blob: b6f57c88f25cf214c2f20e150c27fcf68bd91462 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* struct reclaim_state */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
20#include "slab.h"
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/kasan.h>
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
28#include <linux/debugobjects.h>
29#include <linux/kallsyms.h>
30#include <linux/memory.h>
31#include <linux/math64.h>
32#include <linux/fault-inject.h>
33#include <linux/stacktrace.h>
34#include <linux/prefetch.h>
35#include <linux/memcontrol.h>
36#include <linux/random.h>
37
38#include <trace/events/kmem.h>
39
40#include "internal.h"
41
42/*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
120#ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122#else
123 return 0;
124#endif
125}
126
127void *fixup_red_left(struct kmem_cache *s, void *p)
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
144/*
145 * Issues still to be resolved:
146 *
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
162#define MIN_PARTIAL 5
163
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
168 */
169#define MAX_PARTIAL 10
170
171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
173
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
182/*
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
186 */
187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192
193/* Internal SLUB flags */
194/* Poison object */
195#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
196/* Use cmpxchg_double */
197#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
198
199/*
200 * Tracking user of a slab.
201 */
202#define TRACK_ADDRS_COUNT 16
203struct track {
204 unsigned long addr; /* Called from address */
205#ifdef CONFIG_STACKTRACE
206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
207#endif
208 int cpu; /* Was running on cpu */
209 int pid; /* Pid context */
210 unsigned long when; /* When did the operation occur */
211};
212
213enum track_item { TRACK_ALLOC, TRACK_FREE };
214
215#ifdef CONFIG_SYSFS
216static int sysfs_slab_add(struct kmem_cache *);
217static int sysfs_slab_alias(struct kmem_cache *, const char *);
218static void memcg_propagate_slab_attrs(struct kmem_cache *s);
219static void sysfs_slab_remove(struct kmem_cache *s);
220#else
221static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
222static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 { return 0; }
224static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
225static inline void sysfs_slab_remove(struct kmem_cache *s) { }
226#endif
227
228static inline void stat(const struct kmem_cache *s, enum stat_item si)
229{
230#ifdef CONFIG_SLUB_STATS
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
236#endif
237}
238
239/********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
243/*
244 * Returns freelist pointer (ptr). With hardening, this is obfuscated
245 * with an XOR of the address where the pointer is held and a per-cache
246 * random number.
247 */
248static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 unsigned long ptr_addr)
250{
251#ifdef CONFIG_SLAB_FREELIST_HARDENED
252 /*
253 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
254 * Normally, this doesn't cause any issues, as both set_freepointer()
255 * and get_freepointer() are called with a pointer with the same tag.
256 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
257 * example, when __free_slub() iterates over objects in a cache, it
258 * passes untagged pointers to check_object(). check_object() in turns
259 * calls get_freepointer() with an untagged pointer, which causes the
260 * freepointer to be restored incorrectly.
261 */
262 return (void *)((unsigned long)ptr ^ s->random ^
263 (unsigned long)kasan_reset_tag((void *)ptr_addr));
264#else
265 return ptr;
266#endif
267}
268
269/* Returns the freelist pointer recorded at location ptr_addr. */
270static inline void *freelist_dereference(const struct kmem_cache *s,
271 void *ptr_addr)
272{
273 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
274 (unsigned long)ptr_addr);
275}
276
277static inline void *get_freepointer(struct kmem_cache *s, void *object)
278{
279 return freelist_dereference(s, object + s->offset);
280}
281
282static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283{
284 prefetch(object + s->offset);
285}
286
287static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288{
289 unsigned long freepointer_addr;
290 void *p;
291
292 if (!debug_pagealloc_enabled())
293 return get_freepointer(s, object);
294
295 freepointer_addr = (unsigned long)object + s->offset;
296 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
297 return freelist_ptr(s, p, freepointer_addr);
298}
299
300static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301{
302 unsigned long freeptr_addr = (unsigned long)object + s->offset;
303
304#ifdef CONFIG_SLAB_FREELIST_HARDENED
305 BUG_ON(object == fp); /* naive detection of double free or corruption */
306#endif
307
308 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
309}
310
311/* Loop over all objects in a slab */
312#define for_each_object(__p, __s, __addr, __objects) \
313 for (__p = fixup_red_left(__s, __addr); \
314 __p < (__addr) + (__objects) * (__s)->size; \
315 __p += (__s)->size)
316
317/* Determine object index from a given position */
318static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
319{
320 return (kasan_reset_tag(p) - addr) / s->size;
321}
322
323static inline unsigned int order_objects(unsigned int order, unsigned int size)
324{
325 return ((unsigned int)PAGE_SIZE << order) / size;
326}
327
328static inline struct kmem_cache_order_objects oo_make(unsigned int order,
329 unsigned int size)
330{
331 struct kmem_cache_order_objects x = {
332 (order << OO_SHIFT) + order_objects(order, size)
333 };
334
335 return x;
336}
337
338static inline unsigned int oo_order(struct kmem_cache_order_objects x)
339{
340 return x.x >> OO_SHIFT;
341}
342
343static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
344{
345 return x.x & OO_MASK;
346}
347
348/*
349 * Per slab locking using the pagelock
350 */
351static __always_inline void slab_lock(struct page *page)
352{
353 VM_BUG_ON_PAGE(PageTail(page), page);
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 VM_BUG_ON_PAGE(PageTail(page), page);
360 __bit_spin_unlock(PG_locked, &page->flags);
361}
362
363/* Interrupts must be disabled (for the fallback code to work right) */
364static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368{
369 VM_BUG_ON(!irqs_disabled());
370#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372 if (s->flags & __CMPXCHG_DOUBLE) {
373 if (cmpxchg_double(&page->freelist, &page->counters,
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return true;
377 } else
378#endif
379 {
380 slab_lock(page);
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
383 page->freelist = freelist_new;
384 page->counters = counters_new;
385 slab_unlock(page);
386 return true;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394#ifdef SLUB_DEBUG_CMPXCHG
395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
396#endif
397
398 return false;
399}
400
401static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405{
406#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408 if (s->flags & __CMPXCHG_DOUBLE) {
409 if (cmpxchg_double(&page->freelist, &page->counters,
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return true;
413 } else
414#endif
415 {
416 unsigned long flags;
417
418 local_irq_save(flags);
419 slab_lock(page);
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
422 page->freelist = freelist_new;
423 page->counters = counters_new;
424 slab_unlock(page);
425 local_irq_restore(flags);
426 return true;
427 }
428 slab_unlock(page);
429 local_irq_restore(flags);
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435#ifdef SLUB_DEBUG_CMPXCHG
436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
437#endif
438
439 return false;
440}
441
442#ifdef CONFIG_SLUB_DEBUG
443/*
444 * Determine a map of object in use on a page.
445 *
446 * Node listlock must be held to guarantee that the page does
447 * not vanish from under us.
448 */
449static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450{
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456}
457
458static inline unsigned int size_from_object(struct kmem_cache *s)
459{
460 if (s->flags & SLAB_RED_ZONE)
461 return s->size - s->red_left_pad;
462
463 return s->size;
464}
465
466static inline void *restore_red_left(struct kmem_cache *s, void *p)
467{
468 if (s->flags & SLAB_RED_ZONE)
469 p -= s->red_left_pad;
470
471 return p;
472}
473
474/*
475 * Debug settings:
476 */
477#if defined(CONFIG_SLUB_DEBUG_ON)
478static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
479#else
480static slab_flags_t slub_debug;
481#endif
482
483static char *slub_debug_slabs;
484static int disable_higher_order_debug;
485
486/*
487 * slub is about to manipulate internal object metadata. This memory lies
488 * outside the range of the allocated object, so accessing it would normally
489 * be reported by kasan as a bounds error. metadata_access_enable() is used
490 * to tell kasan that these accesses are OK.
491 */
492static inline void metadata_access_enable(void)
493{
494 kasan_disable_current();
495}
496
497static inline void metadata_access_disable(void)
498{
499 kasan_enable_current();
500}
501
502/*
503 * Object debugging
504 */
505
506/* Verify that a pointer has an address that is valid within a slab page */
507static inline int check_valid_pointer(struct kmem_cache *s,
508 struct page *page, void *object)
509{
510 void *base;
511
512 if (!object)
513 return 1;
514
515 base = page_address(page);
516 object = kasan_reset_tag(object);
517 object = restore_red_left(s, object);
518 if (object < base || object >= base + page->objects * s->size ||
519 (object - base) % s->size) {
520 return 0;
521 }
522
523 return 1;
524}
525
526static void print_section(char *level, char *text, u8 *addr,
527 unsigned int length)
528{
529 metadata_access_enable();
530 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
531 length, 1);
532 metadata_access_disable();
533}
534
535static struct track *get_track(struct kmem_cache *s, void *object,
536 enum track_item alloc)
537{
538 struct track *p;
539
540 if (s->offset)
541 p = object + s->offset + sizeof(void *);
542 else
543 p = object + s->inuse;
544
545 return p + alloc;
546}
547
548static void set_track(struct kmem_cache *s, void *object,
549 enum track_item alloc, unsigned long addr)
550{
551 struct track *p = get_track(s, object, alloc);
552
553 if (addr) {
554#ifdef CONFIG_STACKTRACE
555 struct stack_trace trace;
556 int i;
557
558 trace.nr_entries = 0;
559 trace.max_entries = TRACK_ADDRS_COUNT;
560 trace.entries = p->addrs;
561 trace.skip = 3;
562 metadata_access_enable();
563 save_stack_trace(&trace);
564 metadata_access_disable();
565
566 /* See rant in lockdep.c */
567 if (trace.nr_entries != 0 &&
568 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
569 trace.nr_entries--;
570
571 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
572 p->addrs[i] = 0;
573#endif
574 p->addr = addr;
575 p->cpu = smp_processor_id();
576 p->pid = current->pid;
577 p->when = jiffies;
578 } else
579 memset(p, 0, sizeof(struct track));
580}
581
582static void init_tracking(struct kmem_cache *s, void *object)
583{
584 if (!(s->flags & SLAB_STORE_USER))
585 return;
586
587 set_track(s, object, TRACK_FREE, 0UL);
588 set_track(s, object, TRACK_ALLOC, 0UL);
589}
590
591static void print_track(const char *s, struct track *t, unsigned long pr_time)
592{
593 if (!t->addr)
594 return;
595
596 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
597 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
598#ifdef CONFIG_STACKTRACE
599 {
600 int i;
601 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
602 if (t->addrs[i])
603 pr_err("\t%pS\n", (void *)t->addrs[i]);
604 else
605 break;
606 }
607#endif
608}
609
610static void print_tracking(struct kmem_cache *s, void *object)
611{
612 unsigned long pr_time = jiffies;
613 if (!(s->flags & SLAB_STORE_USER))
614 return;
615
616 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
617 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
618}
619
620static void print_page_info(struct page *page)
621{
622 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
623 page, page->objects, page->inuse, page->freelist, page->flags);
624
625}
626
627static void slab_bug(struct kmem_cache *s, char *fmt, ...)
628{
629 struct va_format vaf;
630 va_list args;
631
632 va_start(args, fmt);
633 vaf.fmt = fmt;
634 vaf.va = &args;
635 pr_err("=============================================================================\n");
636 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
637 pr_err("-----------------------------------------------------------------------------\n\n");
638
639 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
640 va_end(args);
641}
642
643static void slab_fix(struct kmem_cache *s, char *fmt, ...)
644{
645 struct va_format vaf;
646 va_list args;
647
648 va_start(args, fmt);
649 vaf.fmt = fmt;
650 vaf.va = &args;
651 pr_err("FIX %s: %pV\n", s->name, &vaf);
652 va_end(args);
653}
654
655static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
656{
657 unsigned int off; /* Offset of last byte */
658 u8 *addr = page_address(page);
659
660 print_tracking(s, p);
661
662 print_page_info(page);
663
664 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
665 p, p - addr, get_freepointer(s, p));
666
667 if (s->flags & SLAB_RED_ZONE)
668 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
669 s->red_left_pad);
670 else if (p > addr + 16)
671 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
672
673 print_section(KERN_ERR, "Object ", p,
674 min_t(unsigned int, s->object_size, PAGE_SIZE));
675 if (s->flags & SLAB_RED_ZONE)
676 print_section(KERN_ERR, "Redzone ", p + s->object_size,
677 s->inuse - s->object_size);
678
679 if (s->offset)
680 off = s->offset + sizeof(void *);
681 else
682 off = s->inuse;
683
684 if (s->flags & SLAB_STORE_USER)
685 off += 2 * sizeof(struct track);
686
687 off += kasan_metadata_size(s);
688
689 if (off != size_from_object(s))
690 /* Beginning of the filler is the free pointer */
691 print_section(KERN_ERR, "Padding ", p + off,
692 size_from_object(s) - off);
693
694 WARN_ON(1);
695}
696
697void object_err(struct kmem_cache *s, struct page *page,
698 u8 *object, char *reason)
699{
700 slab_bug(s, "%s", reason);
701 print_trailer(s, page, object);
702}
703
704static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
705 const char *fmt, ...)
706{
707 va_list args;
708 char buf[100];
709
710 va_start(args, fmt);
711 vsnprintf(buf, sizeof(buf), fmt, args);
712 va_end(args);
713 slab_bug(s, "%s", buf);
714 print_page_info(page);
715 WARN_ON(1);
716}
717
718static void init_object(struct kmem_cache *s, void *object, u8 val)
719{
720 u8 *p = object;
721
722 if (s->flags & SLAB_RED_ZONE)
723 memset(p - s->red_left_pad, val, s->red_left_pad);
724
725 if (s->flags & __OBJECT_POISON) {
726 memset(p, POISON_FREE, s->object_size - 1);
727 p[s->object_size - 1] = POISON_END;
728 }
729
730 if (s->flags & SLAB_RED_ZONE)
731 memset(p + s->object_size, val, s->inuse - s->object_size);
732}
733
734static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
735 void *from, void *to)
736{
737 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
738 memset(from, data, to - from);
739}
740
741static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
742 u8 *object, char *what,
743 u8 *start, unsigned int value, unsigned int bytes)
744{
745 u8 *fault;
746 u8 *end;
747
748 metadata_access_enable();
749 fault = memchr_inv(start, value, bytes);
750 metadata_access_disable();
751 if (!fault)
752 return 1;
753
754 end = start + bytes;
755 while (end > fault && end[-1] == value)
756 end--;
757
758 slab_bug(s, "%s overwritten", what);
759 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
760 fault, end - 1, fault[0], value);
761 print_trailer(s, page, object);
762
763 restore_bytes(s, what, value, fault, end);
764 return 0;
765}
766
767/*
768 * Object layout:
769 *
770 * object address
771 * Bytes of the object to be managed.
772 * If the freepointer may overlay the object then the free
773 * pointer is the first word of the object.
774 *
775 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
776 * 0xa5 (POISON_END)
777 *
778 * object + s->object_size
779 * Padding to reach word boundary. This is also used for Redzoning.
780 * Padding is extended by another word if Redzoning is enabled and
781 * object_size == inuse.
782 *
783 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
784 * 0xcc (RED_ACTIVE) for objects in use.
785 *
786 * object + s->inuse
787 * Meta data starts here.
788 *
789 * A. Free pointer (if we cannot overwrite object on free)
790 * B. Tracking data for SLAB_STORE_USER
791 * C. Padding to reach required alignment boundary or at mininum
792 * one word if debugging is on to be able to detect writes
793 * before the word boundary.
794 *
795 * Padding is done using 0x5a (POISON_INUSE)
796 *
797 * object + s->size
798 * Nothing is used beyond s->size.
799 *
800 * If slabcaches are merged then the object_size and inuse boundaries are mostly
801 * ignored. And therefore no slab options that rely on these boundaries
802 * may be used with merged slabcaches.
803 */
804
805static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
806{
807 unsigned long off = s->inuse; /* The end of info */
808
809 if (s->offset)
810 /* Freepointer is placed after the object. */
811 off += sizeof(void *);
812
813 if (s->flags & SLAB_STORE_USER)
814 /* We also have user information there */
815 off += 2 * sizeof(struct track);
816
817 off += kasan_metadata_size(s);
818
819 if (size_from_object(s) == off)
820 return 1;
821
822 return check_bytes_and_report(s, page, p, "Object padding",
823 p + off, POISON_INUSE, size_from_object(s) - off);
824}
825
826/* Check the pad bytes at the end of a slab page */
827static int slab_pad_check(struct kmem_cache *s, struct page *page)
828{
829 u8 *start;
830 u8 *fault;
831 u8 *end;
832 u8 *pad;
833 int length;
834 int remainder;
835
836 if (!(s->flags & SLAB_POISON))
837 return 1;
838
839 start = page_address(page);
840 length = PAGE_SIZE << compound_order(page);
841 end = start + length;
842 remainder = length % s->size;
843 if (!remainder)
844 return 1;
845
846 pad = end - remainder;
847 metadata_access_enable();
848 fault = memchr_inv(pad, POISON_INUSE, remainder);
849 metadata_access_disable();
850 if (!fault)
851 return 1;
852 while (end > fault && end[-1] == POISON_INUSE)
853 end--;
854
855 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
856 print_section(KERN_ERR, "Padding ", pad, remainder);
857
858 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
859 return 0;
860}
861
862static int check_object(struct kmem_cache *s, struct page *page,
863 void *object, u8 val)
864{
865 u8 *p = object;
866 u8 *endobject = object + s->object_size;
867
868 if (s->flags & SLAB_RED_ZONE) {
869 if (!check_bytes_and_report(s, page, object, "Redzone",
870 object - s->red_left_pad, val, s->red_left_pad))
871 return 0;
872
873 if (!check_bytes_and_report(s, page, object, "Redzone",
874 endobject, val, s->inuse - s->object_size))
875 return 0;
876 } else {
877 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
878 check_bytes_and_report(s, page, p, "Alignment padding",
879 endobject, POISON_INUSE,
880 s->inuse - s->object_size);
881 }
882 }
883
884 if (s->flags & SLAB_POISON) {
885 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
886 (!check_bytes_and_report(s, page, p, "Poison", p,
887 POISON_FREE, s->object_size - 1) ||
888 !check_bytes_and_report(s, page, p, "Poison",
889 p + s->object_size - 1, POISON_END, 1)))
890 return 0;
891 /*
892 * check_pad_bytes cleans up on its own.
893 */
894 check_pad_bytes(s, page, p);
895 }
896
897 if (!s->offset && val == SLUB_RED_ACTIVE)
898 /*
899 * Object and freepointer overlap. Cannot check
900 * freepointer while object is allocated.
901 */
902 return 1;
903
904 /* Check free pointer validity */
905 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
906 object_err(s, page, p, "Freepointer corrupt");
907 /*
908 * No choice but to zap it and thus lose the remainder
909 * of the free objects in this slab. May cause
910 * another error because the object count is now wrong.
911 */
912 set_freepointer(s, p, NULL);
913 return 0;
914 }
915 return 1;
916}
917
918static int check_slab(struct kmem_cache *s, struct page *page)
919{
920 int maxobj;
921
922 VM_BUG_ON(!irqs_disabled());
923
924 if (!PageSlab(page)) {
925 slab_err(s, page, "Not a valid slab page");
926 return 0;
927 }
928
929 maxobj = order_objects(compound_order(page), s->size);
930 if (page->objects > maxobj) {
931 slab_err(s, page, "objects %u > max %u",
932 page->objects, maxobj);
933 return 0;
934 }
935 if (page->inuse > page->objects) {
936 slab_err(s, page, "inuse %u > max %u",
937 page->inuse, page->objects);
938 return 0;
939 }
940 /* Slab_pad_check fixes things up after itself */
941 slab_pad_check(s, page);
942 return 1;
943}
944
945/*
946 * Determine if a certain object on a page is on the freelist. Must hold the
947 * slab lock to guarantee that the chains are in a consistent state.
948 */
949static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
950{
951 int nr = 0;
952 void *fp;
953 void *object = NULL;
954 int max_objects;
955
956 fp = page->freelist;
957 while (fp && nr <= page->objects) {
958 if (fp == search)
959 return 1;
960 if (!check_valid_pointer(s, page, fp)) {
961 if (object) {
962 object_err(s, page, object,
963 "Freechain corrupt");
964 set_freepointer(s, object, NULL);
965 } else {
966 slab_err(s, page, "Freepointer corrupt");
967 page->freelist = NULL;
968 page->inuse = page->objects;
969 slab_fix(s, "Freelist cleared");
970 return 0;
971 }
972 break;
973 }
974 object = fp;
975 fp = get_freepointer(s, object);
976 nr++;
977 }
978
979 max_objects = order_objects(compound_order(page), s->size);
980 if (max_objects > MAX_OBJS_PER_PAGE)
981 max_objects = MAX_OBJS_PER_PAGE;
982
983 if (page->objects != max_objects) {
984 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
985 page->objects, max_objects);
986 page->objects = max_objects;
987 slab_fix(s, "Number of objects adjusted.");
988 }
989 if (page->inuse != page->objects - nr) {
990 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
991 page->inuse, page->objects - nr);
992 page->inuse = page->objects - nr;
993 slab_fix(s, "Object count adjusted.");
994 }
995 return search == NULL;
996}
997
998static void trace(struct kmem_cache *s, struct page *page, void *object,
999 int alloc)
1000{
1001 if (s->flags & SLAB_TRACE) {
1002 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1003 s->name,
1004 alloc ? "alloc" : "free",
1005 object, page->inuse,
1006 page->freelist);
1007
1008 if (!alloc)
1009 print_section(KERN_INFO, "Object ", (void *)object,
1010 s->object_size);
1011
1012 WARN_ON(1);
1013 }
1014}
1015
1016/*
1017 * Tracking of fully allocated slabs for debugging purposes.
1018 */
1019static void add_full(struct kmem_cache *s,
1020 struct kmem_cache_node *n, struct page *page)
1021{
1022 if (!(s->flags & SLAB_STORE_USER))
1023 return;
1024
1025 lockdep_assert_held(&n->list_lock);
1026 list_add(&page->lru, &n->full);
1027}
1028
1029static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1030{
1031 if (!(s->flags & SLAB_STORE_USER))
1032 return;
1033
1034 lockdep_assert_held(&n->list_lock);
1035 list_del(&page->lru);
1036}
1037
1038/* Tracking of the number of slabs for debugging purposes */
1039static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1040{
1041 struct kmem_cache_node *n = get_node(s, node);
1042
1043 return atomic_long_read(&n->nr_slabs);
1044}
1045
1046static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1047{
1048 return atomic_long_read(&n->nr_slabs);
1049}
1050
1051static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1052{
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 /*
1056 * May be called early in order to allocate a slab for the
1057 * kmem_cache_node structure. Solve the chicken-egg
1058 * dilemma by deferring the increment of the count during
1059 * bootstrap (see early_kmem_cache_node_alloc).
1060 */
1061 if (likely(n)) {
1062 atomic_long_inc(&n->nr_slabs);
1063 atomic_long_add(objects, &n->total_objects);
1064 }
1065}
1066static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1067{
1068 struct kmem_cache_node *n = get_node(s, node);
1069
1070 atomic_long_dec(&n->nr_slabs);
1071 atomic_long_sub(objects, &n->total_objects);
1072}
1073
1074/* Object debug checks for alloc/free paths */
1075static void setup_object_debug(struct kmem_cache *s, struct page *page,
1076 void *object)
1077{
1078 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1079 return;
1080
1081 init_object(s, object, SLUB_RED_INACTIVE);
1082 init_tracking(s, object);
1083}
1084
1085static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1086{
1087 if (!(s->flags & SLAB_POISON))
1088 return;
1089
1090 metadata_access_enable();
1091 memset(addr, POISON_INUSE, PAGE_SIZE << order);
1092 metadata_access_disable();
1093}
1094
1095static inline int alloc_consistency_checks(struct kmem_cache *s,
1096 struct page *page,
1097 void *object, unsigned long addr)
1098{
1099 if (!check_slab(s, page))
1100 return 0;
1101
1102 if (!check_valid_pointer(s, page, object)) {
1103 object_err(s, page, object, "Freelist Pointer check fails");
1104 return 0;
1105 }
1106
1107 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1108 return 0;
1109
1110 return 1;
1111}
1112
1113static noinline int alloc_debug_processing(struct kmem_cache *s,
1114 struct page *page,
1115 void *object, unsigned long addr)
1116{
1117 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1118 if (!alloc_consistency_checks(s, page, object, addr))
1119 goto bad;
1120 }
1121
1122 /* Success perform special debug activities for allocs */
1123 if (s->flags & SLAB_STORE_USER)
1124 set_track(s, object, TRACK_ALLOC, addr);
1125 trace(s, page, object, 1);
1126 init_object(s, object, SLUB_RED_ACTIVE);
1127 return 1;
1128
1129bad:
1130 if (PageSlab(page)) {
1131 /*
1132 * If this is a slab page then lets do the best we can
1133 * to avoid issues in the future. Marking all objects
1134 * as used avoids touching the remaining objects.
1135 */
1136 slab_fix(s, "Marking all objects used");
1137 page->inuse = page->objects;
1138 page->freelist = NULL;
1139 }
1140 return 0;
1141}
1142
1143static inline int free_consistency_checks(struct kmem_cache *s,
1144 struct page *page, void *object, unsigned long addr)
1145{
1146 if (!check_valid_pointer(s, page, object)) {
1147 slab_err(s, page, "Invalid object pointer 0x%p", object);
1148 return 0;
1149 }
1150
1151 if (on_freelist(s, page, object)) {
1152 object_err(s, page, object, "Object already free");
1153 return 0;
1154 }
1155
1156 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1157 return 0;
1158
1159 if (unlikely(s != page->slab_cache)) {
1160 if (!PageSlab(page)) {
1161 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1162 object);
1163 } else if (!page->slab_cache) {
1164 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1165 object);
1166 dump_stack();
1167 } else
1168 object_err(s, page, object,
1169 "page slab pointer corrupt.");
1170 return 0;
1171 }
1172 return 1;
1173}
1174
1175/* Supports checking bulk free of a constructed freelist */
1176static noinline int free_debug_processing(
1177 struct kmem_cache *s, struct page *page,
1178 void *head, void *tail, int bulk_cnt,
1179 unsigned long addr)
1180{
1181 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182 void *object = head;
1183 int cnt = 0;
1184 unsigned long uninitialized_var(flags);
1185 int ret = 0;
1186
1187 spin_lock_irqsave(&n->list_lock, flags);
1188 slab_lock(page);
1189
1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 if (!check_slab(s, page))
1192 goto out;
1193 }
1194
1195next_object:
1196 cnt++;
1197
1198 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1199 if (!free_consistency_checks(s, page, object, addr))
1200 goto out;
1201 }
1202
1203 if (s->flags & SLAB_STORE_USER)
1204 set_track(s, object, TRACK_FREE, addr);
1205 trace(s, page, object, 0);
1206 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1207 init_object(s, object, SLUB_RED_INACTIVE);
1208
1209 /* Reached end of constructed freelist yet? */
1210 if (object != tail) {
1211 object = get_freepointer(s, object);
1212 goto next_object;
1213 }
1214 ret = 1;
1215
1216out:
1217 if (cnt != bulk_cnt)
1218 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1219 bulk_cnt, cnt);
1220
1221 slab_unlock(page);
1222 spin_unlock_irqrestore(&n->list_lock, flags);
1223 if (!ret)
1224 slab_fix(s, "Object at 0x%p not freed", object);
1225 return ret;
1226}
1227
1228static int __init setup_slub_debug(char *str)
1229{
1230 slub_debug = DEBUG_DEFAULT_FLAGS;
1231 if (*str++ != '=' || !*str)
1232 /*
1233 * No options specified. Switch on full debugging.
1234 */
1235 goto out;
1236
1237 if (*str == ',')
1238 /*
1239 * No options but restriction on slabs. This means full
1240 * debugging for slabs matching a pattern.
1241 */
1242 goto check_slabs;
1243
1244 slub_debug = 0;
1245 if (*str == '-')
1246 /*
1247 * Switch off all debugging measures.
1248 */
1249 goto out;
1250
1251 /*
1252 * Determine which debug features should be switched on
1253 */
1254 for (; *str && *str != ','; str++) {
1255 switch (tolower(*str)) {
1256 case 'f':
1257 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1258 break;
1259 case 'z':
1260 slub_debug |= SLAB_RED_ZONE;
1261 break;
1262 case 'p':
1263 slub_debug |= SLAB_POISON;
1264 break;
1265 case 'u':
1266 slub_debug |= SLAB_STORE_USER;
1267 break;
1268 case 't':
1269 slub_debug |= SLAB_TRACE;
1270 break;
1271 case 'a':
1272 slub_debug |= SLAB_FAILSLAB;
1273 break;
1274 case 'o':
1275 /*
1276 * Avoid enabling debugging on caches if its minimum
1277 * order would increase as a result.
1278 */
1279 disable_higher_order_debug = 1;
1280 break;
1281 default:
1282 pr_err("slub_debug option '%c' unknown. skipped\n",
1283 *str);
1284 }
1285 }
1286
1287check_slabs:
1288 if (*str == ',')
1289 slub_debug_slabs = str + 1;
1290out:
1291 if ((static_branch_unlikely(&init_on_alloc) ||
1292 static_branch_unlikely(&init_on_free)) &&
1293 (slub_debug & SLAB_POISON))
1294 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1295 return 1;
1296}
1297
1298__setup("slub_debug", setup_slub_debug);
1299
1300slab_flags_t kmem_cache_flags(unsigned int object_size,
1301 slab_flags_t flags, const char *name,
1302 void (*ctor)(void *))
1303{
1304 /*
1305 * Enable debugging if selected on the kernel commandline.
1306 */
1307 if (slub_debug && (!slub_debug_slabs || (name &&
1308 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1309 flags |= slub_debug;
1310
1311 return flags;
1312}
1313#else /* !CONFIG_SLUB_DEBUG */
1314static inline void setup_object_debug(struct kmem_cache *s,
1315 struct page *page, void *object) {}
1316static inline void setup_page_debug(struct kmem_cache *s,
1317 void *addr, int order) {}
1318
1319static inline int alloc_debug_processing(struct kmem_cache *s,
1320 struct page *page, void *object, unsigned long addr) { return 0; }
1321
1322static inline int free_debug_processing(
1323 struct kmem_cache *s, struct page *page,
1324 void *head, void *tail, int bulk_cnt,
1325 unsigned long addr) { return 0; }
1326
1327static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1328 { return 1; }
1329static inline int check_object(struct kmem_cache *s, struct page *page,
1330 void *object, u8 val) { return 1; }
1331static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1332 struct page *page) {}
1333static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1334 struct page *page) {}
1335slab_flags_t kmem_cache_flags(unsigned int object_size,
1336 slab_flags_t flags, const char *name,
1337 void (*ctor)(void *))
1338{
1339 return flags;
1340}
1341#define slub_debug 0
1342
1343#define disable_higher_order_debug 0
1344
1345static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1346 { return 0; }
1347static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1348 { return 0; }
1349static inline void inc_slabs_node(struct kmem_cache *s, int node,
1350 int objects) {}
1351static inline void dec_slabs_node(struct kmem_cache *s, int node,
1352 int objects) {}
1353
1354#endif /* CONFIG_SLUB_DEBUG */
1355
1356/*
1357 * Hooks for other subsystems that check memory allocations. In a typical
1358 * production configuration these hooks all should produce no code at all.
1359 */
1360static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1361{
1362 ptr = kasan_kmalloc_large(ptr, size, flags);
1363 kmemleak_alloc(ptr, size, 1, flags);
1364 return ptr;
1365}
1366
1367static __always_inline void kfree_hook(void *x)
1368{
1369 kmemleak_free(x);
1370 kasan_kfree_large(x, _RET_IP_);
1371}
1372
1373static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1374{
1375 kmemleak_free_recursive(x, s->flags);
1376
1377 /*
1378 * Trouble is that we may no longer disable interrupts in the fast path
1379 * So in order to make the debug calls that expect irqs to be
1380 * disabled we need to disable interrupts temporarily.
1381 */
1382#ifdef CONFIG_LOCKDEP
1383 {
1384 unsigned long flags;
1385
1386 local_irq_save(flags);
1387 debug_check_no_locks_freed(x, s->object_size);
1388 local_irq_restore(flags);
1389 }
1390#endif
1391 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1392 debug_check_no_obj_freed(x, s->object_size);
1393
1394 /* KASAN might put x into memory quarantine, delaying its reuse */
1395 return kasan_slab_free(s, x, _RET_IP_);
1396}
1397
1398static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1399 void **head, void **tail)
1400{
1401
1402 void *object;
1403 void *next = *head;
1404 void *old_tail = *tail ? *tail : *head;
1405 int rsize;
1406
1407 /* Head and tail of the reconstructed freelist */
1408 *head = NULL;
1409 *tail = NULL;
1410
1411 do {
1412 object = next;
1413 next = get_freepointer(s, object);
1414
1415 if (slab_want_init_on_free(s)) {
1416 /*
1417 * Clear the object and the metadata, but don't touch
1418 * the redzone.
1419 */
1420 memset(object, 0, s->object_size);
1421 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1422 : 0;
1423 memset((char *)object + s->inuse, 0,
1424 s->size - s->inuse - rsize);
1425
1426 }
1427 /* If object's reuse doesn't have to be delayed */
1428 if (!slab_free_hook(s, object)) {
1429 /* Move object to the new freelist */
1430 set_freepointer(s, object, *head);
1431 *head = object;
1432 if (!*tail)
1433 *tail = object;
1434 }
1435 } while (object != old_tail);
1436
1437 if (*head == *tail)
1438 *tail = NULL;
1439
1440 return *head != NULL;
1441}
1442
1443static void *setup_object(struct kmem_cache *s, struct page *page,
1444 void *object)
1445{
1446 setup_object_debug(s, page, object);
1447 object = kasan_init_slab_obj(s, object);
1448 if (unlikely(s->ctor)) {
1449 kasan_unpoison_object_data(s, object);
1450 s->ctor(object);
1451 kasan_poison_object_data(s, object);
1452 }
1453 return object;
1454}
1455
1456/*
1457 * Slab allocation and freeing
1458 */
1459static inline struct page *alloc_slab_page(struct kmem_cache *s,
1460 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1461{
1462 struct page *page;
1463 unsigned int order = oo_order(oo);
1464
1465 if (node == NUMA_NO_NODE)
1466 page = alloc_pages(flags, order);
1467 else
1468 page = __alloc_pages_node(node, flags, order);
1469
1470 if (page && memcg_charge_slab(page, flags, order, s)) {
1471 __free_pages(page, order);
1472 page = NULL;
1473 }
1474
1475 return page;
1476}
1477
1478#ifdef CONFIG_SLAB_FREELIST_RANDOM
1479/* Pre-initialize the random sequence cache */
1480static int init_cache_random_seq(struct kmem_cache *s)
1481{
1482 unsigned int count = oo_objects(s->oo);
1483 int err;
1484
1485 /* Bailout if already initialised */
1486 if (s->random_seq)
1487 return 0;
1488
1489 err = cache_random_seq_create(s, count, GFP_KERNEL);
1490 if (err) {
1491 pr_err("SLUB: Unable to initialize free list for %s\n",
1492 s->name);
1493 return err;
1494 }
1495
1496 /* Transform to an offset on the set of pages */
1497 if (s->random_seq) {
1498 unsigned int i;
1499
1500 for (i = 0; i < count; i++)
1501 s->random_seq[i] *= s->size;
1502 }
1503 return 0;
1504}
1505
1506/* Initialize each random sequence freelist per cache */
1507static void __init init_freelist_randomization(void)
1508{
1509 struct kmem_cache *s;
1510
1511 mutex_lock(&slab_mutex);
1512
1513 list_for_each_entry(s, &slab_caches, list)
1514 init_cache_random_seq(s);
1515
1516 mutex_unlock(&slab_mutex);
1517}
1518
1519/* Get the next entry on the pre-computed freelist randomized */
1520static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1521 unsigned long *pos, void *start,
1522 unsigned long page_limit,
1523 unsigned long freelist_count)
1524{
1525 unsigned int idx;
1526
1527 /*
1528 * If the target page allocation failed, the number of objects on the
1529 * page might be smaller than the usual size defined by the cache.
1530 */
1531 do {
1532 idx = s->random_seq[*pos];
1533 *pos += 1;
1534 if (*pos >= freelist_count)
1535 *pos = 0;
1536 } while (unlikely(idx >= page_limit));
1537
1538 return (char *)start + idx;
1539}
1540
1541/* Shuffle the single linked freelist based on a random pre-computed sequence */
1542static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1543{
1544 void *start;
1545 void *cur;
1546 void *next;
1547 unsigned long idx, pos, page_limit, freelist_count;
1548
1549 if (page->objects < 2 || !s->random_seq)
1550 return false;
1551
1552 freelist_count = oo_objects(s->oo);
1553 pos = get_random_int() % freelist_count;
1554
1555 page_limit = page->objects * s->size;
1556 start = fixup_red_left(s, page_address(page));
1557
1558 /* First entry is used as the base of the freelist */
1559 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1560 freelist_count);
1561 cur = setup_object(s, page, cur);
1562 page->freelist = cur;
1563
1564 for (idx = 1; idx < page->objects; idx++) {
1565 next = next_freelist_entry(s, page, &pos, start, page_limit,
1566 freelist_count);
1567 next = setup_object(s, page, next);
1568 set_freepointer(s, cur, next);
1569 cur = next;
1570 }
1571 set_freepointer(s, cur, NULL);
1572
1573 return true;
1574}
1575#else
1576static inline int init_cache_random_seq(struct kmem_cache *s)
1577{
1578 return 0;
1579}
1580static inline void init_freelist_randomization(void) { }
1581static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1582{
1583 return false;
1584}
1585#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1586
1587static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1588{
1589 struct page *page;
1590 struct kmem_cache_order_objects oo = s->oo;
1591 gfp_t alloc_gfp;
1592 void *start, *p, *next;
1593 int idx, order;
1594 bool shuffle;
1595
1596 flags &= gfp_allowed_mask;
1597
1598 if (gfpflags_allow_blocking(flags))
1599 local_irq_enable();
1600
1601 flags |= s->allocflags;
1602
1603 /*
1604 * Let the initial higher-order allocation fail under memory pressure
1605 * so we fall-back to the minimum order allocation.
1606 */
1607 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1608 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1609 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1610
1611 page = alloc_slab_page(s, alloc_gfp, node, oo);
1612 if (unlikely(!page)) {
1613 oo = s->min;
1614 alloc_gfp = flags;
1615 /*
1616 * Allocation may have failed due to fragmentation.
1617 * Try a lower order alloc if possible
1618 */
1619 page = alloc_slab_page(s, alloc_gfp, node, oo);
1620 if (unlikely(!page))
1621 goto out;
1622 stat(s, ORDER_FALLBACK);
1623 }
1624
1625 page->objects = oo_objects(oo);
1626
1627 order = compound_order(page);
1628 page->slab_cache = s;
1629 __SetPageSlab(page);
1630 if (page_is_pfmemalloc(page))
1631 SetPageSlabPfmemalloc(page);
1632
1633 kasan_poison_slab(page);
1634
1635 start = page_address(page);
1636
1637 setup_page_debug(s, start, order);
1638
1639 shuffle = shuffle_freelist(s, page);
1640
1641 if (!shuffle) {
1642 start = fixup_red_left(s, start);
1643 start = setup_object(s, page, start);
1644 page->freelist = start;
1645 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1646 next = p + s->size;
1647 next = setup_object(s, page, next);
1648 set_freepointer(s, p, next);
1649 p = next;
1650 }
1651 set_freepointer(s, p, NULL);
1652 }
1653
1654 page->inuse = page->objects;
1655 page->frozen = 1;
1656
1657out:
1658 if (gfpflags_allow_blocking(flags))
1659 local_irq_disable();
1660 if (!page)
1661 return NULL;
1662
1663 mod_lruvec_page_state(page,
1664 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1665 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1666 1 << oo_order(oo));
1667
1668 inc_slabs_node(s, page_to_nid(page), page->objects);
1669
1670 return page;
1671}
1672
1673static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1674{
1675 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1676 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1677 flags &= ~GFP_SLAB_BUG_MASK;
1678 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1679 invalid_mask, &invalid_mask, flags, &flags);
1680 dump_stack();
1681 }
1682
1683 return allocate_slab(s,
1684 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1685}
1686
1687static void __free_slab(struct kmem_cache *s, struct page *page)
1688{
1689 int order = compound_order(page);
1690 int pages = 1 << order;
1691
1692 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1693 void *p;
1694
1695 slab_pad_check(s, page);
1696 for_each_object(p, s, page_address(page),
1697 page->objects)
1698 check_object(s, page, p, SLUB_RED_INACTIVE);
1699 }
1700
1701 mod_lruvec_page_state(page,
1702 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1703 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1704 -pages);
1705
1706 __ClearPageSlabPfmemalloc(page);
1707 __ClearPageSlab(page);
1708
1709 page->mapping = NULL;
1710 if (current->reclaim_state)
1711 current->reclaim_state->reclaimed_slab += pages;
1712 memcg_uncharge_slab(page, order, s);
1713 __free_pages(page, order);
1714}
1715
1716static void rcu_free_slab(struct rcu_head *h)
1717{
1718 struct page *page = container_of(h, struct page, rcu_head);
1719
1720 __free_slab(page->slab_cache, page);
1721}
1722
1723static void free_slab(struct kmem_cache *s, struct page *page)
1724{
1725 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1726 call_rcu(&page->rcu_head, rcu_free_slab);
1727 } else
1728 __free_slab(s, page);
1729}
1730
1731static void discard_slab(struct kmem_cache *s, struct page *page)
1732{
1733 dec_slabs_node(s, page_to_nid(page), page->objects);
1734 free_slab(s, page);
1735}
1736
1737/*
1738 * Management of partially allocated slabs.
1739 */
1740static inline void
1741__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1742{
1743 n->nr_partial++;
1744 if (tail == DEACTIVATE_TO_TAIL)
1745 list_add_tail(&page->lru, &n->partial);
1746 else
1747 list_add(&page->lru, &n->partial);
1748}
1749
1750static inline void add_partial(struct kmem_cache_node *n,
1751 struct page *page, int tail)
1752{
1753 lockdep_assert_held(&n->list_lock);
1754 __add_partial(n, page, tail);
1755}
1756
1757static inline void remove_partial(struct kmem_cache_node *n,
1758 struct page *page)
1759{
1760 lockdep_assert_held(&n->list_lock);
1761 list_del(&page->lru);
1762 n->nr_partial--;
1763}
1764
1765/*
1766 * Remove slab from the partial list, freeze it and
1767 * return the pointer to the freelist.
1768 *
1769 * Returns a list of objects or NULL if it fails.
1770 */
1771static inline void *acquire_slab(struct kmem_cache *s,
1772 struct kmem_cache_node *n, struct page *page,
1773 int mode, int *objects)
1774{
1775 void *freelist;
1776 unsigned long counters;
1777 struct page new;
1778
1779 lockdep_assert_held(&n->list_lock);
1780
1781 /*
1782 * Zap the freelist and set the frozen bit.
1783 * The old freelist is the list of objects for the
1784 * per cpu allocation list.
1785 */
1786 freelist = page->freelist;
1787 counters = page->counters;
1788 new.counters = counters;
1789 *objects = new.objects - new.inuse;
1790 if (mode) {
1791 new.inuse = page->objects;
1792 new.freelist = NULL;
1793 } else {
1794 new.freelist = freelist;
1795 }
1796
1797 VM_BUG_ON(new.frozen);
1798 new.frozen = 1;
1799
1800 if (!__cmpxchg_double_slab(s, page,
1801 freelist, counters,
1802 new.freelist, new.counters,
1803 "acquire_slab"))
1804 return NULL;
1805
1806 remove_partial(n, page);
1807 WARN_ON(!freelist);
1808 return freelist;
1809}
1810
1811static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1812static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1813
1814/*
1815 * Try to allocate a partial slab from a specific node.
1816 */
1817static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1818 struct kmem_cache_cpu *c, gfp_t flags)
1819{
1820 struct page *page, *page2;
1821 void *object = NULL;
1822 unsigned int available = 0;
1823 int objects;
1824
1825 /*
1826 * Racy check. If we mistakenly see no partial slabs then we
1827 * just allocate an empty slab. If we mistakenly try to get a
1828 * partial slab and there is none available then get_partials()
1829 * will return NULL.
1830 */
1831 if (!n || !n->nr_partial)
1832 return NULL;
1833
1834 spin_lock(&n->list_lock);
1835 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1836 void *t;
1837
1838 if (!pfmemalloc_match(page, flags))
1839 continue;
1840
1841 t = acquire_slab(s, n, page, object == NULL, &objects);
1842 if (!t)
1843 break;
1844
1845 available += objects;
1846 if (!object) {
1847 c->page = page;
1848 stat(s, ALLOC_FROM_PARTIAL);
1849 object = t;
1850 } else {
1851 put_cpu_partial(s, page, 0);
1852 stat(s, CPU_PARTIAL_NODE);
1853 }
1854 if (!kmem_cache_has_cpu_partial(s)
1855 || available > slub_cpu_partial(s) / 2)
1856 break;
1857
1858 }
1859 spin_unlock(&n->list_lock);
1860 return object;
1861}
1862
1863/*
1864 * Get a page from somewhere. Search in increasing NUMA distances.
1865 */
1866static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1867 struct kmem_cache_cpu *c)
1868{
1869#ifdef CONFIG_NUMA
1870 struct zonelist *zonelist;
1871 struct zoneref *z;
1872 struct zone *zone;
1873 enum zone_type high_zoneidx = gfp_zone(flags);
1874 void *object;
1875 unsigned int cpuset_mems_cookie;
1876
1877 /*
1878 * The defrag ratio allows a configuration of the tradeoffs between
1879 * inter node defragmentation and node local allocations. A lower
1880 * defrag_ratio increases the tendency to do local allocations
1881 * instead of attempting to obtain partial slabs from other nodes.
1882 *
1883 * If the defrag_ratio is set to 0 then kmalloc() always
1884 * returns node local objects. If the ratio is higher then kmalloc()
1885 * may return off node objects because partial slabs are obtained
1886 * from other nodes and filled up.
1887 *
1888 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1889 * (which makes defrag_ratio = 1000) then every (well almost)
1890 * allocation will first attempt to defrag slab caches on other nodes.
1891 * This means scanning over all nodes to look for partial slabs which
1892 * may be expensive if we do it every time we are trying to find a slab
1893 * with available objects.
1894 */
1895 if (!s->remote_node_defrag_ratio ||
1896 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1897 return NULL;
1898
1899 do {
1900 cpuset_mems_cookie = read_mems_allowed_begin();
1901 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1902 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1903 struct kmem_cache_node *n;
1904
1905 n = get_node(s, zone_to_nid(zone));
1906
1907 if (n && cpuset_zone_allowed(zone, flags) &&
1908 n->nr_partial > s->min_partial) {
1909 object = get_partial_node(s, n, c, flags);
1910 if (object) {
1911 /*
1912 * Don't check read_mems_allowed_retry()
1913 * here - if mems_allowed was updated in
1914 * parallel, that was a harmless race
1915 * between allocation and the cpuset
1916 * update
1917 */
1918 return object;
1919 }
1920 }
1921 }
1922 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1923#endif
1924 return NULL;
1925}
1926
1927/*
1928 * Get a partial page, lock it and return it.
1929 */
1930static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1931 struct kmem_cache_cpu *c)
1932{
1933 void *object;
1934 int searchnode = node;
1935
1936 if (node == NUMA_NO_NODE)
1937 searchnode = numa_mem_id();
1938 else if (!node_present_pages(node))
1939 searchnode = node_to_mem_node(node);
1940
1941 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1942 if (object || node != NUMA_NO_NODE)
1943 return object;
1944
1945 return get_any_partial(s, flags, c);
1946}
1947
1948#ifdef CONFIG_PREEMPT
1949/*
1950 * Calculate the next globally unique transaction for disambiguiation
1951 * during cmpxchg. The transactions start with the cpu number and are then
1952 * incremented by CONFIG_NR_CPUS.
1953 */
1954#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1955#else
1956/*
1957 * No preemption supported therefore also no need to check for
1958 * different cpus.
1959 */
1960#define TID_STEP 1
1961#endif
1962
1963static inline unsigned long next_tid(unsigned long tid)
1964{
1965 return tid + TID_STEP;
1966}
1967
1968static inline unsigned int tid_to_cpu(unsigned long tid)
1969{
1970 return tid % TID_STEP;
1971}
1972
1973static inline unsigned long tid_to_event(unsigned long tid)
1974{
1975 return tid / TID_STEP;
1976}
1977
1978static inline unsigned int init_tid(int cpu)
1979{
1980 return cpu;
1981}
1982
1983static inline void note_cmpxchg_failure(const char *n,
1984 const struct kmem_cache *s, unsigned long tid)
1985{
1986#ifdef SLUB_DEBUG_CMPXCHG
1987 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1988
1989 pr_info("%s %s: cmpxchg redo ", n, s->name);
1990
1991#ifdef CONFIG_PREEMPT
1992 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1993 pr_warn("due to cpu change %d -> %d\n",
1994 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1995 else
1996#endif
1997 if (tid_to_event(tid) != tid_to_event(actual_tid))
1998 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1999 tid_to_event(tid), tid_to_event(actual_tid));
2000 else
2001 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2002 actual_tid, tid, next_tid(tid));
2003#endif
2004 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2005}
2006
2007static void init_kmem_cache_cpus(struct kmem_cache *s)
2008{
2009 int cpu;
2010
2011 for_each_possible_cpu(cpu) {
2012#ifdef CONFIG_MTK_MM_DEBUG
2013 pr_info("s=%s, pcpuptr=%p\n", s->name,
2014 per_cpu_ptr(s->cpu_slab, cpu));
2015#endif
2016 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2017 }
2018}
2019
2020/*
2021 * Remove the cpu slab
2022 */
2023static void deactivate_slab(struct kmem_cache *s, struct page *page,
2024 void *freelist, struct kmem_cache_cpu *c)
2025{
2026 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2027 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2028 int lock = 0;
2029 enum slab_modes l = M_NONE, m = M_NONE;
2030 void *nextfree;
2031 int tail = DEACTIVATE_TO_HEAD;
2032 struct page new;
2033 struct page old;
2034
2035 if (page->freelist) {
2036 stat(s, DEACTIVATE_REMOTE_FREES);
2037 tail = DEACTIVATE_TO_TAIL;
2038 }
2039
2040 /*
2041 * Stage one: Free all available per cpu objects back
2042 * to the page freelist while it is still frozen. Leave the
2043 * last one.
2044 *
2045 * There is no need to take the list->lock because the page
2046 * is still frozen.
2047 */
2048 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2049 void *prior;
2050 unsigned long counters;
2051
2052 do {
2053 prior = page->freelist;
2054 counters = page->counters;
2055 set_freepointer(s, freelist, prior);
2056 new.counters = counters;
2057 new.inuse--;
2058 VM_BUG_ON(!new.frozen);
2059
2060 } while (!__cmpxchg_double_slab(s, page,
2061 prior, counters,
2062 freelist, new.counters,
2063 "drain percpu freelist"));
2064
2065 freelist = nextfree;
2066 }
2067
2068 /*
2069 * Stage two: Ensure that the page is unfrozen while the
2070 * list presence reflects the actual number of objects
2071 * during unfreeze.
2072 *
2073 * We setup the list membership and then perform a cmpxchg
2074 * with the count. If there is a mismatch then the page
2075 * is not unfrozen but the page is on the wrong list.
2076 *
2077 * Then we restart the process which may have to remove
2078 * the page from the list that we just put it on again
2079 * because the number of objects in the slab may have
2080 * changed.
2081 */
2082redo:
2083
2084 old.freelist = page->freelist;
2085 old.counters = page->counters;
2086 VM_BUG_ON(!old.frozen);
2087
2088 /* Determine target state of the slab */
2089 new.counters = old.counters;
2090 if (freelist) {
2091 new.inuse--;
2092 set_freepointer(s, freelist, old.freelist);
2093 new.freelist = freelist;
2094 } else
2095 new.freelist = old.freelist;
2096
2097 new.frozen = 0;
2098
2099 if (!new.inuse && n->nr_partial >= s->min_partial)
2100 m = M_FREE;
2101 else if (new.freelist) {
2102 m = M_PARTIAL;
2103 if (!lock) {
2104 lock = 1;
2105 /*
2106 * Taking the spinlock removes the possiblity
2107 * that acquire_slab() will see a slab page that
2108 * is frozen
2109 */
2110 spin_lock(&n->list_lock);
2111 }
2112 } else {
2113 m = M_FULL;
2114 if (kmem_cache_debug(s) && !lock) {
2115 lock = 1;
2116 /*
2117 * This also ensures that the scanning of full
2118 * slabs from diagnostic functions will not see
2119 * any frozen slabs.
2120 */
2121 spin_lock(&n->list_lock);
2122 }
2123 }
2124
2125 if (l != m) {
2126
2127 if (l == M_PARTIAL)
2128
2129 remove_partial(n, page);
2130
2131 else if (l == M_FULL)
2132
2133 remove_full(s, n, page);
2134
2135 if (m == M_PARTIAL) {
2136
2137 add_partial(n, page, tail);
2138 stat(s, tail);
2139
2140 } else if (m == M_FULL) {
2141
2142 stat(s, DEACTIVATE_FULL);
2143 add_full(s, n, page);
2144
2145 }
2146 }
2147
2148 l = m;
2149 if (!__cmpxchg_double_slab(s, page,
2150 old.freelist, old.counters,
2151 new.freelist, new.counters,
2152 "unfreezing slab"))
2153 goto redo;
2154
2155 if (lock)
2156 spin_unlock(&n->list_lock);
2157
2158 if (m == M_FREE) {
2159 stat(s, DEACTIVATE_EMPTY);
2160 discard_slab(s, page);
2161 stat(s, FREE_SLAB);
2162 }
2163
2164 c->page = NULL;
2165 c->freelist = NULL;
2166}
2167
2168/*
2169 * Unfreeze all the cpu partial slabs.
2170 *
2171 * This function must be called with interrupts disabled
2172 * for the cpu using c (or some other guarantee must be there
2173 * to guarantee no concurrent accesses).
2174 */
2175static void unfreeze_partials(struct kmem_cache *s,
2176 struct kmem_cache_cpu *c)
2177{
2178#ifdef CONFIG_SLUB_CPU_PARTIAL
2179 struct kmem_cache_node *n = NULL, *n2 = NULL;
2180 struct page *page, *discard_page = NULL;
2181
2182 while ((page = c->partial)) {
2183 struct page new;
2184 struct page old;
2185
2186 c->partial = page->next;
2187
2188 n2 = get_node(s, page_to_nid(page));
2189 if (n != n2) {
2190 if (n)
2191 spin_unlock(&n->list_lock);
2192
2193 n = n2;
2194 spin_lock(&n->list_lock);
2195 }
2196
2197 do {
2198
2199 old.freelist = page->freelist;
2200 old.counters = page->counters;
2201 VM_BUG_ON(!old.frozen);
2202
2203 new.counters = old.counters;
2204 new.freelist = old.freelist;
2205
2206 new.frozen = 0;
2207
2208 } while (!__cmpxchg_double_slab(s, page,
2209 old.freelist, old.counters,
2210 new.freelist, new.counters,
2211 "unfreezing slab"));
2212
2213 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2214 page->next = discard_page;
2215 discard_page = page;
2216 } else {
2217 add_partial(n, page, DEACTIVATE_TO_TAIL);
2218 stat(s, FREE_ADD_PARTIAL);
2219 }
2220 }
2221
2222 if (n)
2223 spin_unlock(&n->list_lock);
2224
2225 while (discard_page) {
2226 page = discard_page;
2227 discard_page = discard_page->next;
2228
2229 stat(s, DEACTIVATE_EMPTY);
2230 discard_slab(s, page);
2231 stat(s, FREE_SLAB);
2232 }
2233#endif
2234}
2235
2236/*
2237 * Put a page that was just frozen (in __slab_free) into a partial page
2238 * slot if available.
2239 *
2240 * If we did not find a slot then simply move all the partials to the
2241 * per node partial list.
2242 */
2243static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2244{
2245#ifdef CONFIG_SLUB_CPU_PARTIAL
2246 struct page *oldpage;
2247 int pages;
2248 int pobjects;
2249
2250 preempt_disable();
2251 do {
2252 pages = 0;
2253 pobjects = 0;
2254 oldpage = this_cpu_read(s->cpu_slab->partial);
2255
2256 if (oldpage) {
2257 pobjects = oldpage->pobjects;
2258 pages = oldpage->pages;
2259 if (drain && pobjects > s->cpu_partial) {
2260 unsigned long flags;
2261 /*
2262 * partial array is full. Move the existing
2263 * set to the per node partial list.
2264 */
2265 local_irq_save(flags);
2266 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2267 local_irq_restore(flags);
2268 oldpage = NULL;
2269 pobjects = 0;
2270 pages = 0;
2271 stat(s, CPU_PARTIAL_DRAIN);
2272 }
2273 }
2274
2275 pages++;
2276 pobjects += page->objects - page->inuse;
2277
2278 page->pages = pages;
2279 page->pobjects = pobjects;
2280 page->next = oldpage;
2281
2282 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2283 != oldpage);
2284 if (unlikely(!s->cpu_partial)) {
2285 unsigned long flags;
2286
2287 local_irq_save(flags);
2288 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2289 local_irq_restore(flags);
2290 }
2291 preempt_enable();
2292#endif
2293}
2294
2295static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2296{
2297 stat(s, CPUSLAB_FLUSH);
2298 deactivate_slab(s, c->page, c->freelist, c);
2299
2300 c->tid = next_tid(c->tid);
2301}
2302
2303/*
2304 * Flush cpu slab.
2305 *
2306 * Called from IPI handler with interrupts disabled.
2307 */
2308static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2309{
2310 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2311
2312 if (likely(c)) {
2313 if (c->page)
2314 flush_slab(s, c);
2315
2316 unfreeze_partials(s, c);
2317 }
2318}
2319
2320static void flush_cpu_slab(void *d)
2321{
2322 struct kmem_cache *s = d;
2323
2324 __flush_cpu_slab(s, smp_processor_id());
2325}
2326
2327static bool has_cpu_slab(int cpu, void *info)
2328{
2329 struct kmem_cache *s = info;
2330 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2331
2332 return c->page || slub_percpu_partial(c);
2333}
2334
2335static void flush_all(struct kmem_cache *s)
2336{
2337 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2338}
2339
2340/*
2341 * Use the cpu notifier to insure that the cpu slabs are flushed when
2342 * necessary.
2343 */
2344static int slub_cpu_dead(unsigned int cpu)
2345{
2346 struct kmem_cache *s;
2347 unsigned long flags;
2348
2349 mutex_lock(&slab_mutex);
2350 list_for_each_entry(s, &slab_caches, list) {
2351 local_irq_save(flags);
2352 __flush_cpu_slab(s, cpu);
2353 local_irq_restore(flags);
2354 }
2355 mutex_unlock(&slab_mutex);
2356 return 0;
2357}
2358
2359/*
2360 * Check if the objects in a per cpu structure fit numa
2361 * locality expectations.
2362 */
2363static inline int node_match(struct page *page, int node)
2364{
2365#ifdef CONFIG_NUMA
2366 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2367 return 0;
2368#endif
2369 return 1;
2370}
2371
2372#ifdef CONFIG_SLUB_DEBUG
2373static int count_free(struct page *page)
2374{
2375 return page->objects - page->inuse;
2376}
2377
2378static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2379{
2380 return atomic_long_read(&n->total_objects);
2381}
2382#endif /* CONFIG_SLUB_DEBUG */
2383
2384#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2385static unsigned long count_partial(struct kmem_cache_node *n,
2386 int (*get_count)(struct page *))
2387{
2388 unsigned long flags;
2389 unsigned long x = 0;
2390 struct page *page;
2391
2392 spin_lock_irqsave(&n->list_lock, flags);
2393 list_for_each_entry(page, &n->partial, lru)
2394 x += get_count(page);
2395 spin_unlock_irqrestore(&n->list_lock, flags);
2396 return x;
2397}
2398#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2399
2400static noinline void
2401slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2402{
2403#ifdef CONFIG_SLUB_DEBUG
2404 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2405 DEFAULT_RATELIMIT_BURST);
2406 int node;
2407 struct kmem_cache_node *n;
2408
2409 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2410 return;
2411
2412 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2413 nid, gfpflags, &gfpflags);
2414 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2415 s->name, s->object_size, s->size, oo_order(s->oo),
2416 oo_order(s->min));
2417
2418 if (oo_order(s->min) > get_order(s->object_size))
2419 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2420 s->name);
2421
2422 for_each_kmem_cache_node(s, node, n) {
2423 unsigned long nr_slabs;
2424 unsigned long nr_objs;
2425 unsigned long nr_free;
2426
2427 nr_free = count_partial(n, count_free);
2428 nr_slabs = node_nr_slabs(n);
2429 nr_objs = node_nr_objs(n);
2430
2431 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2432 node, nr_slabs, nr_objs, nr_free);
2433 }
2434#endif
2435}
2436
2437static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2438 int node, struct kmem_cache_cpu **pc)
2439{
2440 void *freelist;
2441 struct kmem_cache_cpu *c = *pc;
2442 struct page *page;
2443
2444 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2445
2446 freelist = get_partial(s, flags, node, c);
2447
2448 if (freelist)
2449 return freelist;
2450
2451 page = new_slab(s, flags, node);
2452 if (page) {
2453 c = raw_cpu_ptr(s->cpu_slab);
2454 if (c->page)
2455 flush_slab(s, c);
2456
2457 /*
2458 * No other reference to the page yet so we can
2459 * muck around with it freely without cmpxchg
2460 */
2461 freelist = page->freelist;
2462 page->freelist = NULL;
2463
2464 stat(s, ALLOC_SLAB);
2465 c->page = page;
2466 *pc = c;
2467 } else
2468 freelist = NULL;
2469
2470 return freelist;
2471}
2472
2473static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2474{
2475 if (unlikely(PageSlabPfmemalloc(page)))
2476 return gfp_pfmemalloc_allowed(gfpflags);
2477
2478 return true;
2479}
2480
2481/*
2482 * Check the page->freelist of a page and either transfer the freelist to the
2483 * per cpu freelist or deactivate the page.
2484 *
2485 * The page is still frozen if the return value is not NULL.
2486 *
2487 * If this function returns NULL then the page has been unfrozen.
2488 *
2489 * This function must be called with interrupt disabled.
2490 */
2491static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2492{
2493 struct page new;
2494 unsigned long counters;
2495 void *freelist;
2496
2497 do {
2498 freelist = page->freelist;
2499 counters = page->counters;
2500
2501 new.counters = counters;
2502 VM_BUG_ON(!new.frozen);
2503
2504 new.inuse = page->objects;
2505 new.frozen = freelist != NULL;
2506
2507 } while (!__cmpxchg_double_slab(s, page,
2508 freelist, counters,
2509 NULL, new.counters,
2510 "get_freelist"));
2511
2512 return freelist;
2513}
2514
2515/*
2516 * Slow path. The lockless freelist is empty or we need to perform
2517 * debugging duties.
2518 *
2519 * Processing is still very fast if new objects have been freed to the
2520 * regular freelist. In that case we simply take over the regular freelist
2521 * as the lockless freelist and zap the regular freelist.
2522 *
2523 * If that is not working then we fall back to the partial lists. We take the
2524 * first element of the freelist as the object to allocate now and move the
2525 * rest of the freelist to the lockless freelist.
2526 *
2527 * And if we were unable to get a new slab from the partial slab lists then
2528 * we need to allocate a new slab. This is the slowest path since it involves
2529 * a call to the page allocator and the setup of a new slab.
2530 *
2531 * Version of __slab_alloc to use when we know that interrupts are
2532 * already disabled (which is the case for bulk allocation).
2533 */
2534static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2535 unsigned long addr, struct kmem_cache_cpu *c)
2536{
2537 void *freelist;
2538 struct page *page;
2539
2540 page = c->page;
2541 if (!page)
2542 goto new_slab;
2543redo:
2544
2545 if (unlikely(!node_match(page, node))) {
2546 int searchnode = node;
2547
2548 if (node != NUMA_NO_NODE && !node_present_pages(node))
2549 searchnode = node_to_mem_node(node);
2550
2551 if (unlikely(!node_match(page, searchnode))) {
2552 stat(s, ALLOC_NODE_MISMATCH);
2553 deactivate_slab(s, page, c->freelist, c);
2554 goto new_slab;
2555 }
2556 }
2557
2558 /*
2559 * By rights, we should be searching for a slab page that was
2560 * PFMEMALLOC but right now, we are losing the pfmemalloc
2561 * information when the page leaves the per-cpu allocator
2562 */
2563 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2564 deactivate_slab(s, page, c->freelist, c);
2565 goto new_slab;
2566 }
2567
2568 /* must check again c->freelist in case of cpu migration or IRQ */
2569 freelist = c->freelist;
2570 if (freelist)
2571 goto load_freelist;
2572
2573 freelist = get_freelist(s, page);
2574
2575 if (!freelist) {
2576 c->page = NULL;
2577 stat(s, DEACTIVATE_BYPASS);
2578 goto new_slab;
2579 }
2580
2581 stat(s, ALLOC_REFILL);
2582
2583load_freelist:
2584 /*
2585 * freelist is pointing to the list of objects to be used.
2586 * page is pointing to the page from which the objects are obtained.
2587 * That page must be frozen for per cpu allocations to work.
2588 */
2589 VM_BUG_ON(!c->page->frozen);
2590 c->freelist = get_freepointer(s, freelist);
2591 c->tid = next_tid(c->tid);
2592 return freelist;
2593
2594new_slab:
2595
2596 if (slub_percpu_partial(c)) {
2597 page = c->page = slub_percpu_partial(c);
2598 slub_set_percpu_partial(c, page);
2599 stat(s, CPU_PARTIAL_ALLOC);
2600 goto redo;
2601 }
2602
2603 freelist = new_slab_objects(s, gfpflags, node, &c);
2604
2605 if (unlikely(!freelist)) {
2606 slab_out_of_memory(s, gfpflags, node);
2607 return NULL;
2608 }
2609
2610 page = c->page;
2611 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2612 goto load_freelist;
2613
2614 /* Only entered in the debug case */
2615 if (kmem_cache_debug(s) &&
2616 !alloc_debug_processing(s, page, freelist, addr))
2617 goto new_slab; /* Slab failed checks. Next slab needed */
2618
2619 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2620 return freelist;
2621}
2622
2623/*
2624 * Another one that disabled interrupt and compensates for possible
2625 * cpu changes by refetching the per cpu area pointer.
2626 */
2627static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2628 unsigned long addr, struct kmem_cache_cpu *c)
2629{
2630 void *p;
2631 unsigned long flags;
2632
2633 local_irq_save(flags);
2634#ifdef CONFIG_PREEMPT
2635 /*
2636 * We may have been preempted and rescheduled on a different
2637 * cpu before disabling interrupts. Need to reload cpu area
2638 * pointer.
2639 */
2640 c = this_cpu_ptr(s->cpu_slab);
2641#endif
2642
2643 p = ___slab_alloc(s, gfpflags, node, addr, c);
2644 local_irq_restore(flags);
2645 return p;
2646}
2647
2648/*
2649 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2650 * have the fastpath folded into their functions. So no function call
2651 * overhead for requests that can be satisfied on the fastpath.
2652 *
2653 * The fastpath works by first checking if the lockless freelist can be used.
2654 * If not then __slab_alloc is called for slow processing.
2655 *
2656 * Otherwise we can simply pick the next object from the lockless free list.
2657 */
2658static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2659 gfp_t gfpflags, int node, unsigned long addr)
2660{
2661 void *object;
2662 struct kmem_cache_cpu *c;
2663 struct page *page;
2664 unsigned long tid;
2665
2666 s = slab_pre_alloc_hook(s, gfpflags);
2667 if (!s)
2668 return NULL;
2669redo:
2670 /*
2671 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2672 * enabled. We may switch back and forth between cpus while
2673 * reading from one cpu area. That does not matter as long
2674 * as we end up on the original cpu again when doing the cmpxchg.
2675 *
2676 * We should guarantee that tid and kmem_cache are retrieved on
2677 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2678 * to check if it is matched or not.
2679 */
2680 do {
2681 tid = this_cpu_read(s->cpu_slab->tid);
2682 c = raw_cpu_ptr(s->cpu_slab);
2683 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2684 unlikely(tid != READ_ONCE(c->tid)));
2685
2686 /*
2687 * Irqless object alloc/free algorithm used here depends on sequence
2688 * of fetching cpu_slab's data. tid should be fetched before anything
2689 * on c to guarantee that object and page associated with previous tid
2690 * won't be used with current tid. If we fetch tid first, object and
2691 * page could be one associated with next tid and our alloc/free
2692 * request will be failed. In this case, we will retry. So, no problem.
2693 */
2694 barrier();
2695
2696 /*
2697 * The transaction ids are globally unique per cpu and per operation on
2698 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2699 * occurs on the right processor and that there was no operation on the
2700 * linked list in between.
2701 */
2702
2703 object = c->freelist;
2704 page = c->page;
2705 if (unlikely(!object || !node_match(page, node))) {
2706 object = __slab_alloc(s, gfpflags, node, addr, c);
2707 stat(s, ALLOC_SLOWPATH);
2708 } else {
2709 void *next_object = get_freepointer_safe(s, object);
2710
2711 /*
2712 * The cmpxchg will only match if there was no additional
2713 * operation and if we are on the right processor.
2714 *
2715 * The cmpxchg does the following atomically (without lock
2716 * semantics!)
2717 * 1. Relocate first pointer to the current per cpu area.
2718 * 2. Verify that tid and freelist have not been changed
2719 * 3. If they were not changed replace tid and freelist
2720 *
2721 * Since this is without lock semantics the protection is only
2722 * against code executing on this cpu *not* from access by
2723 * other cpus.
2724 */
2725 if (unlikely(!this_cpu_cmpxchg_double(
2726 s->cpu_slab->freelist, s->cpu_slab->tid,
2727 object, tid,
2728 next_object, next_tid(tid)))) {
2729
2730 note_cmpxchg_failure("slab_alloc", s, tid);
2731 goto redo;
2732 }
2733 prefetch_freepointer(s, next_object);
2734 stat(s, ALLOC_FASTPATH);
2735 }
2736 /*
2737 * If the object has been wiped upon free, make sure it's fully
2738 * initialized by zeroing out freelist pointer.
2739 */
2740 if (unlikely(slab_want_init_on_free(s)) && object)
2741 memset(object + s->offset, 0, sizeof(void *));
2742
2743 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2744 memset(object, 0, s->object_size);
2745
2746 slab_post_alloc_hook(s, gfpflags, 1, &object);
2747
2748 return object;
2749}
2750
2751static __always_inline void *slab_alloc(struct kmem_cache *s,
2752 gfp_t gfpflags, unsigned long addr)
2753{
2754 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2755}
2756
2757void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2758{
2759 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2760
2761 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2762 s->size, gfpflags);
2763
2764 return ret;
2765}
2766EXPORT_SYMBOL(kmem_cache_alloc);
2767
2768#ifdef CONFIG_TRACING
2769void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2770{
2771 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2772 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2773 ret = kasan_kmalloc(s, ret, size, gfpflags);
2774 return ret;
2775}
2776EXPORT_SYMBOL(kmem_cache_alloc_trace);
2777#endif
2778
2779#ifdef CONFIG_NUMA
2780void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2781{
2782 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2783
2784 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2785 s->object_size, s->size, gfpflags, node);
2786
2787 return ret;
2788}
2789EXPORT_SYMBOL(kmem_cache_alloc_node);
2790
2791#ifdef CONFIG_TRACING
2792void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2793 gfp_t gfpflags,
2794 int node, size_t size)
2795{
2796 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2797
2798 trace_kmalloc_node(_RET_IP_, ret,
2799 size, s->size, gfpflags, node);
2800
2801 ret = kasan_kmalloc(s, ret, size, gfpflags);
2802 return ret;
2803}
2804EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2805#endif
2806#endif
2807
2808/*
2809 * Slow path handling. This may still be called frequently since objects
2810 * have a longer lifetime than the cpu slabs in most processing loads.
2811 *
2812 * So we still attempt to reduce cache line usage. Just take the slab
2813 * lock and free the item. If there is no additional partial page
2814 * handling required then we can return immediately.
2815 */
2816static void __slab_free(struct kmem_cache *s, struct page *page,
2817 void *head, void *tail, int cnt,
2818 unsigned long addr)
2819
2820{
2821 void *prior;
2822 int was_frozen;
2823 struct page new;
2824 unsigned long counters;
2825 struct kmem_cache_node *n = NULL;
2826 unsigned long uninitialized_var(flags);
2827
2828 stat(s, FREE_SLOWPATH);
2829
2830 if (kmem_cache_debug(s) &&
2831 !free_debug_processing(s, page, head, tail, cnt, addr))
2832 return;
2833
2834 do {
2835 if (unlikely(n)) {
2836 spin_unlock_irqrestore(&n->list_lock, flags);
2837 n = NULL;
2838 }
2839 prior = page->freelist;
2840 counters = page->counters;
2841 set_freepointer(s, tail, prior);
2842 new.counters = counters;
2843 was_frozen = new.frozen;
2844 new.inuse -= cnt;
2845 if ((!new.inuse || !prior) && !was_frozen) {
2846
2847 if (kmem_cache_has_cpu_partial(s) && !prior) {
2848
2849 /*
2850 * Slab was on no list before and will be
2851 * partially empty
2852 * We can defer the list move and instead
2853 * freeze it.
2854 */
2855 new.frozen = 1;
2856
2857 } else { /* Needs to be taken off a list */
2858
2859 n = get_node(s, page_to_nid(page));
2860 /*
2861 * Speculatively acquire the list_lock.
2862 * If the cmpxchg does not succeed then we may
2863 * drop the list_lock without any processing.
2864 *
2865 * Otherwise the list_lock will synchronize with
2866 * other processors updating the list of slabs.
2867 */
2868 spin_lock_irqsave(&n->list_lock, flags);
2869
2870 }
2871 }
2872
2873 } while (!cmpxchg_double_slab(s, page,
2874 prior, counters,
2875 head, new.counters,
2876 "__slab_free"));
2877
2878 if (likely(!n)) {
2879
2880 /*
2881 * If we just froze the page then put it onto the
2882 * per cpu partial list.
2883 */
2884 if (new.frozen && !was_frozen) {
2885 put_cpu_partial(s, page, 1);
2886 stat(s, CPU_PARTIAL_FREE);
2887 }
2888 /*
2889 * The list lock was not taken therefore no list
2890 * activity can be necessary.
2891 */
2892 if (was_frozen)
2893 stat(s, FREE_FROZEN);
2894 return;
2895 }
2896
2897 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2898 goto slab_empty;
2899
2900 /*
2901 * Objects left in the slab. If it was not on the partial list before
2902 * then add it.
2903 */
2904 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2905 if (kmem_cache_debug(s))
2906 remove_full(s, n, page);
2907 add_partial(n, page, DEACTIVATE_TO_TAIL);
2908 stat(s, FREE_ADD_PARTIAL);
2909 }
2910 spin_unlock_irqrestore(&n->list_lock, flags);
2911 return;
2912
2913slab_empty:
2914 if (prior) {
2915 /*
2916 * Slab on the partial list.
2917 */
2918 remove_partial(n, page);
2919 stat(s, FREE_REMOVE_PARTIAL);
2920 } else {
2921 /* Slab must be on the full list */
2922 remove_full(s, n, page);
2923 }
2924
2925 spin_unlock_irqrestore(&n->list_lock, flags);
2926 stat(s, FREE_SLAB);
2927 discard_slab(s, page);
2928}
2929
2930/*
2931 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2932 * can perform fastpath freeing without additional function calls.
2933 *
2934 * The fastpath is only possible if we are freeing to the current cpu slab
2935 * of this processor. This typically the case if we have just allocated
2936 * the item before.
2937 *
2938 * If fastpath is not possible then fall back to __slab_free where we deal
2939 * with all sorts of special processing.
2940 *
2941 * Bulk free of a freelist with several objects (all pointing to the
2942 * same page) possible by specifying head and tail ptr, plus objects
2943 * count (cnt). Bulk free indicated by tail pointer being set.
2944 */
2945static __always_inline void do_slab_free(struct kmem_cache *s,
2946 struct page *page, void *head, void *tail,
2947 int cnt, unsigned long addr)
2948{
2949 void *tail_obj = tail ? : head;
2950 struct kmem_cache_cpu *c;
2951 unsigned long tid;
2952redo:
2953 /*
2954 * Determine the currently cpus per cpu slab.
2955 * The cpu may change afterward. However that does not matter since
2956 * data is retrieved via this pointer. If we are on the same cpu
2957 * during the cmpxchg then the free will succeed.
2958 */
2959 do {
2960 tid = this_cpu_read(s->cpu_slab->tid);
2961 c = raw_cpu_ptr(s->cpu_slab);
2962 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2963 unlikely(tid != READ_ONCE(c->tid)));
2964
2965 /* Same with comment on barrier() in slab_alloc_node() */
2966 barrier();
2967
2968 if (likely(page == c->page)) {
2969 set_freepointer(s, tail_obj, c->freelist);
2970
2971 if (unlikely(!this_cpu_cmpxchg_double(
2972 s->cpu_slab->freelist, s->cpu_slab->tid,
2973 c->freelist, tid,
2974 head, next_tid(tid)))) {
2975
2976 note_cmpxchg_failure("slab_free", s, tid);
2977 goto redo;
2978 }
2979 stat(s, FREE_FASTPATH);
2980 } else
2981 __slab_free(s, page, head, tail_obj, cnt, addr);
2982
2983}
2984
2985static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2986 void *head, void *tail, int cnt,
2987 unsigned long addr)
2988{
2989 /*
2990 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2991 * to remove objects, whose reuse must be delayed.
2992 */
2993 if (slab_free_freelist_hook(s, &head, &tail))
2994 do_slab_free(s, page, head, tail, cnt, addr);
2995}
2996
2997#ifdef CONFIG_KASAN_GENERIC
2998void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2999{
3000 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3001}
3002#endif
3003
3004void kmem_cache_free(struct kmem_cache *s, void *x)
3005{
3006 s = cache_from_obj(s, x);
3007 if (!s)
3008 return;
3009 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3010 trace_kmem_cache_free(_RET_IP_, x);
3011}
3012EXPORT_SYMBOL(kmem_cache_free);
3013
3014struct detached_freelist {
3015 struct page *page;
3016 void *tail;
3017 void *freelist;
3018 int cnt;
3019 struct kmem_cache *s;
3020};
3021
3022/*
3023 * This function progressively scans the array with free objects (with
3024 * a limited look ahead) and extract objects belonging to the same
3025 * page. It builds a detached freelist directly within the given
3026 * page/objects. This can happen without any need for
3027 * synchronization, because the objects are owned by running process.
3028 * The freelist is build up as a single linked list in the objects.
3029 * The idea is, that this detached freelist can then be bulk
3030 * transferred to the real freelist(s), but only requiring a single
3031 * synchronization primitive. Look ahead in the array is limited due
3032 * to performance reasons.
3033 */
3034static inline
3035int build_detached_freelist(struct kmem_cache *s, size_t size,
3036 void **p, struct detached_freelist *df)
3037{
3038 size_t first_skipped_index = 0;
3039 int lookahead = 3;
3040 void *object;
3041 struct page *page;
3042
3043 /* Always re-init detached_freelist */
3044 df->page = NULL;
3045
3046 do {
3047 object = p[--size];
3048 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3049 } while (!object && size);
3050
3051 if (!object)
3052 return 0;
3053
3054 page = virt_to_head_page(object);
3055 if (!s) {
3056 /* Handle kalloc'ed objects */
3057 if (unlikely(!PageSlab(page))) {
3058 BUG_ON(!PageCompound(page));
3059 kfree_hook(object);
3060 __free_pages(page, compound_order(page));
3061 p[size] = NULL; /* mark object processed */
3062 return size;
3063 }
3064 /* Derive kmem_cache from object */
3065 df->s = page->slab_cache;
3066 } else {
3067 df->s = cache_from_obj(s, object); /* Support for memcg */
3068 }
3069
3070 /* Start new detached freelist */
3071 df->page = page;
3072 set_freepointer(df->s, object, NULL);
3073 df->tail = object;
3074 df->freelist = object;
3075 p[size] = NULL; /* mark object processed */
3076 df->cnt = 1;
3077
3078 while (size) {
3079 object = p[--size];
3080 if (!object)
3081 continue; /* Skip processed objects */
3082
3083 /* df->page is always set at this point */
3084 if (df->page == virt_to_head_page(object)) {
3085 /* Opportunity build freelist */
3086 set_freepointer(df->s, object, df->freelist);
3087 df->freelist = object;
3088 df->cnt++;
3089 p[size] = NULL; /* mark object processed */
3090
3091 continue;
3092 }
3093
3094 /* Limit look ahead search */
3095 if (!--lookahead)
3096 break;
3097
3098 if (!first_skipped_index)
3099 first_skipped_index = size + 1;
3100 }
3101
3102 return first_skipped_index;
3103}
3104
3105/* Note that interrupts must be enabled when calling this function. */
3106void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3107{
3108 if (WARN_ON(!size))
3109 return;
3110
3111 do {
3112 struct detached_freelist df;
3113
3114 size = build_detached_freelist(s, size, p, &df);
3115 if (!df.page)
3116 continue;
3117
3118 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3119 } while (likely(size));
3120}
3121EXPORT_SYMBOL(kmem_cache_free_bulk);
3122
3123/* Note that interrupts must be enabled when calling this function. */
3124int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3125 void **p)
3126{
3127 struct kmem_cache_cpu *c;
3128 int i;
3129
3130 /* memcg and kmem_cache debug support */
3131 s = slab_pre_alloc_hook(s, flags);
3132 if (unlikely(!s))
3133 return false;
3134 /*
3135 * Drain objects in the per cpu slab, while disabling local
3136 * IRQs, which protects against PREEMPT and interrupts
3137 * handlers invoking normal fastpath.
3138 */
3139 local_irq_disable();
3140 c = this_cpu_ptr(s->cpu_slab);
3141
3142 for (i = 0; i < size; i++) {
3143 void *object = c->freelist;
3144
3145 if (unlikely(!object)) {
3146 /*
3147 * Invoking slow path likely have side-effect
3148 * of re-populating per CPU c->freelist
3149 */
3150 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3151 _RET_IP_, c);
3152 if (unlikely(!p[i]))
3153 goto error;
3154
3155 c = this_cpu_ptr(s->cpu_slab);
3156 continue; /* goto for-loop */
3157 }
3158 c->freelist = get_freepointer(s, object);
3159 p[i] = object;
3160 }
3161 c->tid = next_tid(c->tid);
3162 local_irq_enable();
3163
3164 /* Clear memory outside IRQ disabled fastpath loop */
3165 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3166 int j;
3167
3168 for (j = 0; j < i; j++)
3169 memset(p[j], 0, s->object_size);
3170 }
3171
3172 /* memcg and kmem_cache debug support */
3173 slab_post_alloc_hook(s, flags, size, p);
3174 return i;
3175error:
3176 local_irq_enable();
3177 slab_post_alloc_hook(s, flags, i, p);
3178 __kmem_cache_free_bulk(s, i, p);
3179 return 0;
3180}
3181EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3182
3183
3184/*
3185 * Object placement in a slab is made very easy because we always start at
3186 * offset 0. If we tune the size of the object to the alignment then we can
3187 * get the required alignment by putting one properly sized object after
3188 * another.
3189 *
3190 * Notice that the allocation order determines the sizes of the per cpu
3191 * caches. Each processor has always one slab available for allocations.
3192 * Increasing the allocation order reduces the number of times that slabs
3193 * must be moved on and off the partial lists and is therefore a factor in
3194 * locking overhead.
3195 */
3196
3197/*
3198 * Mininum / Maximum order of slab pages. This influences locking overhead
3199 * and slab fragmentation. A higher order reduces the number of partial slabs
3200 * and increases the number of allocations possible without having to
3201 * take the list_lock.
3202 */
3203static unsigned int slub_min_order;
3204static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3205static unsigned int slub_min_objects;
3206
3207/*
3208 * Calculate the order of allocation given an slab object size.
3209 *
3210 * The order of allocation has significant impact on performance and other
3211 * system components. Generally order 0 allocations should be preferred since
3212 * order 0 does not cause fragmentation in the page allocator. Larger objects
3213 * be problematic to put into order 0 slabs because there may be too much
3214 * unused space left. We go to a higher order if more than 1/16th of the slab
3215 * would be wasted.
3216 *
3217 * In order to reach satisfactory performance we must ensure that a minimum
3218 * number of objects is in one slab. Otherwise we may generate too much
3219 * activity on the partial lists which requires taking the list_lock. This is
3220 * less a concern for large slabs though which are rarely used.
3221 *
3222 * slub_max_order specifies the order where we begin to stop considering the
3223 * number of objects in a slab as critical. If we reach slub_max_order then
3224 * we try to keep the page order as low as possible. So we accept more waste
3225 * of space in favor of a small page order.
3226 *
3227 * Higher order allocations also allow the placement of more objects in a
3228 * slab and thereby reduce object handling overhead. If the user has
3229 * requested a higher mininum order then we start with that one instead of
3230 * the smallest order which will fit the object.
3231 */
3232static inline unsigned int slab_order(unsigned int size,
3233 unsigned int min_objects, unsigned int max_order,
3234 unsigned int fract_leftover)
3235{
3236 unsigned int min_order = slub_min_order;
3237 unsigned int order;
3238
3239 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3240 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3241
3242 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3243 order <= max_order; order++) {
3244
3245 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3246 unsigned int rem;
3247
3248 rem = slab_size % size;
3249
3250 if (rem <= slab_size / fract_leftover)
3251 break;
3252 }
3253
3254 return order;
3255}
3256
3257static inline int calculate_order(unsigned int size)
3258{
3259 unsigned int order;
3260 unsigned int min_objects;
3261 unsigned int max_objects;
3262
3263 /*
3264 * Attempt to find best configuration for a slab. This
3265 * works by first attempting to generate a layout with
3266 * the best configuration and backing off gradually.
3267 *
3268 * First we increase the acceptable waste in a slab. Then
3269 * we reduce the minimum objects required in a slab.
3270 */
3271 min_objects = slub_min_objects;
3272 if (!min_objects)
3273 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3274 max_objects = order_objects(slub_max_order, size);
3275 min_objects = min(min_objects, max_objects);
3276
3277 while (min_objects > 1) {
3278 unsigned int fraction;
3279
3280 fraction = 16;
3281 while (fraction >= 4) {
3282 order = slab_order(size, min_objects,
3283 slub_max_order, fraction);
3284 if (order <= slub_max_order)
3285 return order;
3286 fraction /= 2;
3287 }
3288 min_objects--;
3289 }
3290
3291 /*
3292 * We were unable to place multiple objects in a slab. Now
3293 * lets see if we can place a single object there.
3294 */
3295 order = slab_order(size, 1, slub_max_order, 1);
3296 if (order <= slub_max_order)
3297 return order;
3298
3299 /*
3300 * Doh this slab cannot be placed using slub_max_order.
3301 */
3302 order = slab_order(size, 1, MAX_ORDER, 1);
3303 if (order < MAX_ORDER)
3304 return order;
3305 return -ENOSYS;
3306}
3307
3308static void
3309init_kmem_cache_node(struct kmem_cache_node *n)
3310{
3311 n->nr_partial = 0;
3312 spin_lock_init(&n->list_lock);
3313 INIT_LIST_HEAD(&n->partial);
3314#ifdef CONFIG_SLUB_DEBUG
3315 atomic_long_set(&n->nr_slabs, 0);
3316 atomic_long_set(&n->total_objects, 0);
3317 INIT_LIST_HEAD(&n->full);
3318#endif
3319}
3320
3321#ifdef CONFIG_MTK_MM_DEBUG
3322struct kmem_cache debug_kmem_cache = {
3323 .name = "debug_kmem_cache",
3324 };
3325#endif
3326static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3327{
3328 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3329 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3330
3331 /*
3332 * Must align to double word boundary for the double cmpxchg
3333 * instructions to work; see __pcpu_double_call_return_bool().
3334 */
3335#ifdef CONFIG_MTK_MM_DEBUG
3336 if (!strcmp(s->name, "kmalloc-256")) {
3337 debug_kmem_cache.cpu_slab = __alloc_percpu(
3338 sizeof(struct kmem_cache_cpu),
3339 2 * sizeof(void *));
3340 init_kmem_cache_cpus(&debug_kmem_cache);
3341 }
3342#endif
3343 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3344 2 * sizeof(void *));
3345
3346 if (!s->cpu_slab)
3347 return 0;
3348
3349 init_kmem_cache_cpus(s);
3350
3351 return 1;
3352}
3353
3354static struct kmem_cache *kmem_cache_node;
3355
3356/*
3357 * No kmalloc_node yet so do it by hand. We know that this is the first
3358 * slab on the node for this slabcache. There are no concurrent accesses
3359 * possible.
3360 *
3361 * Note that this function only works on the kmem_cache_node
3362 * when allocating for the kmem_cache_node. This is used for bootstrapping
3363 * memory on a fresh node that has no slab structures yet.
3364 */
3365static void early_kmem_cache_node_alloc(int node)
3366{
3367 struct page *page;
3368 struct kmem_cache_node *n;
3369
3370 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3371
3372 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3373
3374 BUG_ON(!page);
3375 if (page_to_nid(page) != node) {
3376 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3377 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3378 }
3379
3380 n = page->freelist;
3381 BUG_ON(!n);
3382#ifdef CONFIG_SLUB_DEBUG
3383 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3384 init_tracking(kmem_cache_node, n);
3385#endif
3386 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3387 GFP_KERNEL);
3388 page->freelist = get_freepointer(kmem_cache_node, n);
3389 page->inuse = 1;
3390 page->frozen = 0;
3391 kmem_cache_node->node[node] = n;
3392 init_kmem_cache_node(n);
3393 inc_slabs_node(kmem_cache_node, node, page->objects);
3394
3395 /*
3396 * No locks need to be taken here as it has just been
3397 * initialized and there is no concurrent access.
3398 */
3399 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3400}
3401
3402static void free_kmem_cache_nodes(struct kmem_cache *s)
3403{
3404 int node;
3405 struct kmem_cache_node *n;
3406
3407 for_each_kmem_cache_node(s, node, n) {
3408 s->node[node] = NULL;
3409 kmem_cache_free(kmem_cache_node, n);
3410 }
3411}
3412
3413void __kmem_cache_release(struct kmem_cache *s)
3414{
3415 cache_random_seq_destroy(s);
3416 free_percpu(s->cpu_slab);
3417 free_kmem_cache_nodes(s);
3418}
3419
3420static int init_kmem_cache_nodes(struct kmem_cache *s)
3421{
3422 int node;
3423
3424 for_each_node_state(node, N_NORMAL_MEMORY) {
3425 struct kmem_cache_node *n;
3426
3427 if (slab_state == DOWN) {
3428 early_kmem_cache_node_alloc(node);
3429 continue;
3430 }
3431 n = kmem_cache_alloc_node(kmem_cache_node,
3432 GFP_KERNEL, node);
3433
3434 if (!n) {
3435 free_kmem_cache_nodes(s);
3436 return 0;
3437 }
3438
3439 init_kmem_cache_node(n);
3440 s->node[node] = n;
3441 }
3442 return 1;
3443}
3444
3445static void set_min_partial(struct kmem_cache *s, unsigned long min)
3446{
3447 if (min < MIN_PARTIAL)
3448 min = MIN_PARTIAL;
3449 else if (min > MAX_PARTIAL)
3450 min = MAX_PARTIAL;
3451 s->min_partial = min;
3452}
3453
3454static void set_cpu_partial(struct kmem_cache *s)
3455{
3456#ifdef CONFIG_SLUB_CPU_PARTIAL
3457 /*
3458 * cpu_partial determined the maximum number of objects kept in the
3459 * per cpu partial lists of a processor.
3460 *
3461 * Per cpu partial lists mainly contain slabs that just have one
3462 * object freed. If they are used for allocation then they can be
3463 * filled up again with minimal effort. The slab will never hit the
3464 * per node partial lists and therefore no locking will be required.
3465 *
3466 * This setting also determines
3467 *
3468 * A) The number of objects from per cpu partial slabs dumped to the
3469 * per node list when we reach the limit.
3470 * B) The number of objects in cpu partial slabs to extract from the
3471 * per node list when we run out of per cpu objects. We only fetch
3472 * 50% to keep some capacity around for frees.
3473 */
3474 if (!kmem_cache_has_cpu_partial(s))
3475 s->cpu_partial = 0;
3476 else if (s->size >= PAGE_SIZE)
3477 s->cpu_partial = 2;
3478 else if (s->size >= 1024)
3479 s->cpu_partial = 6;
3480 else if (s->size >= 256)
3481 s->cpu_partial = 13;
3482 else
3483 s->cpu_partial = 30;
3484#endif
3485}
3486
3487/*
3488 * calculate_sizes() determines the order and the distribution of data within
3489 * a slab object.
3490 */
3491static int calculate_sizes(struct kmem_cache *s, int forced_order)
3492{
3493 slab_flags_t flags = s->flags;
3494 unsigned int size = s->object_size;
3495 unsigned int order;
3496
3497 /*
3498 * Round up object size to the next word boundary. We can only
3499 * place the free pointer at word boundaries and this determines
3500 * the possible location of the free pointer.
3501 */
3502 size = ALIGN(size, sizeof(void *));
3503
3504#ifdef CONFIG_SLUB_DEBUG
3505 /*
3506 * Determine if we can poison the object itself. If the user of
3507 * the slab may touch the object after free or before allocation
3508 * then we should never poison the object itself.
3509 */
3510 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3511 !s->ctor)
3512 s->flags |= __OBJECT_POISON;
3513 else
3514 s->flags &= ~__OBJECT_POISON;
3515
3516
3517 /*
3518 * If we are Redzoning then check if there is some space between the
3519 * end of the object and the free pointer. If not then add an
3520 * additional word to have some bytes to store Redzone information.
3521 */
3522 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3523 size += sizeof(void *);
3524#endif
3525
3526 /*
3527 * With that we have determined the number of bytes in actual use
3528 * by the object. This is the potential offset to the free pointer.
3529 */
3530 s->inuse = size;
3531
3532 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3533 s->ctor)) {
3534 /*
3535 * Relocate free pointer after the object if it is not
3536 * permitted to overwrite the first word of the object on
3537 * kmem_cache_free.
3538 *
3539 * This is the case if we do RCU, have a constructor or
3540 * destructor or are poisoning the objects.
3541 */
3542 s->offset = size;
3543 size += sizeof(void *);
3544 }
3545
3546#ifdef CONFIG_SLUB_DEBUG
3547 if (flags & SLAB_STORE_USER)
3548 /*
3549 * Need to store information about allocs and frees after
3550 * the object.
3551 */
3552 size += 2 * sizeof(struct track);
3553#endif
3554
3555 kasan_cache_create(s, &size, &s->flags);
3556#ifdef CONFIG_SLUB_DEBUG
3557 if (flags & SLAB_RED_ZONE) {
3558 /*
3559 * Add some empty padding so that we can catch
3560 * overwrites from earlier objects rather than let
3561 * tracking information or the free pointer be
3562 * corrupted if a user writes before the start
3563 * of the object.
3564 */
3565 size += sizeof(void *);
3566
3567 s->red_left_pad = sizeof(void *);
3568 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3569 size += s->red_left_pad;
3570 }
3571#endif
3572
3573 /*
3574 * SLUB stores one object immediately after another beginning from
3575 * offset 0. In order to align the objects we have to simply size
3576 * each object to conform to the alignment.
3577 */
3578 size = ALIGN(size, s->align);
3579 s->size = size;
3580 if (forced_order >= 0)
3581 order = forced_order;
3582 else
3583 order = calculate_order(size);
3584
3585 if ((int)order < 0)
3586 return 0;
3587
3588 s->allocflags = 0;
3589 if (order)
3590 s->allocflags |= __GFP_COMP;
3591
3592 if (s->flags & SLAB_CACHE_DMA)
3593 s->allocflags |= GFP_DMA;
3594
3595 if (s->flags & SLAB_CACHE_DMA32)
3596 s->allocflags |= GFP_DMA32;
3597
3598 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3599 s->allocflags |= __GFP_RECLAIMABLE;
3600
3601 /*
3602 * Determine the number of objects per slab
3603 */
3604 s->oo = oo_make(order, size);
3605 s->min = oo_make(get_order(size), size);
3606 if (oo_objects(s->oo) > oo_objects(s->max))
3607 s->max = s->oo;
3608
3609 return !!oo_objects(s->oo);
3610}
3611
3612static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3613{
3614 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3615#ifdef CONFIG_SLAB_FREELIST_HARDENED
3616 s->random = get_random_long();
3617#endif
3618
3619 if (!calculate_sizes(s, -1))
3620 goto error;
3621 if (disable_higher_order_debug) {
3622 /*
3623 * Disable debugging flags that store metadata if the min slab
3624 * order increased.
3625 */
3626 if (get_order(s->size) > get_order(s->object_size)) {
3627 s->flags &= ~DEBUG_METADATA_FLAGS;
3628 s->offset = 0;
3629 if (!calculate_sizes(s, -1))
3630 goto error;
3631 }
3632 }
3633
3634#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3635 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3636 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3637 /* Enable fast mode */
3638 s->flags |= __CMPXCHG_DOUBLE;
3639#endif
3640
3641 /*
3642 * The larger the object size is, the more pages we want on the partial
3643 * list to avoid pounding the page allocator excessively.
3644 */
3645 set_min_partial(s, ilog2(s->size) / 2);
3646
3647 set_cpu_partial(s);
3648
3649#ifdef CONFIG_NUMA
3650 s->remote_node_defrag_ratio = 1000;
3651#endif
3652
3653 /* Initialize the pre-computed randomized freelist if slab is up */
3654 if (slab_state >= UP) {
3655 if (init_cache_random_seq(s))
3656 goto error;
3657 }
3658
3659 if (!init_kmem_cache_nodes(s))
3660 goto error;
3661
3662 if (alloc_kmem_cache_cpus(s))
3663 return 0;
3664
3665 free_kmem_cache_nodes(s);
3666error:
3667 if (flags & SLAB_PANIC)
3668 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3669 s->name, s->size, s->size,
3670 oo_order(s->oo), s->offset, (unsigned long)flags);
3671 return -EINVAL;
3672}
3673
3674static void list_slab_objects(struct kmem_cache *s, struct page *page,
3675 const char *text)
3676{
3677#ifdef CONFIG_SLUB_DEBUG
3678 void *addr = page_address(page);
3679 void *p;
3680 unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects),
3681 sizeof(long),
3682 GFP_ATOMIC);
3683 if (!map)
3684 return;
3685 slab_err(s, page, text, s->name);
3686 slab_lock(page);
3687
3688 get_map(s, page, map);
3689 for_each_object(p, s, addr, page->objects) {
3690
3691 if (!test_bit(slab_index(p, s, addr), map)) {
3692 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3693 print_tracking(s, p);
3694 }
3695 }
3696 slab_unlock(page);
3697 kfree(map);
3698#endif
3699}
3700
3701/*
3702 * Attempt to free all partial slabs on a node.
3703 * This is called from __kmem_cache_shutdown(). We must take list_lock
3704 * because sysfs file might still access partial list after the shutdowning.
3705 */
3706static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3707{
3708 LIST_HEAD(discard);
3709 struct page *page, *h;
3710
3711 BUG_ON(irqs_disabled());
3712 spin_lock_irq(&n->list_lock);
3713 list_for_each_entry_safe(page, h, &n->partial, lru) {
3714 if (!page->inuse) {
3715 remove_partial(n, page);
3716 list_add(&page->lru, &discard);
3717 } else {
3718 list_slab_objects(s, page,
3719 "Objects remaining in %s on __kmem_cache_shutdown()");
3720 }
3721 }
3722 spin_unlock_irq(&n->list_lock);
3723
3724 list_for_each_entry_safe(page, h, &discard, lru)
3725 discard_slab(s, page);
3726}
3727
3728bool __kmem_cache_empty(struct kmem_cache *s)
3729{
3730 int node;
3731 struct kmem_cache_node *n;
3732
3733 for_each_kmem_cache_node(s, node, n)
3734 if (n->nr_partial || slabs_node(s, node))
3735 return false;
3736 return true;
3737}
3738
3739/*
3740 * Release all resources used by a slab cache.
3741 */
3742int __kmem_cache_shutdown(struct kmem_cache *s)
3743{
3744 int node;
3745 struct kmem_cache_node *n;
3746
3747 flush_all(s);
3748 /* Attempt to free all objects */
3749 for_each_kmem_cache_node(s, node, n) {
3750 free_partial(s, n);
3751 if (n->nr_partial || slabs_node(s, node))
3752 return 1;
3753 }
3754 sysfs_slab_remove(s);
3755 return 0;
3756}
3757
3758/********************************************************************
3759 * Kmalloc subsystem
3760 *******************************************************************/
3761
3762static int __init setup_slub_min_order(char *str)
3763{
3764 get_option(&str, (int *)&slub_min_order);
3765
3766 return 1;
3767}
3768
3769__setup("slub_min_order=", setup_slub_min_order);
3770
3771static int __init setup_slub_max_order(char *str)
3772{
3773 get_option(&str, (int *)&slub_max_order);
3774 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3775
3776 return 1;
3777}
3778
3779__setup("slub_max_order=", setup_slub_max_order);
3780
3781static int __init setup_slub_min_objects(char *str)
3782{
3783 get_option(&str, (int *)&slub_min_objects);
3784
3785 return 1;
3786}
3787
3788__setup("slub_min_objects=", setup_slub_min_objects);
3789
3790void *__kmalloc(size_t size, gfp_t flags)
3791{
3792 struct kmem_cache *s;
3793 void *ret;
3794
3795 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3796 return kmalloc_large(size, flags);
3797
3798 s = kmalloc_slab(size, flags);
3799
3800 if (unlikely(ZERO_OR_NULL_PTR(s)))
3801 return s;
3802
3803 ret = slab_alloc(s, flags, _RET_IP_);
3804
3805 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3806
3807 ret = kasan_kmalloc(s, ret, size, flags);
3808
3809 return ret;
3810}
3811EXPORT_SYMBOL(__kmalloc);
3812
3813#ifdef CONFIG_NUMA
3814static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3815{
3816 struct page *page;
3817 void *ptr = NULL;
3818
3819 flags |= __GFP_COMP;
3820 page = alloc_pages_node(node, flags, get_order(size));
3821 if (page)
3822 ptr = page_address(page);
3823
3824 return kmalloc_large_node_hook(ptr, size, flags);
3825}
3826
3827void *__kmalloc_node(size_t size, gfp_t flags, int node)
3828{
3829 struct kmem_cache *s;
3830 void *ret;
3831
3832 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3833 ret = kmalloc_large_node(size, flags, node);
3834
3835 trace_kmalloc_node(_RET_IP_, ret,
3836 size, PAGE_SIZE << get_order(size),
3837 flags, node);
3838
3839 return ret;
3840 }
3841
3842 s = kmalloc_slab(size, flags);
3843
3844 if (unlikely(ZERO_OR_NULL_PTR(s)))
3845 return s;
3846
3847 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3848
3849 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3850
3851 ret = kasan_kmalloc(s, ret, size, flags);
3852
3853 return ret;
3854}
3855EXPORT_SYMBOL(__kmalloc_node);
3856#endif
3857
3858#ifdef CONFIG_HARDENED_USERCOPY
3859/*
3860 * Rejects incorrectly sized objects and objects that are to be copied
3861 * to/from userspace but do not fall entirely within the containing slab
3862 * cache's usercopy region.
3863 *
3864 * Returns NULL if check passes, otherwise const char * to name of cache
3865 * to indicate an error.
3866 */
3867void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3868 bool to_user)
3869{
3870 struct kmem_cache *s;
3871 unsigned int offset;
3872 size_t object_size;
3873
3874 ptr = kasan_reset_tag(ptr);
3875
3876 /* Find object and usable object size. */
3877 s = page->slab_cache;
3878
3879 /* Reject impossible pointers. */
3880 if (ptr < page_address(page))
3881 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3882 to_user, 0, n);
3883
3884 /* Find offset within object. */
3885 offset = (ptr - page_address(page)) % s->size;
3886
3887 /* Adjust for redzone and reject if within the redzone. */
3888 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3889 if (offset < s->red_left_pad)
3890 usercopy_abort("SLUB object in left red zone",
3891 s->name, to_user, offset, n);
3892 offset -= s->red_left_pad;
3893 }
3894
3895 /* Allow address range falling entirely within usercopy region. */
3896 if (offset >= s->useroffset &&
3897 offset - s->useroffset <= s->usersize &&
3898 n <= s->useroffset - offset + s->usersize)
3899 return;
3900
3901 /*
3902 * If the copy is still within the allocated object, produce
3903 * a warning instead of rejecting the copy. This is intended
3904 * to be a temporary method to find any missing usercopy
3905 * whitelists.
3906 */
3907 object_size = slab_ksize(s);
3908 if (usercopy_fallback &&
3909 offset <= object_size && n <= object_size - offset) {
3910 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3911 return;
3912 }
3913
3914 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3915}
3916#endif /* CONFIG_HARDENED_USERCOPY */
3917
3918static size_t __ksize(const void *object)
3919{
3920 struct page *page;
3921
3922 if (unlikely(object == ZERO_SIZE_PTR))
3923 return 0;
3924
3925 page = virt_to_head_page(object);
3926
3927 if (unlikely(!PageSlab(page))) {
3928 WARN_ON(!PageCompound(page));
3929 return PAGE_SIZE << compound_order(page);
3930 }
3931
3932 return slab_ksize(page->slab_cache);
3933}
3934
3935size_t ksize(const void *object)
3936{
3937 size_t size = __ksize(object);
3938 /* We assume that ksize callers could use whole allocated area,
3939 * so we need to unpoison this area.
3940 */
3941 kasan_unpoison_shadow(object, size);
3942 return size;
3943}
3944EXPORT_SYMBOL(ksize);
3945
3946void kfree(const void *x)
3947{
3948 struct page *page;
3949 void *object = (void *)x;
3950
3951 trace_kfree(_RET_IP_, x);
3952
3953 if (unlikely(ZERO_OR_NULL_PTR(x)))
3954 return;
3955
3956 page = virt_to_head_page(x);
3957 if (unlikely(!PageSlab(page))) {
3958 BUG_ON(!PageCompound(page));
3959 kfree_hook(object);
3960 __free_pages(page, compound_order(page));
3961 return;
3962 }
3963 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3964}
3965EXPORT_SYMBOL(kfree);
3966
3967#define SHRINK_PROMOTE_MAX 32
3968
3969/*
3970 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3971 * up most to the head of the partial lists. New allocations will then
3972 * fill those up and thus they can be removed from the partial lists.
3973 *
3974 * The slabs with the least items are placed last. This results in them
3975 * being allocated from last increasing the chance that the last objects
3976 * are freed in them.
3977 */
3978int __kmem_cache_shrink(struct kmem_cache *s)
3979{
3980 int node;
3981 int i;
3982 struct kmem_cache_node *n;
3983 struct page *page;
3984 struct page *t;
3985 struct list_head discard;
3986 struct list_head promote[SHRINK_PROMOTE_MAX];
3987 unsigned long flags;
3988 int ret = 0;
3989
3990 flush_all(s);
3991 for_each_kmem_cache_node(s, node, n) {
3992 INIT_LIST_HEAD(&discard);
3993 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3994 INIT_LIST_HEAD(promote + i);
3995
3996 spin_lock_irqsave(&n->list_lock, flags);
3997
3998 /*
3999 * Build lists of slabs to discard or promote.
4000 *
4001 * Note that concurrent frees may occur while we hold the
4002 * list_lock. page->inuse here is the upper limit.
4003 */
4004 list_for_each_entry_safe(page, t, &n->partial, lru) {
4005 int free = page->objects - page->inuse;
4006
4007 /* Do not reread page->inuse */
4008 barrier();
4009
4010 /* We do not keep full slabs on the list */
4011 BUG_ON(free <= 0);
4012
4013 if (free == page->objects) {
4014 list_move(&page->lru, &discard);
4015 n->nr_partial--;
4016 } else if (free <= SHRINK_PROMOTE_MAX)
4017 list_move(&page->lru, promote + free - 1);
4018 }
4019
4020 /*
4021 * Promote the slabs filled up most to the head of the
4022 * partial list.
4023 */
4024 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4025 list_splice(promote + i, &n->partial);
4026
4027 spin_unlock_irqrestore(&n->list_lock, flags);
4028
4029 /* Release empty slabs */
4030 list_for_each_entry_safe(page, t, &discard, lru)
4031 discard_slab(s, page);
4032
4033 if (slabs_node(s, node))
4034 ret = 1;
4035 }
4036
4037 return ret;
4038}
4039
4040#ifdef CONFIG_MEMCG
4041static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4042{
4043 /*
4044 * Called with all the locks held after a sched RCU grace period.
4045 * Even if @s becomes empty after shrinking, we can't know that @s
4046 * doesn't have allocations already in-flight and thus can't
4047 * destroy @s until the associated memcg is released.
4048 *
4049 * However, let's remove the sysfs files for empty caches here.
4050 * Each cache has a lot of interface files which aren't
4051 * particularly useful for empty draining caches; otherwise, we can
4052 * easily end up with millions of unnecessary sysfs files on
4053 * systems which have a lot of memory and transient cgroups.
4054 */
4055 if (!__kmem_cache_shrink(s))
4056 sysfs_slab_remove(s);
4057}
4058
4059void __kmemcg_cache_deactivate(struct kmem_cache *s)
4060{
4061 /*
4062 * Disable empty slabs caching. Used to avoid pinning offline
4063 * memory cgroups by kmem pages that can be freed.
4064 */
4065 slub_set_cpu_partial(s, 0);
4066 s->min_partial = 0;
4067
4068 /*
4069 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4070 * we have to make sure the change is visible before shrinking.
4071 */
4072 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4073}
4074#endif
4075
4076static int slab_mem_going_offline_callback(void *arg)
4077{
4078 struct kmem_cache *s;
4079
4080 mutex_lock(&slab_mutex);
4081 list_for_each_entry(s, &slab_caches, list)
4082 __kmem_cache_shrink(s);
4083 mutex_unlock(&slab_mutex);
4084
4085 return 0;
4086}
4087
4088static void slab_mem_offline_callback(void *arg)
4089{
4090 struct kmem_cache_node *n;
4091 struct kmem_cache *s;
4092 struct memory_notify *marg = arg;
4093 int offline_node;
4094
4095 offline_node = marg->status_change_nid_normal;
4096
4097 /*
4098 * If the node still has available memory. we need kmem_cache_node
4099 * for it yet.
4100 */
4101 if (offline_node < 0)
4102 return;
4103
4104 mutex_lock(&slab_mutex);
4105 list_for_each_entry(s, &slab_caches, list) {
4106 n = get_node(s, offline_node);
4107 if (n) {
4108 /*
4109 * if n->nr_slabs > 0, slabs still exist on the node
4110 * that is going down. We were unable to free them,
4111 * and offline_pages() function shouldn't call this
4112 * callback. So, we must fail.
4113 */
4114 BUG_ON(slabs_node(s, offline_node));
4115
4116 s->node[offline_node] = NULL;
4117 kmem_cache_free(kmem_cache_node, n);
4118 }
4119 }
4120 mutex_unlock(&slab_mutex);
4121}
4122
4123static int slab_mem_going_online_callback(void *arg)
4124{
4125 struct kmem_cache_node *n;
4126 struct kmem_cache *s;
4127 struct memory_notify *marg = arg;
4128 int nid = marg->status_change_nid_normal;
4129 int ret = 0;
4130
4131 /*
4132 * If the node's memory is already available, then kmem_cache_node is
4133 * already created. Nothing to do.
4134 */
4135 if (nid < 0)
4136 return 0;
4137
4138 /*
4139 * We are bringing a node online. No memory is available yet. We must
4140 * allocate a kmem_cache_node structure in order to bring the node
4141 * online.
4142 */
4143 mutex_lock(&slab_mutex);
4144 list_for_each_entry(s, &slab_caches, list) {
4145 /*
4146 * XXX: kmem_cache_alloc_node will fallback to other nodes
4147 * since memory is not yet available from the node that
4148 * is brought up.
4149 */
4150 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4151 if (!n) {
4152 ret = -ENOMEM;
4153 goto out;
4154 }
4155 init_kmem_cache_node(n);
4156 s->node[nid] = n;
4157 }
4158out:
4159 mutex_unlock(&slab_mutex);
4160 return ret;
4161}
4162
4163static int slab_memory_callback(struct notifier_block *self,
4164 unsigned long action, void *arg)
4165{
4166 int ret = 0;
4167
4168 switch (action) {
4169 case MEM_GOING_ONLINE:
4170 ret = slab_mem_going_online_callback(arg);
4171 break;
4172 case MEM_GOING_OFFLINE:
4173 ret = slab_mem_going_offline_callback(arg);
4174 break;
4175 case MEM_OFFLINE:
4176 case MEM_CANCEL_ONLINE:
4177 slab_mem_offline_callback(arg);
4178 break;
4179 case MEM_ONLINE:
4180 case MEM_CANCEL_OFFLINE:
4181 break;
4182 }
4183 if (ret)
4184 ret = notifier_from_errno(ret);
4185 else
4186 ret = NOTIFY_OK;
4187 return ret;
4188}
4189
4190static struct notifier_block slab_memory_callback_nb = {
4191 .notifier_call = slab_memory_callback,
4192 .priority = SLAB_CALLBACK_PRI,
4193};
4194
4195/********************************************************************
4196 * Basic setup of slabs
4197 *******************************************************************/
4198
4199/*
4200 * Used for early kmem_cache structures that were allocated using
4201 * the page allocator. Allocate them properly then fix up the pointers
4202 * that may be pointing to the wrong kmem_cache structure.
4203 */
4204
4205static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4206{
4207 int node;
4208 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4209 struct kmem_cache_node *n;
4210
4211 memcpy(s, static_cache, kmem_cache->object_size);
4212
4213 /*
4214 * This runs very early, and only the boot processor is supposed to be
4215 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4216 * IPIs around.
4217 */
4218 __flush_cpu_slab(s, smp_processor_id());
4219 for_each_kmem_cache_node(s, node, n) {
4220 struct page *p;
4221
4222 list_for_each_entry(p, &n->partial, lru)
4223 p->slab_cache = s;
4224
4225#ifdef CONFIG_SLUB_DEBUG
4226 list_for_each_entry(p, &n->full, lru)
4227 p->slab_cache = s;
4228#endif
4229 }
4230 slab_init_memcg_params(s);
4231 list_add(&s->list, &slab_caches);
4232 memcg_link_cache(s);
4233 return s;
4234}
4235
4236void __init kmem_cache_init(void)
4237{
4238 static __initdata struct kmem_cache boot_kmem_cache,
4239 boot_kmem_cache_node;
4240
4241 if (debug_guardpage_minorder())
4242 slub_max_order = 0;
4243
4244 kmem_cache_node = &boot_kmem_cache_node;
4245 kmem_cache = &boot_kmem_cache;
4246
4247 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4248 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4249
4250 register_hotmemory_notifier(&slab_memory_callback_nb);
4251
4252 /* Able to allocate the per node structures */
4253 slab_state = PARTIAL;
4254
4255 create_boot_cache(kmem_cache, "kmem_cache",
4256 offsetof(struct kmem_cache, node) +
4257 nr_node_ids * sizeof(struct kmem_cache_node *),
4258 SLAB_HWCACHE_ALIGN, 0, 0);
4259
4260 kmem_cache = bootstrap(&boot_kmem_cache);
4261 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4262
4263 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4264 setup_kmalloc_cache_index_table();
4265 create_kmalloc_caches(0);
4266
4267 /* Setup random freelists for each cache */
4268 init_freelist_randomization();
4269
4270 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4271 slub_cpu_dead);
4272
4273 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4274 cache_line_size(),
4275 slub_min_order, slub_max_order, slub_min_objects,
4276 nr_cpu_ids, nr_node_ids);
4277}
4278
4279void __init kmem_cache_init_late(void)
4280{
4281}
4282
4283struct kmem_cache *
4284__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4285 slab_flags_t flags, void (*ctor)(void *))
4286{
4287 struct kmem_cache *s, *c;
4288
4289 s = find_mergeable(size, align, flags, name, ctor);
4290 if (s) {
4291 s->refcount++;
4292
4293 /*
4294 * Adjust the object sizes so that we clear
4295 * the complete object on kzalloc.
4296 */
4297 s->object_size = max(s->object_size, size);
4298 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4299
4300 for_each_memcg_cache(c, s) {
4301 c->object_size = s->object_size;
4302 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4303 }
4304
4305 if (sysfs_slab_alias(s, name)) {
4306 s->refcount--;
4307 s = NULL;
4308 }
4309 }
4310
4311 return s;
4312}
4313
4314int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4315{
4316 int err;
4317
4318 err = kmem_cache_open(s, flags);
4319 if (err)
4320 return err;
4321
4322 /* Mutex is not taken during early boot */
4323 if (slab_state <= UP)
4324 return 0;
4325
4326 memcg_propagate_slab_attrs(s);
4327 err = sysfs_slab_add(s);
4328 if (err)
4329 __kmem_cache_release(s);
4330
4331 return err;
4332}
4333
4334void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4335{
4336 struct kmem_cache *s;
4337 void *ret;
4338
4339 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4340 return kmalloc_large(size, gfpflags);
4341
4342 s = kmalloc_slab(size, gfpflags);
4343
4344 if (unlikely(ZERO_OR_NULL_PTR(s)))
4345 return s;
4346
4347 ret = slab_alloc(s, gfpflags, caller);
4348
4349 /* Honor the call site pointer we received. */
4350 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4351
4352 return ret;
4353}
4354
4355#ifdef CONFIG_NUMA
4356void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4357 int node, unsigned long caller)
4358{
4359 struct kmem_cache *s;
4360 void *ret;
4361
4362 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4363 ret = kmalloc_large_node(size, gfpflags, node);
4364
4365 trace_kmalloc_node(caller, ret,
4366 size, PAGE_SIZE << get_order(size),
4367 gfpflags, node);
4368
4369 return ret;
4370 }
4371
4372 s = kmalloc_slab(size, gfpflags);
4373
4374 if (unlikely(ZERO_OR_NULL_PTR(s)))
4375 return s;
4376
4377 ret = slab_alloc_node(s, gfpflags, node, caller);
4378
4379 /* Honor the call site pointer we received. */
4380 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4381
4382 return ret;
4383}
4384#endif
4385
4386#ifdef CONFIG_SYSFS
4387static int count_inuse(struct page *page)
4388{
4389 return page->inuse;
4390}
4391
4392static int count_total(struct page *page)
4393{
4394 return page->objects;
4395}
4396#endif
4397
4398#ifdef CONFIG_SLUB_DEBUG
4399static int validate_slab(struct kmem_cache *s, struct page *page,
4400 unsigned long *map)
4401{
4402 void *p;
4403 void *addr = page_address(page);
4404
4405 if (!check_slab(s, page) ||
4406 !on_freelist(s, page, NULL))
4407 return 0;
4408
4409 /* Now we know that a valid freelist exists */
4410 bitmap_zero(map, page->objects);
4411
4412 get_map(s, page, map);
4413 for_each_object(p, s, addr, page->objects) {
4414 if (test_bit(slab_index(p, s, addr), map))
4415 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4416 return 0;
4417 }
4418
4419 for_each_object(p, s, addr, page->objects)
4420 if (!test_bit(slab_index(p, s, addr), map))
4421 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4422 return 0;
4423 return 1;
4424}
4425
4426static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4427 unsigned long *map)
4428{
4429 slab_lock(page);
4430 validate_slab(s, page, map);
4431 slab_unlock(page);
4432}
4433
4434static int validate_slab_node(struct kmem_cache *s,
4435 struct kmem_cache_node *n, unsigned long *map)
4436{
4437 unsigned long count = 0;
4438 struct page *page;
4439 unsigned long flags;
4440
4441 spin_lock_irqsave(&n->list_lock, flags);
4442
4443 list_for_each_entry(page, &n->partial, lru) {
4444 validate_slab_slab(s, page, map);
4445 count++;
4446 }
4447 if (count != n->nr_partial)
4448 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4449 s->name, count, n->nr_partial);
4450
4451 if (!(s->flags & SLAB_STORE_USER))
4452 goto out;
4453
4454 list_for_each_entry(page, &n->full, lru) {
4455 validate_slab_slab(s, page, map);
4456 count++;
4457 }
4458 if (count != atomic_long_read(&n->nr_slabs))
4459 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4460 s->name, count, atomic_long_read(&n->nr_slabs));
4461
4462out:
4463 spin_unlock_irqrestore(&n->list_lock, flags);
4464 return count;
4465}
4466
4467static long validate_slab_cache(struct kmem_cache *s)
4468{
4469 int node;
4470 unsigned long count = 0;
4471 unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
4472 sizeof(unsigned long),
4473 GFP_KERNEL);
4474 struct kmem_cache_node *n;
4475
4476 if (!map)
4477 return -ENOMEM;
4478
4479 flush_all(s);
4480 for_each_kmem_cache_node(s, node, n)
4481 count += validate_slab_node(s, n, map);
4482 kfree(map);
4483 return count;
4484}
4485/*
4486 * Generate lists of code addresses where slabcache objects are allocated
4487 * and freed.
4488 */
4489
4490struct location {
4491 unsigned long count;
4492 unsigned long addr;
4493 long long sum_time;
4494 long min_time;
4495 long max_time;
4496 long min_pid;
4497 long max_pid;
4498 DECLARE_BITMAP(cpus, NR_CPUS);
4499 nodemask_t nodes;
4500};
4501
4502struct loc_track {
4503 unsigned long max;
4504 unsigned long count;
4505 struct location *loc;
4506};
4507
4508static void free_loc_track(struct loc_track *t)
4509{
4510 if (t->max)
4511 free_pages((unsigned long)t->loc,
4512 get_order(sizeof(struct location) * t->max));
4513}
4514
4515static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4516{
4517 struct location *l;
4518 int order;
4519
4520 order = get_order(sizeof(struct location) * max);
4521
4522 l = (void *)__get_free_pages(flags, order);
4523 if (!l)
4524 return 0;
4525
4526 if (t->count) {
4527 memcpy(l, t->loc, sizeof(struct location) * t->count);
4528 free_loc_track(t);
4529 }
4530 t->max = max;
4531 t->loc = l;
4532 return 1;
4533}
4534
4535static int add_location(struct loc_track *t, struct kmem_cache *s,
4536 const struct track *track)
4537{
4538 long start, end, pos;
4539 struct location *l;
4540 unsigned long caddr;
4541 unsigned long age = jiffies - track->when;
4542
4543 start = -1;
4544 end = t->count;
4545
4546 for ( ; ; ) {
4547 pos = start + (end - start + 1) / 2;
4548
4549 /*
4550 * There is nothing at "end". If we end up there
4551 * we need to add something to before end.
4552 */
4553 if (pos == end)
4554 break;
4555
4556 caddr = t->loc[pos].addr;
4557 if (track->addr == caddr) {
4558
4559 l = &t->loc[pos];
4560 l->count++;
4561 if (track->when) {
4562 l->sum_time += age;
4563 if (age < l->min_time)
4564 l->min_time = age;
4565 if (age > l->max_time)
4566 l->max_time = age;
4567
4568 if (track->pid < l->min_pid)
4569 l->min_pid = track->pid;
4570 if (track->pid > l->max_pid)
4571 l->max_pid = track->pid;
4572
4573 cpumask_set_cpu(track->cpu,
4574 to_cpumask(l->cpus));
4575 }
4576 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4577 return 1;
4578 }
4579
4580 if (track->addr < caddr)
4581 end = pos;
4582 else
4583 start = pos;
4584 }
4585
4586 /*
4587 * Not found. Insert new tracking element.
4588 */
4589 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4590 return 0;
4591
4592 l = t->loc + pos;
4593 if (pos < t->count)
4594 memmove(l + 1, l,
4595 (t->count - pos) * sizeof(struct location));
4596 t->count++;
4597 l->count = 1;
4598 l->addr = track->addr;
4599 l->sum_time = age;
4600 l->min_time = age;
4601 l->max_time = age;
4602 l->min_pid = track->pid;
4603 l->max_pid = track->pid;
4604 cpumask_clear(to_cpumask(l->cpus));
4605 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4606 nodes_clear(l->nodes);
4607 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4608 return 1;
4609}
4610
4611static void process_slab(struct loc_track *t, struct kmem_cache *s,
4612 struct page *page, enum track_item alloc,
4613 unsigned long *map)
4614{
4615 void *addr = page_address(page);
4616 void *p;
4617
4618 bitmap_zero(map, page->objects);
4619 get_map(s, page, map);
4620
4621 for_each_object(p, s, addr, page->objects)
4622 if (!test_bit(slab_index(p, s, addr), map))
4623 add_location(t, s, get_track(s, p, alloc));
4624}
4625
4626static int list_locations(struct kmem_cache *s, char *buf,
4627 enum track_item alloc)
4628{
4629 int len = 0;
4630 unsigned long i;
4631 struct loc_track t = { 0, 0, NULL };
4632 int node;
4633 unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
4634 sizeof(unsigned long),
4635 GFP_KERNEL);
4636 struct kmem_cache_node *n;
4637
4638 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4639 GFP_KERNEL)) {
4640 kfree(map);
4641 return sprintf(buf, "Out of memory\n");
4642 }
4643 /* Push back cpu slabs */
4644 flush_all(s);
4645
4646 for_each_kmem_cache_node(s, node, n) {
4647 unsigned long flags;
4648 struct page *page;
4649
4650 if (!atomic_long_read(&n->nr_slabs))
4651 continue;
4652
4653 spin_lock_irqsave(&n->list_lock, flags);
4654 list_for_each_entry(page, &n->partial, lru)
4655 process_slab(&t, s, page, alloc, map);
4656 list_for_each_entry(page, &n->full, lru)
4657 process_slab(&t, s, page, alloc, map);
4658 spin_unlock_irqrestore(&n->list_lock, flags);
4659 }
4660
4661 for (i = 0; i < t.count; i++) {
4662 struct location *l = &t.loc[i];
4663
4664 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4665 break;
4666 len += sprintf(buf + len, "%7ld ", l->count);
4667
4668 if (l->addr)
4669 len += sprintf(buf + len, "%pS", (void *)l->addr);
4670 else
4671 len += sprintf(buf + len, "<not-available>");
4672
4673 if (l->sum_time != l->min_time) {
4674 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4675 l->min_time,
4676 (long)div_u64(l->sum_time, l->count),
4677 l->max_time);
4678 } else
4679 len += sprintf(buf + len, " age=%ld",
4680 l->min_time);
4681
4682 if (l->min_pid != l->max_pid)
4683 len += sprintf(buf + len, " pid=%ld-%ld",
4684 l->min_pid, l->max_pid);
4685 else
4686 len += sprintf(buf + len, " pid=%ld",
4687 l->min_pid);
4688
4689 if (num_online_cpus() > 1 &&
4690 !cpumask_empty(to_cpumask(l->cpus)) &&
4691 len < PAGE_SIZE - 60)
4692 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4693 " cpus=%*pbl",
4694 cpumask_pr_args(to_cpumask(l->cpus)));
4695
4696 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4697 len < PAGE_SIZE - 60)
4698 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4699 " nodes=%*pbl",
4700 nodemask_pr_args(&l->nodes));
4701
4702 len += sprintf(buf + len, "\n");
4703 }
4704
4705 free_loc_track(&t);
4706 kfree(map);
4707 if (!t.count)
4708 len += sprintf(buf, "No data\n");
4709 return len;
4710}
4711#endif
4712
4713#ifdef SLUB_RESILIENCY_TEST
4714static void __init resiliency_test(void)
4715{
4716 u8 *p;
4717 int type = KMALLOC_NORMAL;
4718
4719 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4720
4721 pr_err("SLUB resiliency testing\n");
4722 pr_err("-----------------------\n");
4723 pr_err("A. Corruption after allocation\n");
4724
4725 p = kzalloc(16, GFP_KERNEL);
4726 p[16] = 0x12;
4727 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4728 p + 16);
4729
4730 validate_slab_cache(kmalloc_caches[type][4]);
4731
4732 /* Hmmm... The next two are dangerous */
4733 p = kzalloc(32, GFP_KERNEL);
4734 p[32 + sizeof(void *)] = 0x34;
4735 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4736 p);
4737 pr_err("If allocated object is overwritten then not detectable\n\n");
4738
4739 validate_slab_cache(kmalloc_caches[type][5]);
4740 p = kzalloc(64, GFP_KERNEL);
4741 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4742 *p = 0x56;
4743 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4744 p);
4745 pr_err("If allocated object is overwritten then not detectable\n\n");
4746 validate_slab_cache(kmalloc_caches[type][6]);
4747
4748 pr_err("\nB. Corruption after free\n");
4749 p = kzalloc(128, GFP_KERNEL);
4750 kfree(p);
4751 *p = 0x78;
4752 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4753 validate_slab_cache(kmalloc_caches[type][7]);
4754
4755 p = kzalloc(256, GFP_KERNEL);
4756 kfree(p);
4757 p[50] = 0x9a;
4758 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4759 validate_slab_cache(kmalloc_caches[type][8]);
4760
4761 p = kzalloc(512, GFP_KERNEL);
4762 kfree(p);
4763 p[512] = 0xab;
4764 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4765 validate_slab_cache(kmalloc_caches[type][9]);
4766}
4767#else
4768#ifdef CONFIG_SYSFS
4769static void resiliency_test(void) {};
4770#endif
4771#endif
4772
4773#ifdef CONFIG_SYSFS
4774enum slab_stat_type {
4775 SL_ALL, /* All slabs */
4776 SL_PARTIAL, /* Only partially allocated slabs */
4777 SL_CPU, /* Only slabs used for cpu caches */
4778 SL_OBJECTS, /* Determine allocated objects not slabs */
4779 SL_TOTAL /* Determine object capacity not slabs */
4780};
4781
4782#define SO_ALL (1 << SL_ALL)
4783#define SO_PARTIAL (1 << SL_PARTIAL)
4784#define SO_CPU (1 << SL_CPU)
4785#define SO_OBJECTS (1 << SL_OBJECTS)
4786#define SO_TOTAL (1 << SL_TOTAL)
4787
4788#ifdef CONFIG_MEMCG
4789static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4790
4791static int __init setup_slub_memcg_sysfs(char *str)
4792{
4793 int v;
4794
4795 if (get_option(&str, &v) > 0)
4796 memcg_sysfs_enabled = v;
4797
4798 return 1;
4799}
4800
4801__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4802#endif
4803
4804static ssize_t show_slab_objects(struct kmem_cache *s,
4805 char *buf, unsigned long flags)
4806{
4807 unsigned long total = 0;
4808 int node;
4809 int x;
4810 unsigned long *nodes;
4811
4812 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4813 if (!nodes)
4814 return -ENOMEM;
4815
4816 if (flags & SO_CPU) {
4817 int cpu;
4818
4819 for_each_possible_cpu(cpu) {
4820 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4821 cpu);
4822 int node;
4823 struct page *page;
4824
4825 page = READ_ONCE(c->page);
4826 if (!page)
4827 continue;
4828
4829 node = page_to_nid(page);
4830 if (flags & SO_TOTAL)
4831 x = page->objects;
4832 else if (flags & SO_OBJECTS)
4833 x = page->inuse;
4834 else
4835 x = 1;
4836
4837 total += x;
4838 nodes[node] += x;
4839
4840 page = slub_percpu_partial_read_once(c);
4841 if (page) {
4842 node = page_to_nid(page);
4843 if (flags & SO_TOTAL)
4844 WARN_ON_ONCE(1);
4845 else if (flags & SO_OBJECTS)
4846 WARN_ON_ONCE(1);
4847 else
4848 x = page->pages;
4849 total += x;
4850 nodes[node] += x;
4851 }
4852 }
4853 }
4854
4855 /*
4856 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4857 * already held which will conflict with an existing lock order:
4858 *
4859 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4860 *
4861 * We don't really need mem_hotplug_lock (to hold off
4862 * slab_mem_going_offline_callback) here because slab's memory hot
4863 * unplug code doesn't destroy the kmem_cache->node[] data.
4864 */
4865
4866#ifdef CONFIG_SLUB_DEBUG
4867 if (flags & SO_ALL) {
4868 struct kmem_cache_node *n;
4869
4870 for_each_kmem_cache_node(s, node, n) {
4871
4872 if (flags & SO_TOTAL)
4873 x = atomic_long_read(&n->total_objects);
4874 else if (flags & SO_OBJECTS)
4875 x = atomic_long_read(&n->total_objects) -
4876 count_partial(n, count_free);
4877 else
4878 x = atomic_long_read(&n->nr_slabs);
4879 total += x;
4880 nodes[node] += x;
4881 }
4882
4883 } else
4884#endif
4885 if (flags & SO_PARTIAL) {
4886 struct kmem_cache_node *n;
4887
4888 for_each_kmem_cache_node(s, node, n) {
4889 if (flags & SO_TOTAL)
4890 x = count_partial(n, count_total);
4891 else if (flags & SO_OBJECTS)
4892 x = count_partial(n, count_inuse);
4893 else
4894 x = n->nr_partial;
4895 total += x;
4896 nodes[node] += x;
4897 }
4898 }
4899 x = sprintf(buf, "%lu", total);
4900#ifdef CONFIG_NUMA
4901 for (node = 0; node < nr_node_ids; node++)
4902 if (nodes[node])
4903 x += sprintf(buf + x, " N%d=%lu",
4904 node, nodes[node]);
4905#endif
4906 kfree(nodes);
4907 return x + sprintf(buf + x, "\n");
4908}
4909
4910#ifdef CONFIG_SLUB_DEBUG
4911static int any_slab_objects(struct kmem_cache *s)
4912{
4913 int node;
4914 struct kmem_cache_node *n;
4915
4916 for_each_kmem_cache_node(s, node, n)
4917 if (atomic_long_read(&n->total_objects))
4918 return 1;
4919
4920 return 0;
4921}
4922#endif
4923
4924#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4925#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4926
4927struct slab_attribute {
4928 struct attribute attr;
4929 ssize_t (*show)(struct kmem_cache *s, char *buf);
4930 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4931};
4932
4933#define SLAB_ATTR_RO(_name) \
4934 static struct slab_attribute _name##_attr = \
4935 __ATTR(_name, 0400, _name##_show, NULL)
4936
4937#define SLAB_ATTR(_name) \
4938 static struct slab_attribute _name##_attr = \
4939 __ATTR(_name, 0600, _name##_show, _name##_store)
4940
4941static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4942{
4943 return sprintf(buf, "%u\n", s->size);
4944}
4945SLAB_ATTR_RO(slab_size);
4946
4947static ssize_t align_show(struct kmem_cache *s, char *buf)
4948{
4949 return sprintf(buf, "%u\n", s->align);
4950}
4951SLAB_ATTR_RO(align);
4952
4953static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4954{
4955 return sprintf(buf, "%u\n", s->object_size);
4956}
4957SLAB_ATTR_RO(object_size);
4958
4959static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4960{
4961 return sprintf(buf, "%u\n", oo_objects(s->oo));
4962}
4963SLAB_ATTR_RO(objs_per_slab);
4964
4965static ssize_t order_store(struct kmem_cache *s,
4966 const char *buf, size_t length)
4967{
4968 unsigned int order;
4969 int err;
4970
4971 err = kstrtouint(buf, 10, &order);
4972 if (err)
4973 return err;
4974
4975 if (order > slub_max_order || order < slub_min_order)
4976 return -EINVAL;
4977
4978 calculate_sizes(s, order);
4979 return length;
4980}
4981
4982static ssize_t order_show(struct kmem_cache *s, char *buf)
4983{
4984 return sprintf(buf, "%u\n", oo_order(s->oo));
4985}
4986SLAB_ATTR(order);
4987
4988static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4989{
4990 return sprintf(buf, "%lu\n", s->min_partial);
4991}
4992
4993static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4994 size_t length)
4995{
4996 unsigned long min;
4997 int err;
4998
4999 err = kstrtoul(buf, 10, &min);
5000 if (err)
5001 return err;
5002
5003 set_min_partial(s, min);
5004 return length;
5005}
5006SLAB_ATTR(min_partial);
5007
5008static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5009{
5010 return sprintf(buf, "%u\n", slub_cpu_partial(s));
5011}
5012
5013static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5014 size_t length)
5015{
5016 unsigned int objects;
5017 int err;
5018
5019 err = kstrtouint(buf, 10, &objects);
5020 if (err)
5021 return err;
5022 if (objects && !kmem_cache_has_cpu_partial(s))
5023 return -EINVAL;
5024
5025 slub_set_cpu_partial(s, objects);
5026 flush_all(s);
5027 return length;
5028}
5029SLAB_ATTR(cpu_partial);
5030
5031static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5032{
5033 if (!s->ctor)
5034 return 0;
5035 return sprintf(buf, "%pS\n", s->ctor);
5036}
5037SLAB_ATTR_RO(ctor);
5038
5039static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5040{
5041 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5042}
5043SLAB_ATTR_RO(aliases);
5044
5045static ssize_t partial_show(struct kmem_cache *s, char *buf)
5046{
5047 return show_slab_objects(s, buf, SO_PARTIAL);
5048}
5049SLAB_ATTR_RO(partial);
5050
5051static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5052{
5053 return show_slab_objects(s, buf, SO_CPU);
5054}
5055SLAB_ATTR_RO(cpu_slabs);
5056
5057static ssize_t objects_show(struct kmem_cache *s, char *buf)
5058{
5059 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5060}
5061SLAB_ATTR_RO(objects);
5062
5063static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5064{
5065 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5066}
5067SLAB_ATTR_RO(objects_partial);
5068
5069static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5070{
5071 int objects = 0;
5072 int pages = 0;
5073 int cpu;
5074 int len;
5075
5076 for_each_online_cpu(cpu) {
5077 struct page *page;
5078
5079 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5080
5081 if (page) {
5082 pages += page->pages;
5083 objects += page->pobjects;
5084 }
5085 }
5086
5087 len = sprintf(buf, "%d(%d)", objects, pages);
5088
5089#ifdef CONFIG_SMP
5090 for_each_online_cpu(cpu) {
5091 struct page *page;
5092
5093 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5094
5095 if (page && len < PAGE_SIZE - 20)
5096 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5097 page->pobjects, page->pages);
5098 }
5099#endif
5100 return len + sprintf(buf + len, "\n");
5101}
5102SLAB_ATTR_RO(slabs_cpu_partial);
5103
5104static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5105{
5106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5107}
5108
5109static ssize_t reclaim_account_store(struct kmem_cache *s,
5110 const char *buf, size_t length)
5111{
5112 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5113 if (buf[0] == '1')
5114 s->flags |= SLAB_RECLAIM_ACCOUNT;
5115 return length;
5116}
5117SLAB_ATTR(reclaim_account);
5118
5119static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5120{
5121 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5122}
5123SLAB_ATTR_RO(hwcache_align);
5124
5125#ifdef CONFIG_ZONE_DMA
5126static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5127{
5128 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5129}
5130SLAB_ATTR_RO(cache_dma);
5131#endif
5132
5133#ifdef CONFIG_ZONE_DMA32
5134static ssize_t cache_dma32_show(struct kmem_cache *s, char *buf)
5135{
5136 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA32));
5137}
5138SLAB_ATTR_RO(cache_dma32);
5139#endif
5140
5141static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5142{
5143 return sprintf(buf, "%u\n", s->usersize);
5144}
5145SLAB_ATTR_RO(usersize);
5146
5147static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5148{
5149 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5150}
5151SLAB_ATTR_RO(destroy_by_rcu);
5152
5153#ifdef CONFIG_SLUB_DEBUG
5154static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5155{
5156 return show_slab_objects(s, buf, SO_ALL);
5157}
5158SLAB_ATTR_RO(slabs);
5159
5160static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5161{
5162 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5163}
5164SLAB_ATTR_RO(total_objects);
5165
5166static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5167{
5168 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5169}
5170
5171static ssize_t sanity_checks_store(struct kmem_cache *s,
5172 const char *buf, size_t length)
5173{
5174 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5175 if (buf[0] == '1') {
5176 s->flags &= ~__CMPXCHG_DOUBLE;
5177 s->flags |= SLAB_CONSISTENCY_CHECKS;
5178 }
5179 return length;
5180}
5181SLAB_ATTR(sanity_checks);
5182
5183static ssize_t trace_show(struct kmem_cache *s, char *buf)
5184{
5185 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5186}
5187
5188static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5189 size_t length)
5190{
5191 /*
5192 * Tracing a merged cache is going to give confusing results
5193 * as well as cause other issues like converting a mergeable
5194 * cache into an umergeable one.
5195 */
5196 if (s->refcount > 1)
5197 return -EINVAL;
5198
5199 s->flags &= ~SLAB_TRACE;
5200 if (buf[0] == '1') {
5201 s->flags &= ~__CMPXCHG_DOUBLE;
5202 s->flags |= SLAB_TRACE;
5203 }
5204 return length;
5205}
5206SLAB_ATTR(trace);
5207
5208static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5209{
5210 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5211}
5212
5213static ssize_t red_zone_store(struct kmem_cache *s,
5214 const char *buf, size_t length)
5215{
5216 if (any_slab_objects(s))
5217 return -EBUSY;
5218
5219 s->flags &= ~SLAB_RED_ZONE;
5220 if (buf[0] == '1') {
5221 s->flags |= SLAB_RED_ZONE;
5222 }
5223 calculate_sizes(s, -1);
5224 return length;
5225}
5226SLAB_ATTR(red_zone);
5227
5228static ssize_t poison_show(struct kmem_cache *s, char *buf)
5229{
5230 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5231}
5232
5233static ssize_t poison_store(struct kmem_cache *s,
5234 const char *buf, size_t length)
5235{
5236 if (any_slab_objects(s))
5237 return -EBUSY;
5238
5239 s->flags &= ~SLAB_POISON;
5240 if (buf[0] == '1') {
5241 s->flags |= SLAB_POISON;
5242 }
5243 calculate_sizes(s, -1);
5244 return length;
5245}
5246SLAB_ATTR(poison);
5247
5248static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5249{
5250 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5251}
5252
5253static ssize_t store_user_store(struct kmem_cache *s,
5254 const char *buf, size_t length)
5255{
5256 if (any_slab_objects(s))
5257 return -EBUSY;
5258
5259 s->flags &= ~SLAB_STORE_USER;
5260 if (buf[0] == '1') {
5261 s->flags &= ~__CMPXCHG_DOUBLE;
5262 s->flags |= SLAB_STORE_USER;
5263 }
5264 calculate_sizes(s, -1);
5265 return length;
5266}
5267SLAB_ATTR(store_user);
5268
5269static ssize_t validate_show(struct kmem_cache *s, char *buf)
5270{
5271 return 0;
5272}
5273
5274static ssize_t validate_store(struct kmem_cache *s,
5275 const char *buf, size_t length)
5276{
5277 int ret = -EINVAL;
5278
5279 if (buf[0] == '1') {
5280 ret = validate_slab_cache(s);
5281 if (ret >= 0)
5282 ret = length;
5283 }
5284 return ret;
5285}
5286SLAB_ATTR(validate);
5287
5288static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5289{
5290 if (!(s->flags & SLAB_STORE_USER))
5291 return -ENOSYS;
5292 return list_locations(s, buf, TRACK_ALLOC);
5293}
5294SLAB_ATTR_RO(alloc_calls);
5295
5296static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5297{
5298 if (!(s->flags & SLAB_STORE_USER))
5299 return -ENOSYS;
5300 return list_locations(s, buf, TRACK_FREE);
5301}
5302SLAB_ATTR_RO(free_calls);
5303#endif /* CONFIG_SLUB_DEBUG */
5304
5305#ifdef CONFIG_FAILSLAB
5306static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5307{
5308 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5309}
5310
5311static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5312 size_t length)
5313{
5314 if (s->refcount > 1)
5315 return -EINVAL;
5316
5317 s->flags &= ~SLAB_FAILSLAB;
5318 if (buf[0] == '1')
5319 s->flags |= SLAB_FAILSLAB;
5320 return length;
5321}
5322SLAB_ATTR(failslab);
5323#endif
5324
5325static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5326{
5327 return 0;
5328}
5329
5330static ssize_t shrink_store(struct kmem_cache *s,
5331 const char *buf, size_t length)
5332{
5333 if (buf[0] == '1')
5334 kmem_cache_shrink(s);
5335 else
5336 return -EINVAL;
5337 return length;
5338}
5339SLAB_ATTR(shrink);
5340
5341#ifdef CONFIG_NUMA
5342static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5343{
5344 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5345}
5346
5347static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5348 const char *buf, size_t length)
5349{
5350 unsigned int ratio;
5351 int err;
5352
5353 err = kstrtouint(buf, 10, &ratio);
5354 if (err)
5355 return err;
5356 if (ratio > 100)
5357 return -ERANGE;
5358
5359 s->remote_node_defrag_ratio = ratio * 10;
5360
5361 return length;
5362}
5363SLAB_ATTR(remote_node_defrag_ratio);
5364#endif
5365
5366#ifdef CONFIG_SLUB_STATS
5367static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5368{
5369 unsigned long sum = 0;
5370 int cpu;
5371 int len;
5372 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5373
5374 if (!data)
5375 return -ENOMEM;
5376
5377 for_each_online_cpu(cpu) {
5378 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5379
5380 data[cpu] = x;
5381 sum += x;
5382 }
5383
5384 len = sprintf(buf, "%lu", sum);
5385
5386#ifdef CONFIG_SMP
5387 for_each_online_cpu(cpu) {
5388 if (data[cpu] && len < PAGE_SIZE - 20)
5389 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5390 }
5391#endif
5392 kfree(data);
5393 return len + sprintf(buf + len, "\n");
5394}
5395
5396static void clear_stat(struct kmem_cache *s, enum stat_item si)
5397{
5398 int cpu;
5399
5400 for_each_online_cpu(cpu)
5401 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5402}
5403
5404#define STAT_ATTR(si, text) \
5405static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5406{ \
5407 return show_stat(s, buf, si); \
5408} \
5409static ssize_t text##_store(struct kmem_cache *s, \
5410 const char *buf, size_t length) \
5411{ \
5412 if (buf[0] != '0') \
5413 return -EINVAL; \
5414 clear_stat(s, si); \
5415 return length; \
5416} \
5417SLAB_ATTR(text); \
5418
5419STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5420STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5421STAT_ATTR(FREE_FASTPATH, free_fastpath);
5422STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5423STAT_ATTR(FREE_FROZEN, free_frozen);
5424STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5425STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5426STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5427STAT_ATTR(ALLOC_SLAB, alloc_slab);
5428STAT_ATTR(ALLOC_REFILL, alloc_refill);
5429STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5430STAT_ATTR(FREE_SLAB, free_slab);
5431STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5432STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5433STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5434STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5435STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5436STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5437STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5438STAT_ATTR(ORDER_FALLBACK, order_fallback);
5439STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5440STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5441STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5442STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5443STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5444STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5445#endif
5446
5447static struct attribute *slab_attrs[] = {
5448 &slab_size_attr.attr,
5449 &object_size_attr.attr,
5450 &objs_per_slab_attr.attr,
5451 &order_attr.attr,
5452 &min_partial_attr.attr,
5453 &cpu_partial_attr.attr,
5454 &objects_attr.attr,
5455 &objects_partial_attr.attr,
5456 &partial_attr.attr,
5457 &cpu_slabs_attr.attr,
5458 &ctor_attr.attr,
5459 &aliases_attr.attr,
5460 &align_attr.attr,
5461 &hwcache_align_attr.attr,
5462 &reclaim_account_attr.attr,
5463 &destroy_by_rcu_attr.attr,
5464 &shrink_attr.attr,
5465 &slabs_cpu_partial_attr.attr,
5466#ifdef CONFIG_SLUB_DEBUG
5467 &total_objects_attr.attr,
5468 &slabs_attr.attr,
5469 &sanity_checks_attr.attr,
5470 &trace_attr.attr,
5471 &red_zone_attr.attr,
5472 &poison_attr.attr,
5473 &store_user_attr.attr,
5474 &validate_attr.attr,
5475 &alloc_calls_attr.attr,
5476 &free_calls_attr.attr,
5477#endif
5478#ifdef CONFIG_ZONE_DMA
5479 &cache_dma_attr.attr,
5480#endif
5481#ifdef CONFIG_ZONE_DMA32
5482 &cache_dma32_attr.attr,
5483#endif
5484#ifdef CONFIG_NUMA
5485 &remote_node_defrag_ratio_attr.attr,
5486#endif
5487#ifdef CONFIG_SLUB_STATS
5488 &alloc_fastpath_attr.attr,
5489 &alloc_slowpath_attr.attr,
5490 &free_fastpath_attr.attr,
5491 &free_slowpath_attr.attr,
5492 &free_frozen_attr.attr,
5493 &free_add_partial_attr.attr,
5494 &free_remove_partial_attr.attr,
5495 &alloc_from_partial_attr.attr,
5496 &alloc_slab_attr.attr,
5497 &alloc_refill_attr.attr,
5498 &alloc_node_mismatch_attr.attr,
5499 &free_slab_attr.attr,
5500 &cpuslab_flush_attr.attr,
5501 &deactivate_full_attr.attr,
5502 &deactivate_empty_attr.attr,
5503 &deactivate_to_head_attr.attr,
5504 &deactivate_to_tail_attr.attr,
5505 &deactivate_remote_frees_attr.attr,
5506 &deactivate_bypass_attr.attr,
5507 &order_fallback_attr.attr,
5508 &cmpxchg_double_fail_attr.attr,
5509 &cmpxchg_double_cpu_fail_attr.attr,
5510 &cpu_partial_alloc_attr.attr,
5511 &cpu_partial_free_attr.attr,
5512 &cpu_partial_node_attr.attr,
5513 &cpu_partial_drain_attr.attr,
5514#endif
5515#ifdef CONFIG_FAILSLAB
5516 &failslab_attr.attr,
5517#endif
5518 &usersize_attr.attr,
5519
5520 NULL
5521};
5522
5523static const struct attribute_group slab_attr_group = {
5524 .attrs = slab_attrs,
5525};
5526
5527static ssize_t slab_attr_show(struct kobject *kobj,
5528 struct attribute *attr,
5529 char *buf)
5530{
5531 struct slab_attribute *attribute;
5532 struct kmem_cache *s;
5533 int err;
5534
5535 attribute = to_slab_attr(attr);
5536 s = to_slab(kobj);
5537
5538 if (!attribute->show)
5539 return -EIO;
5540
5541 err = attribute->show(s, buf);
5542
5543 return err;
5544}
5545
5546static ssize_t slab_attr_store(struct kobject *kobj,
5547 struct attribute *attr,
5548 const char *buf, size_t len)
5549{
5550 struct slab_attribute *attribute;
5551 struct kmem_cache *s;
5552 int err;
5553
5554 attribute = to_slab_attr(attr);
5555 s = to_slab(kobj);
5556
5557 if (!attribute->store)
5558 return -EIO;
5559
5560 err = attribute->store(s, buf, len);
5561#ifdef CONFIG_MEMCG
5562 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5563 struct kmem_cache *c;
5564
5565 mutex_lock(&slab_mutex);
5566 if (s->max_attr_size < len)
5567 s->max_attr_size = len;
5568
5569 /*
5570 * This is a best effort propagation, so this function's return
5571 * value will be determined by the parent cache only. This is
5572 * basically because not all attributes will have a well
5573 * defined semantics for rollbacks - most of the actions will
5574 * have permanent effects.
5575 *
5576 * Returning the error value of any of the children that fail
5577 * is not 100 % defined, in the sense that users seeing the
5578 * error code won't be able to know anything about the state of
5579 * the cache.
5580 *
5581 * Only returning the error code for the parent cache at least
5582 * has well defined semantics. The cache being written to
5583 * directly either failed or succeeded, in which case we loop
5584 * through the descendants with best-effort propagation.
5585 */
5586 for_each_memcg_cache(c, s)
5587 attribute->store(c, buf, len);
5588 mutex_unlock(&slab_mutex);
5589 }
5590#endif
5591 return err;
5592}
5593
5594static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5595{
5596#ifdef CONFIG_MEMCG
5597 int i;
5598 char *buffer = NULL;
5599 struct kmem_cache *root_cache;
5600
5601 if (is_root_cache(s))
5602 return;
5603
5604 root_cache = s->memcg_params.root_cache;
5605
5606 /*
5607 * This mean this cache had no attribute written. Therefore, no point
5608 * in copying default values around
5609 */
5610 if (!root_cache->max_attr_size)
5611 return;
5612
5613 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5614 char mbuf[64];
5615 char *buf;
5616 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5617 ssize_t len;
5618
5619 if (!attr || !attr->store || !attr->show)
5620 continue;
5621
5622 /*
5623 * It is really bad that we have to allocate here, so we will
5624 * do it only as a fallback. If we actually allocate, though,
5625 * we can just use the allocated buffer until the end.
5626 *
5627 * Most of the slub attributes will tend to be very small in
5628 * size, but sysfs allows buffers up to a page, so they can
5629 * theoretically happen.
5630 */
5631 if (buffer)
5632 buf = buffer;
5633 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5634 buf = mbuf;
5635 else {
5636 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5637 if (WARN_ON(!buffer))
5638 continue;
5639 buf = buffer;
5640 }
5641
5642 len = attr->show(root_cache, buf);
5643 if (len > 0)
5644 attr->store(s, buf, len);
5645 }
5646
5647 if (buffer)
5648 free_page((unsigned long)buffer);
5649#endif
5650}
5651
5652static void kmem_cache_release(struct kobject *k)
5653{
5654 slab_kmem_cache_release(to_slab(k));
5655}
5656
5657static const struct sysfs_ops slab_sysfs_ops = {
5658 .show = slab_attr_show,
5659 .store = slab_attr_store,
5660};
5661
5662static struct kobj_type slab_ktype = {
5663 .sysfs_ops = &slab_sysfs_ops,
5664 .release = kmem_cache_release,
5665};
5666
5667static int uevent_filter(struct kset *kset, struct kobject *kobj)
5668{
5669 struct kobj_type *ktype = get_ktype(kobj);
5670
5671 if (ktype == &slab_ktype)
5672 return 1;
5673 return 0;
5674}
5675
5676static const struct kset_uevent_ops slab_uevent_ops = {
5677 .filter = uevent_filter,
5678};
5679
5680static struct kset *slab_kset;
5681
5682static inline struct kset *cache_kset(struct kmem_cache *s)
5683{
5684#ifdef CONFIG_MEMCG
5685 if (!is_root_cache(s))
5686 return s->memcg_params.root_cache->memcg_kset;
5687#endif
5688 return slab_kset;
5689}
5690
5691#define ID_STR_LENGTH 64
5692
5693/* Create a unique string id for a slab cache:
5694 *
5695 * Format :[flags-]size
5696 */
5697static char *create_unique_id(struct kmem_cache *s)
5698{
5699 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5700 char *p = name;
5701
5702 BUG_ON(!name);
5703
5704 *p++ = ':';
5705 /*
5706 * First flags affecting slabcache operations. We will only
5707 * get here for aliasable slabs so we do not need to support
5708 * too many flags. The flags here must cover all flags that
5709 * are matched during merging to guarantee that the id is
5710 * unique.
5711 */
5712 if (s->flags & SLAB_CACHE_DMA)
5713 *p++ = 'd';
5714 if (s->flags & SLAB_CACHE_DMA32)
5715 *p++ = 'D';
5716 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5717 *p++ = 'a';
5718 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5719 *p++ = 'F';
5720 if (s->flags & SLAB_ACCOUNT)
5721 *p++ = 'A';
5722 if (p != name + 1)
5723 *p++ = '-';
5724 p += sprintf(p, "%07u", s->size);
5725
5726 BUG_ON(p > name + ID_STR_LENGTH - 1);
5727 return name;
5728}
5729
5730static void sysfs_slab_remove_workfn(struct work_struct *work)
5731{
5732 struct kmem_cache *s =
5733 container_of(work, struct kmem_cache, kobj_remove_work);
5734
5735 if (!s->kobj.state_in_sysfs)
5736 /*
5737 * For a memcg cache, this may be called during
5738 * deactivation and again on shutdown. Remove only once.
5739 * A cache is never shut down before deactivation is
5740 * complete, so no need to worry about synchronization.
5741 */
5742 goto out;
5743
5744#ifdef CONFIG_MEMCG
5745 kset_unregister(s->memcg_kset);
5746#endif
5747 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5748out:
5749 kobject_put(&s->kobj);
5750}
5751
5752static int sysfs_slab_add(struct kmem_cache *s)
5753{
5754 int err;
5755 const char *name;
5756 struct kset *kset = cache_kset(s);
5757 int unmergeable = slab_unmergeable(s);
5758
5759 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5760
5761 if (!kset) {
5762 kobject_init(&s->kobj, &slab_ktype);
5763 return 0;
5764 }
5765
5766 if (!unmergeable && disable_higher_order_debug &&
5767 (slub_debug & DEBUG_METADATA_FLAGS))
5768 unmergeable = 1;
5769
5770 if (unmergeable) {
5771 /*
5772 * Slabcache can never be merged so we can use the name proper.
5773 * This is typically the case for debug situations. In that
5774 * case we can catch duplicate names easily.
5775 */
5776 sysfs_remove_link(&slab_kset->kobj, s->name);
5777 name = s->name;
5778 } else {
5779 /*
5780 * Create a unique name for the slab as a target
5781 * for the symlinks.
5782 */
5783 name = create_unique_id(s);
5784 }
5785
5786 s->kobj.kset = kset;
5787 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5788 if (err)
5789 goto out;
5790
5791 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5792 if (err)
5793 goto out_del_kobj;
5794
5795#ifdef CONFIG_MEMCG
5796 if (is_root_cache(s) && memcg_sysfs_enabled) {
5797 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5798 if (!s->memcg_kset) {
5799 err = -ENOMEM;
5800 goto out_del_kobj;
5801 }
5802 }
5803#endif
5804
5805 kobject_uevent(&s->kobj, KOBJ_ADD);
5806 if (!unmergeable) {
5807 /* Setup first alias */
5808 sysfs_slab_alias(s, s->name);
5809 }
5810out:
5811 if (!unmergeable)
5812 kfree(name);
5813 return err;
5814out_del_kobj:
5815 kobject_del(&s->kobj);
5816 goto out;
5817}
5818
5819static void sysfs_slab_remove(struct kmem_cache *s)
5820{
5821 if (slab_state < FULL)
5822 /*
5823 * Sysfs has not been setup yet so no need to remove the
5824 * cache from sysfs.
5825 */
5826 return;
5827
5828 kobject_get(&s->kobj);
5829 schedule_work(&s->kobj_remove_work);
5830}
5831
5832void sysfs_slab_unlink(struct kmem_cache *s)
5833{
5834 if (slab_state >= FULL)
5835 kobject_del(&s->kobj);
5836}
5837
5838void sysfs_slab_release(struct kmem_cache *s)
5839{
5840 if (slab_state >= FULL)
5841 kobject_put(&s->kobj);
5842}
5843
5844/*
5845 * Need to buffer aliases during bootup until sysfs becomes
5846 * available lest we lose that information.
5847 */
5848struct saved_alias {
5849 struct kmem_cache *s;
5850 const char *name;
5851 struct saved_alias *next;
5852};
5853
5854static struct saved_alias *alias_list;
5855
5856static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5857{
5858 struct saved_alias *al;
5859
5860 if (slab_state == FULL) {
5861 /*
5862 * If we have a leftover link then remove it.
5863 */
5864 sysfs_remove_link(&slab_kset->kobj, name);
5865 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5866 }
5867
5868 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5869 if (!al)
5870 return -ENOMEM;
5871
5872 al->s = s;
5873 al->name = name;
5874 al->next = alias_list;
5875 alias_list = al;
5876 return 0;
5877}
5878
5879static int __init slab_sysfs_init(void)
5880{
5881 struct kmem_cache *s;
5882 int err;
5883
5884 mutex_lock(&slab_mutex);
5885
5886 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5887 if (!slab_kset) {
5888 mutex_unlock(&slab_mutex);
5889 pr_err("Cannot register slab subsystem.\n");
5890 return -ENOSYS;
5891 }
5892
5893 slab_state = FULL;
5894
5895 list_for_each_entry(s, &slab_caches, list) {
5896 err = sysfs_slab_add(s);
5897 if (err)
5898 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5899 s->name);
5900 }
5901
5902 while (alias_list) {
5903 struct saved_alias *al = alias_list;
5904
5905 alias_list = alias_list->next;
5906 err = sysfs_slab_alias(al->s, al->name);
5907 if (err)
5908 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5909 al->name);
5910 kfree(al);
5911 }
5912
5913 mutex_unlock(&slab_mutex);
5914 resiliency_test();
5915 return 0;
5916}
5917
5918__initcall(slab_sysfs_init);
5919#endif /* CONFIG_SYSFS */
5920
5921/*
5922 * The /proc/slabinfo ABI
5923 */
5924#ifdef CONFIG_SLUB_DEBUG
5925void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5926{
5927 unsigned long nr_slabs = 0;
5928 unsigned long nr_objs = 0;
5929 unsigned long nr_free = 0;
5930 int node;
5931 struct kmem_cache_node *n;
5932
5933 for_each_kmem_cache_node(s, node, n) {
5934 nr_slabs += node_nr_slabs(n);
5935 nr_objs += node_nr_objs(n);
5936 nr_free += count_partial(n, count_free);
5937 }
5938
5939 sinfo->active_objs = nr_objs - nr_free;
5940 sinfo->num_objs = nr_objs;
5941 sinfo->active_slabs = nr_slabs;
5942 sinfo->num_slabs = nr_slabs;
5943 sinfo->objects_per_slab = oo_objects(s->oo);
5944 sinfo->cache_order = oo_order(s->oo);
5945}
5946
5947void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5948{
5949}
5950
5951ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5952 size_t count, loff_t *ppos)
5953{
5954 return -EIO;
5955}
5956#endif /* CONFIG_SLUB_DEBUG */