 *
2139 * At most we could invoke compaction when
2140 * __GFP_THISNODE is set (but we would need to
2141 * refrain from invoking reclaim even if
2142 * compaction returned COMPACT_SKIPPED because
2143 * there wasn't not enough memory to succeed
2144 * compaction). For now just avoid
2145 * __GFP_THISNODE instead of limiting the
2146 * allocation path to a strict and single
2147 * compaction invocation.
2148 *
2149 * Supposedly if direct reclaim was enabled by
2150 * the caller, the app prefers THP regardless
2151 * of the node it comes from so this would be
2152 * more desiderable behavior than only
2153 * providing THP originated from the local
2154 * node in such case.
2155 */
2156 if (!(gfp & __GFP_DIRECT_RECLAIM))
2157 gfp |= __GFP_THISNODE;
2158 page = __alloc_pages_node(hpage_node, gfp, order);
2159 goto out;
2160 }
2161 }
2162
2163 nmask = policy_nodemask(gfp, pol);
2164 preferred_nid = policy_node(gfp, pol, node);
2165 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2166 mpol_cond_put(pol);
2167out:
2168 return page;
2169}
2170
2171/**
2172 * alloc_pages_current - Allocate pages.
2173 *
2174 * @gfp:
2175 * %GFP_USER user allocation,
2176 * %GFP_KERNEL kernel allocation,
2177 * %GFP_HIGHMEM highmem allocation,
2178 * %GFP_FS don't call back into a file system.
2179 * %GFP_ATOMIC don't sleep.
2180 * @order: Power of two of allocation size in pages. 0 is a single page.
2181 *
2182 * Allocate a page from the kernel page pool. When not in
2183 * interrupt context and apply the current process NUMA policy.
2184 * Returns NULL when no page can be allocated.
2185 */
2186struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2187{
2188 struct mempolicy *pol = &default_policy;
2189 struct page *page;
2190
2191 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2192 pol = get_task_policy(current);
2193
2194 /*
2195 * No reference counting needed for current->mempolicy
2196 * nor system default_policy
2197 */
2198 if (pol->mode == MPOL_INTERLEAVE)
2199 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2200 else
2201 page = __alloc_pages_nodemask(gfp, order,
2202 policy_node(gfp, pol, numa_node_id()),
2203 policy_nodemask(gfp, pol));
2204
2205 return page;
2206}
2207EXPORT_SYMBOL(alloc_pages_current);
2208
2209int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2210{
2211 struct mempolicy *pol = mpol_dup(vma_policy(src));
2212
2213 if (IS_ERR(pol))
2214 return PTR_ERR(pol);
2215 dst->vm_policy = pol;
2216 return 0;
2217}
2218
2219/*
2220 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2221 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2222 * with the mems_allowed returned by cpuset_mems_allowed(). This
2223 * keeps mempolicies cpuset relative after its cpuset moves. See
2224 * further kernel/cpuset.c update_nodemask().
2225 *
2226 * current's mempolicy may be rebinded by the other task(the task that changes
2227 * cpuset's mems), so we needn't do rebind work for current task.
2228 */
2229
2230/* Slow path of a mempolicy duplicate */
2231struct mempolicy *__mpol_dup(struct mempolicy *old)
2232{
2233 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2234
2235 if (!new)
2236 return ERR_PTR(-ENOMEM);
2237
2238 /* task's mempolicy is protected by alloc_lock */
2239 if (old == current->mempolicy) {
2240 task_lock(current);
2241 *new = *old;
2242 task_unlock(current);
2243 } else
2244 *new = *old;
2245
2246 if (current_cpuset_is_being_rebound()) {
2247 nodemask_t mems = cpuset_mems_allowed(current);
2248 mpol_rebind_policy(new, &mems);
2249 }
2250 atomic_set(&new->refcnt, 1);
2251 return new;
2252}
2253
2254/* Slow path of a mempolicy comparison */
2255bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2256{
2257 if (!a || !b)
2258 return false;
2259 if (a->mode != b->mode)
2260 return false;
2261 if (a->flags != b->flags)
2262 return false;
2263 if (mpol_store_user_nodemask(a))
2264 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2265 return false;
2266
2267 switch (a->mode) {
2268 case MPOL_BIND:
2269 /* Fall through */
2270 case MPOL_INTERLEAVE:
2271 return !!nodes_equal(a->v.nodes, b->v.nodes);
2272 case MPOL_PREFERRED:
2273 /* a's ->flags is the same as b's */
2274 if (a->flags & MPOL_F_LOCAL)
2275 return true;
2276 return a->v.preferred_node == b->v.preferred_node;
2277 default:
2278 BUG();
2279 return false;
2280 }
2281}
2282
2283/*
2284 * Shared memory backing store policy support.
2285 *
2286 * Remember policies even when nobody has shared memory mapped.
2287 * The policies are kept in Red-Black tree linked from the inode.
2288 * They are protected by the sp->lock rwlock, which should be held
2289 * for any accesses to the tree.
2290 */
2291
2292/*
2293 * lookup first element intersecting start-end. Caller holds sp->lock for
2294 * reading or for writing
2295 */
2296static struct sp_node *
2297sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2298{
2299 struct rb_node *n = sp->root.rb_node;
2300
2301 while (n) {
2302 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2303
2304 if (start >= p->end)
2305 n = n->rb_right;
2306 else if (end <= p->start)
2307 n = n->rb_left;
2308 else
2309 break;
2310 }
2311 if (!n)
2312 return NULL;
2313 for (;;) {
2314 struct sp_node *w = NULL;
2315 struct rb_node *prev = rb_prev(n);
2316 if (!prev)
2317 break;
2318 w = rb_entry(prev, struct sp_node, nd);
2319 if (w->end <= start)
2320 break;
2321 n = prev;
2322 }
2323 return rb_entry(n, struct sp_node, nd);
2324}
2325
2326/*
2327 * Insert a new shared policy into the list. Caller holds sp->lock for
2328 * writing.
2329 */
2330static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2331{
2332 struct rb_node **p = &sp->root.rb_node;
2333 struct rb_node *parent = NULL;
2334 struct sp_node *nd;
2335
2336 while (*p) {
2337 parent = *p;
2338 nd = rb_entry(parent, struct sp_node, nd);
2339 if (new->start < nd->start)
2340 p = &(*p)->rb_left;
2341 else if (new->end > nd->end)
2342 p = &(*p)->rb_right;
2343 else
2344 BUG();
2345 }
2346 rb_link_node(&new->nd, parent, p);
2347 rb_insert_color(&new->nd, &sp->root);
2348 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2349 new->policy ? new->policy->mode : 0);
2350}
2351
2352/* Find shared policy intersecting idx */
2353struct mempolicy *
2354mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2355{
2356 struct mempolicy *pol = NULL;
2357 struct sp_node *sn;
2358
2359 if (!sp->root.rb_node)
2360 return NULL;
2361 read_lock(&sp->lock);
2362 sn = sp_lookup(sp, idx, idx+1);
2363 if (sn) {
2364 mpol_get(sn->policy);
2365 pol = sn->policy;
2366 }
2367 read_unlock(&sp->lock);
2368 return pol;
2369}
2370
2371static void sp_free(struct sp_node *n)
2372{
2373 mpol_put(n->policy);
2374 kmem_cache_free(sn_cache, n);
2375}
2376
2377/**
2378 * mpol_misplaced - check whether current page node is valid in policy
2379 *
2380 * @page: page to be checked
2381 * @vma: vm area where page mapped
2382 * @addr: virtual address where page mapped
2383 *
2384 * Lookup current policy node id for vma,addr and "compare to" page's
2385 * node id.
2386 *
2387 * Returns:
2388 * -1 - not misplaced, page is in the right node
2389 * node - node id where the page should be
2390 *
2391 * Policy determination "mimics" alloc_page_vma().
2392 * Called from fault path where we know the vma and faulting address.
2393 */
2394int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2395{
2396 struct mempolicy *pol;
2397 struct zoneref *z;
2398 int curnid = page_to_nid(page);
2399 unsigned long pgoff;
2400 int thiscpu = raw_smp_processor_id();
2401 int thisnid = cpu_to_node(thiscpu);
2402 int polnid = -1;
2403 int ret = -1;
2404
2405 pol = get_vma_policy(vma, addr);
2406 if (!(pol->flags & MPOL_F_MOF))
2407 goto out;
2408
2409 switch (pol->mode) {
2410 case MPOL_INTERLEAVE:
2411 pgoff = vma->vm_pgoff;
2412 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2413 polnid = offset_il_node(pol, pgoff);
2414 break;
2415
2416 case MPOL_PREFERRED:
2417 if (pol->flags & MPOL_F_LOCAL)
2418 polnid = numa_node_id();
2419 else
2420 polnid = pol->v.preferred_node;
2421 break;
2422
2423 case MPOL_BIND:
2424
2425 /*
2426 * allows binding to multiple nodes.
2427 * use current page if in policy nodemask,
2428 * else select nearest allowed node, if any.
2429 * If no allowed nodes, use current [!misplaced].
2430 */
2431 if (node_isset(curnid, pol->v.nodes))
2432 goto out;
2433 z = first_zones_zonelist(
2434 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2435 gfp_zone(GFP_HIGHUSER),
2436 &pol->v.nodes);
2437 polnid = zone_to_nid(z->zone);
2438 break;
2439
2440 default:
2441 BUG();
2442 }
2443
2444 /* Migrate the page towards the node whose CPU is referencing it */
2445 if (pol->flags & MPOL_F_MORON) {
2446 polnid = thisnid;
2447
2448 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2449 goto out;
2450 }
2451
2452 if (curnid != polnid)
2453 ret = polnid;
2454out:
2455 mpol_cond_put(pol);
2456
2457 return ret;
2458}
2459
2460/*
2461 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2462 * dropped after task->mempolicy is set to NULL so that any allocation done as
2463 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2464 * policy.
2465 */
2466void mpol_put_task_policy(struct task_struct *task)
2467{
2468 struct mempolicy *pol;
2469
2470 task_lock(task);
2471 pol = task->mempolicy;
2472 task->mempolicy = NULL;
2473 task_unlock(task);
2474 mpol_put(pol);
2475}
2476
2477static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2478{
2479 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2480 rb_erase(&n->nd, &sp->root);
2481 sp_free(n);
2482}
2483
2484static void sp_node_init(struct sp_node *node, unsigned long start,
2485 unsigned long end, struct mempolicy *pol)
2486{
2487 node->start = start;
2488 node->end = end;
2489 node->policy = pol;
2490}
2491
2492static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2493 struct mempolicy *pol)
2494{
2495 struct sp_node *n;
2496 struct mempolicy *newpol;
2497
2498 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2499 if (!n)
2500 return NULL;
2501
2502 newpol = mpol_dup(pol);
2503 if (IS_ERR(newpol)) {
2504 kmem_cache_free(sn_cache, n);
2505 return NULL;
2506 }
2507 newpol->flags |= MPOL_F_SHARED;
2508 sp_node_init(n, start, end, newpol);
2509
2510 return n;
2511}
2512
2513/* Replace a policy range. */
2514static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2515 unsigned long end, struct sp_node *new)
2516{
2517 struct sp_node *n;
2518 struct sp_node *n_new = NULL;
2519 struct mempolicy *mpol_new = NULL;
2520 int ret = 0;
2521
2522restart:
2523 write_lock(&sp->lock);
2524 n = sp_lookup(sp, start, end);
2525 /* Take care of old policies in the same range. */
2526 while (n && n->start < end) {
2527 struct rb_node *next = rb_next(&n->nd);
2528 if (n->start >= start) {
2529 if (n->end <= end)
2530 sp_delete(sp, n);
2531 else
2532 n->start = end;
2533 } else {
2534 /* Old policy spanning whole new range. */
2535 if (n->end > end) {
2536 if (!n_new)
2537 goto alloc_new;
2538
2539 *mpol_new = *n->policy;
2540 atomic_set(&mpol_new->refcnt, 1);
2541 sp_node_init(n_new, end, n->end, mpol_new);
2542 n->end = start;
2543 sp_insert(sp, n_new);
2544 n_new = NULL;
2545 mpol_new = NULL;
2546 break;
2547 } else
2548 n->end = start;
2549 }
2550 if (!next)
2551 break;
2552 n = rb_entry(next, struct sp_node, nd);
2553 }
2554 if (new)
2555 sp_insert(sp, new);
2556 write_unlock(&sp->lock);
2557 ret = 0;
2558
2559err_out:
2560 if (mpol_new)
2561 mpol_put(mpol_new);
2562 if (n_new)
2563 kmem_cache_free(sn_cache, n_new);
2564
2565 return ret;
2566
2567alloc_new:
2568 write_unlock(&sp->lock);
2569 ret = -ENOMEM;
2570 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2571 if (!n_new)
2572 goto err_out;
2573 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2574 if (!mpol_new)
2575 goto err_out;
2576 goto restart;
2577}
2578
2579/**
2580 * mpol_shared_policy_init - initialize shared policy for inode
2581 * @sp: pointer to inode shared policy
2582 * @mpol: struct mempolicy to install
2583 *
2584 * Install non-NULL @mpol in inode's shared policy rb-tree.
2585 * On entry, the current task has a reference on a non-NULL @mpol.
2586 * This must be released on exit.
2587 * This is called at get_inode() calls and we can use GFP_KERNEL.
2588 */
2589void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2590{
2591 int ret;
2592
2593 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2594 rwlock_init(&sp->lock);
2595
2596 if (mpol) {
2597 struct vm_area_struct pvma;
2598 struct mempolicy *new;
2599 NODEMASK_SCRATCH(scratch);
2600
2601 if (!scratch)
2602 goto put_mpol;
2603 /* contextualize the tmpfs mount point mempolicy */
2604 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2605 if (IS_ERR(new))
2606 goto free_scratch; /* no valid nodemask intersection */
2607
2608 task_lock(current);
2609 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2610 task_unlock(current);
2611 if (ret)
2612 goto put_new;
2613
2614 /* Create pseudo-vma that contains just the policy */
2615 vma_init(&pvma, NULL);
2616 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2617 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2618
2619put_new:
2620 mpol_put(new); /* drop initial ref */
2621free_scratch:
2622 NODEMASK_SCRATCH_FREE(scratch);
2623put_mpol:
2624 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2625 }
2626}
2627
2628int mpol_set_shared_policy(struct shared_policy *info,
2629 struct vm_area_struct *vma, struct mempolicy *npol)
2630{
2631 int err;
2632 struct sp_node *new = NULL;
2633 unsigned long sz = vma_pages(vma);
2634
2635 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2636 vma->vm_pgoff,
2637 sz, npol ? npol->mode : -1,
2638 npol ? npol->flags : -1,
2639 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2640
2641 if (npol) {
2642 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2643 if (!new)
2644 return -ENOMEM;
2645 }
2646 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2647 if (err && new)
2648 sp_free(new);
2649 return err;
2650}
2651
2652/* Free a backing policy store on inode delete. */
2653void mpol_free_shared_policy(struct shared_policy *p)
2654{
2655 struct sp_node *n;
2656 struct rb_node *next;
2657
2658 if (!p->root.rb_node)
2659 return;
2660 write_lock(&p->lock);
2661 next = rb_first(&p->root);
2662 while (next) {
2663 n = rb_entry(next, struct sp_node, nd);
2664 next = rb_next(&n->nd);
2665 sp_delete(p, n);
2666 }
2667 write_unlock(&p->lock);
2668}
2669
2670#ifdef CONFIG_NUMA_BALANCING
2671static int __initdata numabalancing_override;
2672
2673static void __init check_numabalancing_enable(void)
2674{
2675 bool numabalancing_default = false;
2676
2677 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2678 numabalancing_default = true;
2679
2680 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2681 if (numabalancing_override)
2682 set_numabalancing_state(numabalancing_override == 1);
2683
2684 if (num_online_nodes() > 1 && !numabalancing_override) {
2685 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2686 numabalancing_default ? "Enabling" : "Disabling");
2687 set_numabalancing_state(numabalancing_default);
2688 }
2689}
2690
2691static int __init setup_numabalancing(char *str)
2692{
2693 int ret = 0;
2694 if (!str)
2695 goto out;
2696
2697 if (!strcmp(str, "enable")) {
2698 numabalancing_override = 1;
2699 ret = 1;
2700 } else if (!strcmp(str, "disable")) {
2701 numabalancing_override = -1;
2702 ret = 1;
2703 }
2704out:
2705 if (!ret)
2706 pr_warn("Unable to parse numa_balancing=\n");
2707
2708 return ret;
2709}
2710__setup("numa_balancing=", setup_numabalancing);
2711#else
2712static inline void __init check_numabalancing_enable(void)
2713{
2714}
2715#endif /* CONFIG_NUMA_BALANCING */
2716
2717/* assumes fs == KERNEL_DS */
2718void __init numa_policy_init(void)
2719{
2720 nodemask_t interleave_nodes;
2721 unsigned long largest = 0;
2722 int nid, prefer = 0;
2723
2724 policy_cache = kmem_cache_create("numa_policy",
2725 sizeof(struct mempolicy),
2726 0, SLAB_PANIC, NULL);
2727
2728 sn_cache = kmem_cache_create("shared_policy_node",
2729 sizeof(struct sp_node),
2730 0, SLAB_PANIC, NULL);
2731
2732 for_each_node(nid) {
2733 preferred_node_policy[nid] = (struct mempolicy) {
2734 .refcnt = ATOMIC_INIT(1),
2735 .mode = MPOL_PREFERRED,
2736 .flags = MPOL_F_MOF | MPOL_F_MORON,
2737 .v = { .preferred_node = nid, },
2738 };
2739 }
2740
2741 /*
2742 * Set interleaving policy for system init. Interleaving is only
2743 * enabled across suitably sized nodes (default is >= 16MB), or
2744 * fall back to the largest node if they're all smaller.
2745 */
2746 nodes_clear(interleave_nodes);
2747 for_each_node_state(nid, N_MEMORY) {
2748 unsigned long total_pages = node_present_pages(nid);
2749
2750 /* Preserve the largest node */
2751 if (largest < total_pages) {
2752 largest = total_pages;
2753 prefer = nid;
2754 }
2755
2756 /* Interleave this node? */
2757 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2758 node_set(nid, interleave_nodes);
2759 }
2760
2761 /* All too small, use the largest */
2762 if (unlikely(nodes_empty(interleave_nodes)))
2763 node_set(prefer, interleave_nodes);
2764
2765 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2766 pr_err("%s: interleaving failed\n", __func__);
2767
2768 check_numabalancing_enable();
2769}
2770
2771/* Reset policy of current process to default */
2772void numa_default_policy(void)
2773{
2774 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2775}
2776
2777/*
2778 * Parse and format mempolicy from/to strings
2779 */
2780
2781/*
2782 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2783 */
2784static const char * const policy_modes[] =
2785{
2786 [MPOL_DEFAULT] = "default",
2787 [MPOL_PREFERRED] = "prefer",
2788 [MPOL_BIND] = "bind",
2789 [MPOL_INTERLEAVE] = "interleave",
2790 [MPOL_LOCAL] = "local",
2791};
2792
2793
2794#ifdef CONFIG_TMPFS
2795/**
2796 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2797 * @str: string containing mempolicy to parse
2798 * @mpol: pointer to struct mempolicy pointer, returned on success.
2799 *
2800 * Format of input:
2801 * <mode>[=<flags>][:<nodelist>]
2802 *
2803 * On success, returns 0, else 1
2804 */
2805int mpol_parse_str(char *str, struct mempolicy **mpol)
2806{
2807 struct mempolicy *new = NULL;
2808 unsigned short mode;
2809 unsigned short mode_flags;
2810 nodemask_t nodes;
2811 char *nodelist = strchr(str, ':');
2812 char *flags = strchr(str, '=');
2813 int err = 1;
2814
2815 if (nodelist) {
2816 /* NUL-terminate mode or flags string */
2817 *nodelist++ = '\0';
2818 if (nodelist_parse(nodelist, nodes))
2819 goto out;
2820 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2821 goto out;
2822 } else
2823 nodes_clear(nodes);
2824
2825 if (flags)
2826 *flags++ = '\0'; /* terminate mode string */
2827
2828 for (mode = 0; mode < MPOL_MAX; mode++) {
2829 if (!strcmp(str, policy_modes[mode])) {
2830 break;
2831 }
2832 }
2833 if (mode >= MPOL_MAX)
2834 goto out;
2835
2836 switch (mode) {
2837 case MPOL_PREFERRED:
2838 /*
2839 * Insist on a nodelist of one node only
2840 */
2841 if (nodelist) {
2842 char *rest = nodelist;
2843 while (isdigit(*rest))
2844 rest++;
2845 if (*rest)
2846 goto out;
2847 }
2848 break;
2849 case MPOL_INTERLEAVE:
2850 /*
2851 * Default to online nodes with memory if no nodelist
2852 */
2853 if (!nodelist)
2854 nodes = node_states[N_MEMORY];
2855 break;
2856 case MPOL_LOCAL:
2857 /*
2858 * Don't allow a nodelist; mpol_new() checks flags
2859 */
2860 if (nodelist)
2861 goto out;
2862 mode = MPOL_PREFERRED;
2863 break;
2864 case MPOL_DEFAULT:
2865 /*
2866 * Insist on a empty nodelist
2867 */
2868 if (!nodelist)
2869 err = 0;
2870 goto out;
2871 case MPOL_BIND:
2872 /*
2873 * Insist on a nodelist
2874 */
2875 if (!nodelist)
2876 goto out;
2877 }
2878
2879 mode_flags = 0;
2880 if (flags) {
2881 /*
2882 * Currently, we only support two mutually exclusive
2883 * mode flags.
2884 */
2885 if (!strcmp(flags, "static"))
2886 mode_flags |= MPOL_F_STATIC_NODES;
2887 else if (!strcmp(flags, "relative"))
2888 mode_flags |= MPOL_F_RELATIVE_NODES;
2889 else
2890 goto out;
2891 }
2892
2893 new = mpol_new(mode, mode_flags, &nodes);
2894 if (IS_ERR(new))
2895 goto out;
2896
2897 /*
2898 * Save nodes for mpol_to_str() to show the tmpfs mount options
2899 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2900 */
2901 if (mode != MPOL_PREFERRED)
2902 new->v.nodes = nodes;
2903 else if (nodelist)
2904 new->v.preferred_node = first_node(nodes);
2905 else
2906 new->flags |= MPOL_F_LOCAL;
2907
2908 /*
2909 * Save nodes for contextualization: this will be used to "clone"
2910 * the mempolicy in a specific context [cpuset] at a later time.
2911 */
2912 new->w.user_nodemask = nodes;
2913
2914 err = 0;
2915
2916out:
2917 /* Restore string for error message */
2918 if (nodelist)
2919 *--nodelist = ':';
2920 if (flags)
2921 *--flags = '=';
2922 if (!err)
2923 *mpol = new;
2924 return err;
2925}
2926#endif /* CONFIG_TMPFS */
2927
2928/**
2929 * mpol_to_str - format a mempolicy structure for printing
2930 * @buffer: to contain formatted mempolicy string
2931 * @maxlen: length of @buffer
2932 * @pol: pointer to mempolicy to be formatted
2933 *
2934 * Convert @pol into a string. If @buffer is too short, truncate the string.
2935 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2936 * longest flag, "relative", and to display at least a few node ids.
2937 */
2938void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2939{
2940 char *p = buffer;
2941 nodemask_t nodes = NODE_MASK_NONE;
2942 unsigned short mode = MPOL_DEFAULT;
2943 unsigned short flags = 0;
2944
2945 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2946 mode = pol->mode;
2947 flags = pol->flags;
2948 }
2949
2950 switch (mode) {
2951 case MPOL_DEFAULT:
2952 break;
2953 case MPOL_PREFERRED:
2954 if (flags & MPOL_F_LOCAL)
2955 mode = MPOL_LOCAL;
2956 else
2957 node_set(pol->v.preferred_node, nodes);
2958 break;
2959 case MPOL_BIND:
2960 case MPOL_INTERLEAVE:
2961 nodes = pol->v.nodes;
2962 break;
2963 default:
2964 WARN_ON_ONCE(1);
2965 snprintf(p, maxlen, "unknown");
2966 return;
2967 }
2968
2969 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2970
2971 if (flags & MPOL_MODE_FLAGS) {
2972 p += snprintf(p, buffer + maxlen - p, "=");
2973
2974 /*
2975 * Currently, the only defined flags are mutually exclusive
2976 */
2977 if (flags & MPOL_F_STATIC_NODES)
2978 p += snprintf(p, buffer + maxlen - p, "static");
2979 else if (flags & MPOL_F_RELATIVE_NODES)
2980 p += snprintf(p, buffer + maxlen - p, "relative");
2981 }
2982
2983 if (!nodes_empty(nodes))
2984 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2985 nodemask_pr_args(&nodes));
2986}