blob: 02ad17aca54d95e6a5572df13787bfc1144b66ce [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/sched/mm.h>
10#include <linux/sched/task.h>
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
19#include <linux/shmem_fs.h>
20#include <linux/blkdev.h>
21#include <linux/random.h>
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
26#include <linux/ksm.h>
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
30#include <linux/mutex.h>
31#include <linux/capability.h>
32#include <linux/syscalls.h>
33#include <linux/memcontrol.h>
34#include <linux/poll.h>
35#include <linux/oom.h>
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
38#include <linux/export.h>
39#include <linux/swap_slots.h>
40#include <linux/sort.h>
41
42#include <asm/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
45#include <linux/swap_cgroup.h>
46
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52DEFINE_SPINLOCK(swap_lock);
53static unsigned int nr_swapfiles;
54atomic_long_t nr_swap_pages;
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62long total_swap_pages;
63static int least_priority = -1;
64
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88static struct plist_head *swap_avail_heads;
89static DEFINE_SPINLOCK(swap_avail_lock);
90
91struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93static DEFINE_MUTEX(swapon_mutex);
94
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101static struct swap_info_struct *swap_type_to_swap_info(int type)
102{
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
105
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
108}
109
110static inline unsigned char swap_count(unsigned char ent)
111{
112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
113}
114
115/* returns 1 if swap entry is freed */
116static int
117__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
118{
119 swp_entry_t entry = swp_entry(si->type, offset);
120 struct page *page;
121 int ret = 0;
122
123 page = find_get_page(swap_address_space(entry), swp_offset(entry));
124 if (!page)
125 return 0;
126 /*
127 * This function is called from scan_swap_map() and it's called
128 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
129 * We have to use trylock for avoiding deadlock. This is a special
130 * case and you should use try_to_free_swap() with explicit lock_page()
131 * in usual operations.
132 */
133 if (trylock_page(page)) {
134 ret = try_to_free_swap(page);
135 unlock_page(page);
136 }
137 put_page(page);
138 return ret;
139}
140
141/*
142 * swapon tell device that all the old swap contents can be discarded,
143 * to allow the swap device to optimize its wear-levelling.
144 */
145static int discard_swap(struct swap_info_struct *si)
146{
147 struct swap_extent *se;
148 sector_t start_block;
149 sector_t nr_blocks;
150 int err = 0;
151
152 /* Do not discard the swap header page! */
153 se = &si->first_swap_extent;
154 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
155 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
156 if (nr_blocks) {
157 err = blkdev_issue_discard(si->bdev, start_block,
158 nr_blocks, GFP_KERNEL, 0);
159 if (err)
160 return err;
161 cond_resched();
162 }
163
164 list_for_each_entry(se, &si->first_swap_extent.list, list) {
165 start_block = se->start_block << (PAGE_SHIFT - 9);
166 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
167
168 err = blkdev_issue_discard(si->bdev, start_block,
169 nr_blocks, GFP_KERNEL, 0);
170 if (err)
171 break;
172
173 cond_resched();
174 }
175 return err; /* That will often be -EOPNOTSUPP */
176}
177
178/*
179 * swap allocation tell device that a cluster of swap can now be discarded,
180 * to allow the swap device to optimize its wear-levelling.
181 */
182static void discard_swap_cluster(struct swap_info_struct *si,
183 pgoff_t start_page, pgoff_t nr_pages)
184{
185 struct swap_extent *se = si->curr_swap_extent;
186 int found_extent = 0;
187
188 while (nr_pages) {
189 if (se->start_page <= start_page &&
190 start_page < se->start_page + se->nr_pages) {
191 pgoff_t offset = start_page - se->start_page;
192 sector_t start_block = se->start_block + offset;
193 sector_t nr_blocks = se->nr_pages - offset;
194
195 if (nr_blocks > nr_pages)
196 nr_blocks = nr_pages;
197 start_page += nr_blocks;
198 nr_pages -= nr_blocks;
199
200 if (!found_extent++)
201 si->curr_swap_extent = se;
202
203 start_block <<= PAGE_SHIFT - 9;
204 nr_blocks <<= PAGE_SHIFT - 9;
205 if (blkdev_issue_discard(si->bdev, start_block,
206 nr_blocks, GFP_NOIO, 0))
207 break;
208 }
209
210 se = list_next_entry(se, list);
211 }
212}
213
214#ifdef CONFIG_THP_SWAP
215#define SWAPFILE_CLUSTER HPAGE_PMD_NR
216
217#define swap_entry_size(size) (size)
218#else
219#define SWAPFILE_CLUSTER 256
220
221/*
222 * Define swap_entry_size() as constant to let compiler to optimize
223 * out some code if !CONFIG_THP_SWAP
224 */
225#define swap_entry_size(size) 1
226#endif
227#define LATENCY_LIMIT 256
228
229static inline void cluster_set_flag(struct swap_cluster_info *info,
230 unsigned int flag)
231{
232 info->flags = flag;
233}
234
235static inline unsigned int cluster_count(struct swap_cluster_info *info)
236{
237 return info->data;
238}
239
240static inline void cluster_set_count(struct swap_cluster_info *info,
241 unsigned int c)
242{
243 info->data = c;
244}
245
246static inline void cluster_set_count_flag(struct swap_cluster_info *info,
247 unsigned int c, unsigned int f)
248{
249 info->flags = f;
250 info->data = c;
251}
252
253static inline unsigned int cluster_next(struct swap_cluster_info *info)
254{
255 return info->data;
256}
257
258static inline void cluster_set_next(struct swap_cluster_info *info,
259 unsigned int n)
260{
261 info->data = n;
262}
263
264static inline void cluster_set_next_flag(struct swap_cluster_info *info,
265 unsigned int n, unsigned int f)
266{
267 info->flags = f;
268 info->data = n;
269}
270
271static inline bool cluster_is_free(struct swap_cluster_info *info)
272{
273 return info->flags & CLUSTER_FLAG_FREE;
274}
275
276static inline bool cluster_is_null(struct swap_cluster_info *info)
277{
278 return info->flags & CLUSTER_FLAG_NEXT_NULL;
279}
280
281static inline void cluster_set_null(struct swap_cluster_info *info)
282{
283 info->flags = CLUSTER_FLAG_NEXT_NULL;
284 info->data = 0;
285}
286
287static inline bool cluster_is_huge(struct swap_cluster_info *info)
288{
289 if (IS_ENABLED(CONFIG_THP_SWAP))
290 return info->flags & CLUSTER_FLAG_HUGE;
291 return false;
292}
293
294static inline void cluster_clear_huge(struct swap_cluster_info *info)
295{
296 info->flags &= ~CLUSTER_FLAG_HUGE;
297}
298
299static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
300 unsigned long offset)
301{
302 struct swap_cluster_info *ci;
303
304 ci = si->cluster_info;
305 if (ci) {
306 ci += offset / SWAPFILE_CLUSTER;
307 spin_lock(&ci->lock);
308 }
309 return ci;
310}
311
312static inline void unlock_cluster(struct swap_cluster_info *ci)
313{
314 if (ci)
315 spin_unlock(&ci->lock);
316}
317
318/*
319 * Determine the locking method in use for this device. Return
320 * swap_cluster_info if SSD-style cluster-based locking is in place.
321 */
322static inline struct swap_cluster_info *lock_cluster_or_swap_info(
323 struct swap_info_struct *si, unsigned long offset)
324{
325 struct swap_cluster_info *ci;
326
327 /* Try to use fine-grained SSD-style locking if available: */
328 ci = lock_cluster(si, offset);
329 /* Otherwise, fall back to traditional, coarse locking: */
330 if (!ci)
331 spin_lock(&si->lock);
332
333 return ci;
334}
335
336static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
337 struct swap_cluster_info *ci)
338{
339 if (ci)
340 unlock_cluster(ci);
341 else
342 spin_unlock(&si->lock);
343}
344
345static inline bool cluster_list_empty(struct swap_cluster_list *list)
346{
347 return cluster_is_null(&list->head);
348}
349
350static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
351{
352 return cluster_next(&list->head);
353}
354
355static void cluster_list_init(struct swap_cluster_list *list)
356{
357 cluster_set_null(&list->head);
358 cluster_set_null(&list->tail);
359}
360
361static void cluster_list_add_tail(struct swap_cluster_list *list,
362 struct swap_cluster_info *ci,
363 unsigned int idx)
364{
365 if (cluster_list_empty(list)) {
366 cluster_set_next_flag(&list->head, idx, 0);
367 cluster_set_next_flag(&list->tail, idx, 0);
368 } else {
369 struct swap_cluster_info *ci_tail;
370 unsigned int tail = cluster_next(&list->tail);
371
372 /*
373 * Nested cluster lock, but both cluster locks are
374 * only acquired when we held swap_info_struct->lock
375 */
376 ci_tail = ci + tail;
377 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
378 cluster_set_next(ci_tail, idx);
379 spin_unlock(&ci_tail->lock);
380 cluster_set_next_flag(&list->tail, idx, 0);
381 }
382}
383
384static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
385 struct swap_cluster_info *ci)
386{
387 unsigned int idx;
388
389 idx = cluster_next(&list->head);
390 if (cluster_next(&list->tail) == idx) {
391 cluster_set_null(&list->head);
392 cluster_set_null(&list->tail);
393 } else
394 cluster_set_next_flag(&list->head,
395 cluster_next(&ci[idx]), 0);
396
397 return idx;
398}
399
400/* Add a cluster to discard list and schedule it to do discard */
401static void swap_cluster_schedule_discard(struct swap_info_struct *si,
402 unsigned int idx)
403{
404 /*
405 * If scan_swap_map() can't find a free cluster, it will check
406 * si->swap_map directly. To make sure the discarding cluster isn't
407 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
408 * will be cleared after discard
409 */
410 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
411 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
412
413 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
414
415 schedule_work(&si->discard_work);
416}
417
418static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
419{
420 struct swap_cluster_info *ci = si->cluster_info;
421
422 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
423 cluster_list_add_tail(&si->free_clusters, ci, idx);
424}
425
426/*
427 * Doing discard actually. After a cluster discard is finished, the cluster
428 * will be added to free cluster list. caller should hold si->lock.
429*/
430static void swap_do_scheduled_discard(struct swap_info_struct *si)
431{
432 struct swap_cluster_info *info, *ci;
433 unsigned int idx;
434
435 info = si->cluster_info;
436
437 while (!cluster_list_empty(&si->discard_clusters)) {
438 idx = cluster_list_del_first(&si->discard_clusters, info);
439 spin_unlock(&si->lock);
440
441 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
442 SWAPFILE_CLUSTER);
443
444 spin_lock(&si->lock);
445 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
446 __free_cluster(si, idx);
447 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
448 0, SWAPFILE_CLUSTER);
449 unlock_cluster(ci);
450 }
451}
452
453static void swap_discard_work(struct work_struct *work)
454{
455 struct swap_info_struct *si;
456
457 si = container_of(work, struct swap_info_struct, discard_work);
458
459 spin_lock(&si->lock);
460 swap_do_scheduled_discard(si);
461 spin_unlock(&si->lock);
462}
463
464static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
465{
466 struct swap_cluster_info *ci = si->cluster_info;
467
468 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
469 cluster_list_del_first(&si->free_clusters, ci);
470 cluster_set_count_flag(ci + idx, 0, 0);
471}
472
473static void free_cluster(struct swap_info_struct *si, unsigned long idx)
474{
475 struct swap_cluster_info *ci = si->cluster_info + idx;
476
477 VM_BUG_ON(cluster_count(ci) != 0);
478 /*
479 * If the swap is discardable, prepare discard the cluster
480 * instead of free it immediately. The cluster will be freed
481 * after discard.
482 */
483 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
484 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
485 swap_cluster_schedule_discard(si, idx);
486 return;
487 }
488
489 __free_cluster(si, idx);
490}
491
492/*
493 * The cluster corresponding to page_nr will be used. The cluster will be
494 * removed from free cluster list and its usage counter will be increased.
495 */
496static void inc_cluster_info_page(struct swap_info_struct *p,
497 struct swap_cluster_info *cluster_info, unsigned long page_nr)
498{
499 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
500
501 if (!cluster_info)
502 return;
503 if (cluster_is_free(&cluster_info[idx]))
504 alloc_cluster(p, idx);
505
506 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
507 cluster_set_count(&cluster_info[idx],
508 cluster_count(&cluster_info[idx]) + 1);
509}
510
511/*
512 * The cluster corresponding to page_nr decreases one usage. If the usage
513 * counter becomes 0, which means no page in the cluster is in using, we can
514 * optionally discard the cluster and add it to free cluster list.
515 */
516static void dec_cluster_info_page(struct swap_info_struct *p,
517 struct swap_cluster_info *cluster_info, unsigned long page_nr)
518{
519 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
520
521 if (!cluster_info)
522 return;
523
524 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
525 cluster_set_count(&cluster_info[idx],
526 cluster_count(&cluster_info[idx]) - 1);
527
528 if (cluster_count(&cluster_info[idx]) == 0)
529 free_cluster(p, idx);
530}
531
532/*
533 * It's possible scan_swap_map() uses a free cluster in the middle of free
534 * cluster list. Avoiding such abuse to avoid list corruption.
535 */
536static bool
537scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
538 unsigned long offset)
539{
540 struct percpu_cluster *percpu_cluster;
541 bool conflict;
542
543 offset /= SWAPFILE_CLUSTER;
544 conflict = !cluster_list_empty(&si->free_clusters) &&
545 offset != cluster_list_first(&si->free_clusters) &&
546 cluster_is_free(&si->cluster_info[offset]);
547
548 if (!conflict)
549 return false;
550
551 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
552 cluster_set_null(&percpu_cluster->index);
553 return true;
554}
555
556/*
557 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
558 * might involve allocating a new cluster for current CPU too.
559 */
560static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
561 unsigned long *offset, unsigned long *scan_base)
562{
563 struct percpu_cluster *cluster;
564 struct swap_cluster_info *ci;
565 bool found_free;
566 unsigned long tmp, max;
567
568new_cluster:
569 cluster = this_cpu_ptr(si->percpu_cluster);
570 if (cluster_is_null(&cluster->index)) {
571 if (!cluster_list_empty(&si->free_clusters)) {
572 cluster->index = si->free_clusters.head;
573 cluster->next = cluster_next(&cluster->index) *
574 SWAPFILE_CLUSTER;
575 } else if (!cluster_list_empty(&si->discard_clusters)) {
576 /*
577 * we don't have free cluster but have some clusters in
578 * discarding, do discard now and reclaim them
579 */
580 swap_do_scheduled_discard(si);
581 *scan_base = *offset = si->cluster_next;
582 goto new_cluster;
583 } else
584 return false;
585 }
586
587 found_free = false;
588
589 /*
590 * Other CPUs can use our cluster if they can't find a free cluster,
591 * check if there is still free entry in the cluster
592 */
593 tmp = cluster->next;
594 max = min_t(unsigned long, si->max,
595 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
596 if (tmp >= max) {
597 cluster_set_null(&cluster->index);
598 goto new_cluster;
599 }
600 ci = lock_cluster(si, tmp);
601 while (tmp < max) {
602 if (!si->swap_map[tmp]) {
603 found_free = true;
604 break;
605 }
606 tmp++;
607 }
608 unlock_cluster(ci);
609 if (!found_free) {
610 cluster_set_null(&cluster->index);
611 goto new_cluster;
612 }
613 cluster->next = tmp + 1;
614 *offset = tmp;
615 *scan_base = tmp;
616 return found_free;
617}
618
619static void __del_from_avail_list(struct swap_info_struct *p)
620{
621 int nid;
622
623 for_each_node(nid)
624 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
625}
626
627static void del_from_avail_list(struct swap_info_struct *p)
628{
629 spin_lock(&swap_avail_lock);
630 __del_from_avail_list(p);
631 spin_unlock(&swap_avail_lock);
632}
633
634static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
635 unsigned int nr_entries)
636{
637 unsigned int end = offset + nr_entries - 1;
638
639 if (offset == si->lowest_bit)
640 si->lowest_bit += nr_entries;
641 if (end == si->highest_bit)
642 si->highest_bit -= nr_entries;
643 si->inuse_pages += nr_entries;
644 if (si->inuse_pages == si->pages) {
645 si->lowest_bit = si->max;
646 si->highest_bit = 0;
647 del_from_avail_list(si);
648 }
649}
650
651static void add_to_avail_list(struct swap_info_struct *p)
652{
653 int nid;
654
655 spin_lock(&swap_avail_lock);
656 for_each_node(nid) {
657 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
658 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
659 }
660 spin_unlock(&swap_avail_lock);
661}
662
663static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
664 unsigned int nr_entries)
665{
666 unsigned long end = offset + nr_entries - 1;
667 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
668
669 if (offset < si->lowest_bit)
670 si->lowest_bit = offset;
671 if (end > si->highest_bit) {
672 bool was_full = !si->highest_bit;
673
674 si->highest_bit = end;
675 if (was_full && (si->flags & SWP_WRITEOK))
676 add_to_avail_list(si);
677 }
678 atomic_long_add(nr_entries, &nr_swap_pages);
679 si->inuse_pages -= nr_entries;
680 if (si->flags & SWP_BLKDEV)
681 swap_slot_free_notify =
682 si->bdev->bd_disk->fops->swap_slot_free_notify;
683 else
684 swap_slot_free_notify = NULL;
685 while (offset <= end) {
686 frontswap_invalidate_page(si->type, offset);
687 if (swap_slot_free_notify)
688 swap_slot_free_notify(si->bdev, offset);
689 offset++;
690 }
691}
692
693static int scan_swap_map_slots(struct swap_info_struct *si,
694 unsigned char usage, int nr,
695 swp_entry_t slots[])
696{
697 struct swap_cluster_info *ci;
698 unsigned long offset;
699 unsigned long scan_base;
700 unsigned long last_in_cluster = 0;
701 int latency_ration = LATENCY_LIMIT;
702 int n_ret = 0;
703
704 if (nr > SWAP_BATCH)
705 nr = SWAP_BATCH;
706
707 /*
708 * We try to cluster swap pages by allocating them sequentially
709 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
710 * way, however, we resort to first-free allocation, starting
711 * a new cluster. This prevents us from scattering swap pages
712 * all over the entire swap partition, so that we reduce
713 * overall disk seek times between swap pages. -- sct
714 * But we do now try to find an empty cluster. -Andrea
715 * And we let swap pages go all over an SSD partition. Hugh
716 */
717
718 si->flags += SWP_SCANNING;
719 scan_base = offset = si->cluster_next;
720
721 /* SSD algorithm */
722 if (si->cluster_info) {
723 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
724 goto checks;
725 else
726 goto scan;
727 }
728
729 if (unlikely(!si->cluster_nr--)) {
730 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
731 si->cluster_nr = SWAPFILE_CLUSTER - 1;
732 goto checks;
733 }
734
735 spin_unlock(&si->lock);
736
737 /*
738 * If seek is expensive, start searching for new cluster from
739 * start of partition, to minimize the span of allocated swap.
740 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
741 * case, just handled by scan_swap_map_try_ssd_cluster() above.
742 */
743 scan_base = offset = si->lowest_bit;
744 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
745
746 /* Locate the first empty (unaligned) cluster */
747 for (; last_in_cluster <= si->highest_bit; offset++) {
748 if (si->swap_map[offset])
749 last_in_cluster = offset + SWAPFILE_CLUSTER;
750 else if (offset == last_in_cluster) {
751 spin_lock(&si->lock);
752 offset -= SWAPFILE_CLUSTER - 1;
753 si->cluster_next = offset;
754 si->cluster_nr = SWAPFILE_CLUSTER - 1;
755 goto checks;
756 }
757 if (unlikely(--latency_ration < 0)) {
758 cond_resched();
759 latency_ration = LATENCY_LIMIT;
760 }
761 }
762
763 offset = scan_base;
764 spin_lock(&si->lock);
765 si->cluster_nr = SWAPFILE_CLUSTER - 1;
766 }
767
768checks:
769 if (si->cluster_info) {
770 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
771 /* take a break if we already got some slots */
772 if (n_ret)
773 goto done;
774 if (!scan_swap_map_try_ssd_cluster(si, &offset,
775 &scan_base))
776 goto scan;
777 }
778 }
779 if (!(si->flags & SWP_WRITEOK))
780 goto no_page;
781 if (!si->highest_bit)
782 goto no_page;
783 if (offset > si->highest_bit)
784 scan_base = offset = si->lowest_bit;
785
786 ci = lock_cluster(si, offset);
787 /* reuse swap entry of cache-only swap if not busy. */
788 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
789 int swap_was_freed;
790 unlock_cluster(ci);
791 spin_unlock(&si->lock);
792 swap_was_freed = __try_to_reclaim_swap(si, offset);
793 spin_lock(&si->lock);
794 /* entry was freed successfully, try to use this again */
795 if (swap_was_freed)
796 goto checks;
797 goto scan; /* check next one */
798 }
799
800 if (si->swap_map[offset]) {
801 unlock_cluster(ci);
802 if (!n_ret)
803 goto scan;
804 else
805 goto done;
806 }
807 si->swap_map[offset] = usage;
808 inc_cluster_info_page(si, si->cluster_info, offset);
809 unlock_cluster(ci);
810
811 swap_range_alloc(si, offset, 1);
812 si->cluster_next = offset + 1;
813 slots[n_ret++] = swp_entry(si->type, offset);
814
815 /* got enough slots or reach max slots? */
816 if ((n_ret == nr) || (offset >= si->highest_bit))
817 goto done;
818
819 /* search for next available slot */
820
821 /* time to take a break? */
822 if (unlikely(--latency_ration < 0)) {
823 if (n_ret)
824 goto done;
825 spin_unlock(&si->lock);
826 cond_resched();
827 spin_lock(&si->lock);
828 latency_ration = LATENCY_LIMIT;
829 }
830
831 /* try to get more slots in cluster */
832 if (si->cluster_info) {
833 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
834 goto checks;
835 else
836 goto done;
837 }
838 /* non-ssd case */
839 ++offset;
840
841 /* non-ssd case, still more slots in cluster? */
842 if (si->cluster_nr && !si->swap_map[offset]) {
843 --si->cluster_nr;
844 goto checks;
845 }
846
847done:
848 si->flags -= SWP_SCANNING;
849 return n_ret;
850
851scan:
852 spin_unlock(&si->lock);
853 while (++offset <= si->highest_bit) {
854 if (!si->swap_map[offset]) {
855 spin_lock(&si->lock);
856 goto checks;
857 }
858 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
859 spin_lock(&si->lock);
860 goto checks;
861 }
862 if (unlikely(--latency_ration < 0)) {
863 cond_resched();
864 latency_ration = LATENCY_LIMIT;
865 }
866 }
867 offset = si->lowest_bit;
868 while (offset < scan_base) {
869 if (!si->swap_map[offset]) {
870 spin_lock(&si->lock);
871 goto checks;
872 }
873 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
874 spin_lock(&si->lock);
875 goto checks;
876 }
877 if (unlikely(--latency_ration < 0)) {
878 cond_resched();
879 latency_ration = LATENCY_LIMIT;
880 }
881 offset++;
882 }
883 spin_lock(&si->lock);
884
885no_page:
886 si->flags -= SWP_SCANNING;
887 return n_ret;
888}
889
890static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
891{
892 unsigned long idx;
893 struct swap_cluster_info *ci;
894 unsigned long offset, i;
895 unsigned char *map;
896
897 /*
898 * Should not even be attempting cluster allocations when huge
899 * page swap is disabled. Warn and fail the allocation.
900 */
901 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
902 VM_WARN_ON_ONCE(1);
903 return 0;
904 }
905
906 if (cluster_list_empty(&si->free_clusters))
907 return 0;
908
909 idx = cluster_list_first(&si->free_clusters);
910 offset = idx * SWAPFILE_CLUSTER;
911 ci = lock_cluster(si, offset);
912 alloc_cluster(si, idx);
913 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
914
915 map = si->swap_map + offset;
916 for (i = 0; i < SWAPFILE_CLUSTER; i++)
917 map[i] = SWAP_HAS_CACHE;
918 unlock_cluster(ci);
919 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
920 *slot = swp_entry(si->type, offset);
921
922 return 1;
923}
924
925static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
926{
927 unsigned long offset = idx * SWAPFILE_CLUSTER;
928 struct swap_cluster_info *ci;
929
930 ci = lock_cluster(si, offset);
931 cluster_set_count_flag(ci, 0, 0);
932 free_cluster(si, idx);
933 unlock_cluster(ci);
934 swap_range_free(si, offset, SWAPFILE_CLUSTER);
935}
936
937static unsigned long scan_swap_map(struct swap_info_struct *si,
938 unsigned char usage)
939{
940 swp_entry_t entry;
941 int n_ret;
942
943 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
944
945 if (n_ret)
946 return swp_offset(entry);
947 else
948 return 0;
949
950}
951
952int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
953{
954 unsigned long size = swap_entry_size(entry_size);
955 struct swap_info_struct *si, *next;
956 long avail_pgs;
957 int n_ret = 0;
958 int node;
959
960 /* Only single cluster request supported */
961 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
962
963 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
964 if (avail_pgs <= 0)
965 goto noswap;
966
967 if (n_goal > SWAP_BATCH)
968 n_goal = SWAP_BATCH;
969
970 if (n_goal > avail_pgs)
971 n_goal = avail_pgs;
972
973 atomic_long_sub(n_goal * size, &nr_swap_pages);
974
975 spin_lock(&swap_avail_lock);
976
977start_over:
978 node = numa_node_id();
979 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
980 /* requeue si to after same-priority siblings */
981 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
982 spin_unlock(&swap_avail_lock);
983 spin_lock(&si->lock);
984 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
985 spin_lock(&swap_avail_lock);
986 if (plist_node_empty(&si->avail_lists[node])) {
987 spin_unlock(&si->lock);
988 goto nextsi;
989 }
990 WARN(!si->highest_bit,
991 "swap_info %d in list but !highest_bit\n",
992 si->type);
993 WARN(!(si->flags & SWP_WRITEOK),
994 "swap_info %d in list but !SWP_WRITEOK\n",
995 si->type);
996 __del_from_avail_list(si);
997 spin_unlock(&si->lock);
998 goto nextsi;
999 }
1000 if (size == SWAPFILE_CLUSTER) {
1001 if (!(si->flags & SWP_FILE))
1002 n_ret = swap_alloc_cluster(si, swp_entries);
1003 } else
1004 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1005 n_goal, swp_entries);
1006 spin_unlock(&si->lock);
1007 if (n_ret || size == SWAPFILE_CLUSTER)
1008 goto check_out;
1009 pr_debug("scan_swap_map of si %d failed to find offset\n",
1010 si->type);
1011
1012 spin_lock(&swap_avail_lock);
1013nextsi:
1014 /*
1015 * if we got here, it's likely that si was almost full before,
1016 * and since scan_swap_map() can drop the si->lock, multiple
1017 * callers probably all tried to get a page from the same si
1018 * and it filled up before we could get one; or, the si filled
1019 * up between us dropping swap_avail_lock and taking si->lock.
1020 * Since we dropped the swap_avail_lock, the swap_avail_head
1021 * list may have been modified; so if next is still in the
1022 * swap_avail_head list then try it, otherwise start over
1023 * if we have not gotten any slots.
1024 */
1025 if (plist_node_empty(&next->avail_lists[node]))
1026 goto start_over;
1027 }
1028
1029 spin_unlock(&swap_avail_lock);
1030
1031check_out:
1032 if (n_ret < n_goal)
1033 atomic_long_add((long)(n_goal - n_ret) * size,
1034 &nr_swap_pages);
1035noswap:
1036 return n_ret;
1037}
1038
1039/* The only caller of this function is now suspend routine */
1040swp_entry_t get_swap_page_of_type(int type)
1041{
1042 struct swap_info_struct *si = swap_type_to_swap_info(type);
1043 pgoff_t offset;
1044
1045 if (!si)
1046 goto fail;
1047
1048 spin_lock(&si->lock);
1049 if (si->flags & SWP_WRITEOK) {
1050 atomic_long_dec(&nr_swap_pages);
1051 /* This is called for allocating swap entry, not cache */
1052 offset = scan_swap_map(si, 1);
1053 if (offset) {
1054 spin_unlock(&si->lock);
1055 return swp_entry(type, offset);
1056 }
1057 atomic_long_inc(&nr_swap_pages);
1058 }
1059 spin_unlock(&si->lock);
1060fail:
1061 return (swp_entry_t) {0};
1062}
1063
1064static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1065{
1066 struct swap_info_struct *p;
1067 unsigned long offset, type;
1068
1069 if (!entry.val)
1070 goto out;
1071 type = swp_type(entry);
1072 p = swap_type_to_swap_info(type);
1073 if (!p)
1074 goto bad_nofile;
1075 if (!(p->flags & SWP_USED))
1076 goto bad_device;
1077 offset = swp_offset(entry);
1078 if (offset >= p->max)
1079 goto bad_offset;
1080 return p;
1081
1082bad_offset:
1083 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1084 goto out;
1085bad_device:
1086 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1087 goto out;
1088bad_nofile:
1089 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1090out:
1091 return NULL;
1092}
1093
1094static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1095{
1096 struct swap_info_struct *p;
1097
1098 p = __swap_info_get(entry);
1099 if (!p)
1100 goto out;
1101 if (!p->swap_map[swp_offset(entry)])
1102 goto bad_free;
1103 return p;
1104
1105bad_free:
1106 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1107 goto out;
1108out:
1109 return NULL;
1110}
1111
1112static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1113{
1114 struct swap_info_struct *p;
1115
1116 p = _swap_info_get(entry);
1117 if (p)
1118 spin_lock(&p->lock);
1119 return p;
1120}
1121
1122static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1123 struct swap_info_struct *q)
1124{
1125 struct swap_info_struct *p;
1126
1127 p = _swap_info_get(entry);
1128
1129 if (p != q) {
1130 if (q != NULL)
1131 spin_unlock(&q->lock);
1132 if (p != NULL)
1133 spin_lock(&p->lock);
1134 }
1135 return p;
1136}
1137
1138static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1139 unsigned long offset,
1140 unsigned char usage)
1141{
1142 unsigned char count;
1143 unsigned char has_cache;
1144
1145 count = p->swap_map[offset];
1146
1147 has_cache = count & SWAP_HAS_CACHE;
1148 count &= ~SWAP_HAS_CACHE;
1149
1150 if (usage == SWAP_HAS_CACHE) {
1151 VM_BUG_ON(!has_cache);
1152 has_cache = 0;
1153 } else if (count == SWAP_MAP_SHMEM) {
1154 /*
1155 * Or we could insist on shmem.c using a special
1156 * swap_shmem_free() and free_shmem_swap_and_cache()...
1157 */
1158 count = 0;
1159 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1160 if (count == COUNT_CONTINUED) {
1161 if (swap_count_continued(p, offset, count))
1162 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1163 else
1164 count = SWAP_MAP_MAX;
1165 } else
1166 count--;
1167 }
1168
1169 usage = count | has_cache;
1170 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1171
1172 return usage;
1173}
1174
1175static unsigned char __swap_entry_free(struct swap_info_struct *p,
1176 swp_entry_t entry, unsigned char usage)
1177{
1178 struct swap_cluster_info *ci;
1179 unsigned long offset = swp_offset(entry);
1180
1181 ci = lock_cluster_or_swap_info(p, offset);
1182 usage = __swap_entry_free_locked(p, offset, usage);
1183 unlock_cluster_or_swap_info(p, ci);
1184
1185 return usage;
1186}
1187
1188static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1189{
1190 struct swap_cluster_info *ci;
1191 unsigned long offset = swp_offset(entry);
1192 unsigned char count;
1193
1194 ci = lock_cluster(p, offset);
1195 count = p->swap_map[offset];
1196 VM_BUG_ON(count != SWAP_HAS_CACHE);
1197 p->swap_map[offset] = 0;
1198 dec_cluster_info_page(p, p->cluster_info, offset);
1199 unlock_cluster(ci);
1200
1201 mem_cgroup_uncharge_swap(entry, 1);
1202 swap_range_free(p, offset, 1);
1203}
1204
1205/*
1206 * Caller has made sure that the swap device corresponding to entry
1207 * is still around or has not been recycled.
1208 */
1209void swap_free(swp_entry_t entry)
1210{
1211 struct swap_info_struct *p;
1212
1213 p = _swap_info_get(entry);
1214 if (p) {
1215 if (!__swap_entry_free(p, entry, 1))
1216 free_swap_slot(entry);
1217 }
1218}
1219
1220/*
1221 * Called after dropping swapcache to decrease refcnt to swap entries.
1222 */
1223void put_swap_page(struct page *page, swp_entry_t entry)
1224{
1225 unsigned long offset = swp_offset(entry);
1226 unsigned long idx = offset / SWAPFILE_CLUSTER;
1227 struct swap_cluster_info *ci;
1228 struct swap_info_struct *si;
1229 unsigned char *map;
1230 unsigned int i, free_entries = 0;
1231 unsigned char val;
1232 int size = swap_entry_size(hpage_nr_pages(page));
1233
1234 si = _swap_info_get(entry);
1235 if (!si)
1236 return;
1237
1238 ci = lock_cluster_or_swap_info(si, offset);
1239 if (size == SWAPFILE_CLUSTER) {
1240 VM_BUG_ON(!cluster_is_huge(ci));
1241 map = si->swap_map + offset;
1242 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1243 val = map[i];
1244 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1245 if (val == SWAP_HAS_CACHE)
1246 free_entries++;
1247 }
1248 cluster_clear_huge(ci);
1249 if (free_entries == SWAPFILE_CLUSTER) {
1250 unlock_cluster_or_swap_info(si, ci);
1251 spin_lock(&si->lock);
1252 ci = lock_cluster(si, offset);
1253 memset(map, 0, SWAPFILE_CLUSTER);
1254 unlock_cluster(ci);
1255 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1256 swap_free_cluster(si, idx);
1257 spin_unlock(&si->lock);
1258 return;
1259 }
1260 }
1261 for (i = 0; i < size; i++, entry.val++) {
1262 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1263 unlock_cluster_or_swap_info(si, ci);
1264 free_swap_slot(entry);
1265 if (i == size - 1)
1266 return;
1267 lock_cluster_or_swap_info(si, offset);
1268 }
1269 }
1270 unlock_cluster_or_swap_info(si, ci);
1271}
1272
1273#ifdef CONFIG_THP_SWAP
1274int split_swap_cluster(swp_entry_t entry)
1275{
1276 struct swap_info_struct *si;
1277 struct swap_cluster_info *ci;
1278 unsigned long offset = swp_offset(entry);
1279
1280 si = _swap_info_get(entry);
1281 if (!si)
1282 return -EBUSY;
1283 ci = lock_cluster(si, offset);
1284 cluster_clear_huge(ci);
1285 unlock_cluster(ci);
1286 return 0;
1287}
1288#endif
1289
1290static int swp_entry_cmp(const void *ent1, const void *ent2)
1291{
1292 const swp_entry_t *e1 = ent1, *e2 = ent2;
1293
1294 return (int)swp_type(*e1) - (int)swp_type(*e2);
1295}
1296
1297void swapcache_free_entries(swp_entry_t *entries, int n)
1298{
1299 struct swap_info_struct *p, *prev;
1300 int i;
1301
1302 if (n <= 0)
1303 return;
1304
1305 prev = NULL;
1306 p = NULL;
1307
1308 /*
1309 * Sort swap entries by swap device, so each lock is only taken once.
1310 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1311 * so low that it isn't necessary to optimize further.
1312 */
1313 if (nr_swapfiles > 1)
1314 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1315 for (i = 0; i < n; ++i) {
1316 p = swap_info_get_cont(entries[i], prev);
1317 if (p)
1318 swap_entry_free(p, entries[i]);
1319 prev = p;
1320 }
1321 if (p)
1322 spin_unlock(&p->lock);
1323}
1324
1325/*
1326 * How many references to page are currently swapped out?
1327 * This does not give an exact answer when swap count is continued,
1328 * but does include the high COUNT_CONTINUED flag to allow for that.
1329 */
1330int page_swapcount(struct page *page)
1331{
1332 int count = 0;
1333 struct swap_info_struct *p;
1334 struct swap_cluster_info *ci;
1335 swp_entry_t entry;
1336 unsigned long offset;
1337
1338 entry.val = page_private(page);
1339 p = _swap_info_get(entry);
1340 if (p) {
1341 offset = swp_offset(entry);
1342 ci = lock_cluster_or_swap_info(p, offset);
1343 count = swap_count(p->swap_map[offset]);
1344 unlock_cluster_or_swap_info(p, ci);
1345 }
1346 return count;
1347}
1348
1349int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1350{
1351 pgoff_t offset = swp_offset(entry);
1352
1353 return swap_count(si->swap_map[offset]);
1354}
1355
1356static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1357{
1358 int count = 0;
1359 pgoff_t offset = swp_offset(entry);
1360 struct swap_cluster_info *ci;
1361
1362 ci = lock_cluster_or_swap_info(si, offset);
1363 count = swap_count(si->swap_map[offset]);
1364 unlock_cluster_or_swap_info(si, ci);
1365 return count;
1366}
1367
1368/*
1369 * How many references to @entry are currently swapped out?
1370 * This does not give an exact answer when swap count is continued,
1371 * but does include the high COUNT_CONTINUED flag to allow for that.
1372 */
1373int __swp_swapcount(swp_entry_t entry)
1374{
1375 int count = 0;
1376 struct swap_info_struct *si;
1377
1378 si = __swap_info_get(entry);
1379 if (si)
1380 count = swap_swapcount(si, entry);
1381 return count;
1382}
1383
1384/*
1385 * How many references to @entry are currently swapped out?
1386 * This considers COUNT_CONTINUED so it returns exact answer.
1387 */
1388int swp_swapcount(swp_entry_t entry)
1389{
1390 int count, tmp_count, n;
1391 struct swap_info_struct *p;
1392 struct swap_cluster_info *ci;
1393 struct page *page;
1394 pgoff_t offset;
1395 unsigned char *map;
1396
1397 p = _swap_info_get(entry);
1398 if (!p)
1399 return 0;
1400
1401 offset = swp_offset(entry);
1402
1403 ci = lock_cluster_or_swap_info(p, offset);
1404
1405 count = swap_count(p->swap_map[offset]);
1406 if (!(count & COUNT_CONTINUED))
1407 goto out;
1408
1409 count &= ~COUNT_CONTINUED;
1410 n = SWAP_MAP_MAX + 1;
1411
1412 page = vmalloc_to_page(p->swap_map + offset);
1413 offset &= ~PAGE_MASK;
1414 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1415
1416 do {
1417 page = list_next_entry(page, lru);
1418 map = kmap_atomic(page);
1419 tmp_count = map[offset];
1420 kunmap_atomic(map);
1421
1422 count += (tmp_count & ~COUNT_CONTINUED) * n;
1423 n *= (SWAP_CONT_MAX + 1);
1424 } while (tmp_count & COUNT_CONTINUED);
1425out:
1426 unlock_cluster_or_swap_info(p, ci);
1427 return count;
1428}
1429
1430static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1431 swp_entry_t entry)
1432{
1433 struct swap_cluster_info *ci;
1434 unsigned char *map = si->swap_map;
1435 unsigned long roffset = swp_offset(entry);
1436 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1437 int i;
1438 bool ret = false;
1439
1440 ci = lock_cluster_or_swap_info(si, offset);
1441 if (!ci || !cluster_is_huge(ci)) {
1442 if (swap_count(map[roffset]))
1443 ret = true;
1444 goto unlock_out;
1445 }
1446 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1447 if (swap_count(map[offset + i])) {
1448 ret = true;
1449 break;
1450 }
1451 }
1452unlock_out:
1453 unlock_cluster_or_swap_info(si, ci);
1454 return ret;
1455}
1456
1457static bool page_swapped(struct page *page)
1458{
1459 swp_entry_t entry;
1460 struct swap_info_struct *si;
1461
1462 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1463 return page_swapcount(page) != 0;
1464
1465 page = compound_head(page);
1466 entry.val = page_private(page);
1467 si = _swap_info_get(entry);
1468 if (si)
1469 return swap_page_trans_huge_swapped(si, entry);
1470 return false;
1471}
1472
1473static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1474 int *total_swapcount)
1475{
1476 int i, map_swapcount, _total_mapcount, _total_swapcount;
1477 unsigned long offset = 0;
1478 struct swap_info_struct *si;
1479 struct swap_cluster_info *ci = NULL;
1480 unsigned char *map = NULL;
1481 int mapcount, swapcount = 0;
1482
1483 /* hugetlbfs shouldn't call it */
1484 VM_BUG_ON_PAGE(PageHuge(page), page);
1485
1486 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1487 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1488 if (PageSwapCache(page))
1489 swapcount = page_swapcount(page);
1490 if (total_swapcount)
1491 *total_swapcount = swapcount;
1492 return mapcount + swapcount;
1493 }
1494
1495 page = compound_head(page);
1496
1497 _total_mapcount = _total_swapcount = map_swapcount = 0;
1498 if (PageSwapCache(page)) {
1499 swp_entry_t entry;
1500
1501 entry.val = page_private(page);
1502 si = _swap_info_get(entry);
1503 if (si) {
1504 map = si->swap_map;
1505 offset = swp_offset(entry);
1506 }
1507 }
1508 if (map)
1509 ci = lock_cluster(si, offset);
1510 for (i = 0; i < HPAGE_PMD_NR; i++) {
1511 mapcount = atomic_read(&page[i]._mapcount) + 1;
1512 _total_mapcount += mapcount;
1513 if (map) {
1514 swapcount = swap_count(map[offset + i]);
1515 _total_swapcount += swapcount;
1516 }
1517 map_swapcount = max(map_swapcount, mapcount + swapcount);
1518 }
1519 unlock_cluster(ci);
1520 if (PageDoubleMap(page)) {
1521 map_swapcount -= 1;
1522 _total_mapcount -= HPAGE_PMD_NR;
1523 }
1524 mapcount = compound_mapcount(page);
1525 map_swapcount += mapcount;
1526 _total_mapcount += mapcount;
1527 if (total_mapcount)
1528 *total_mapcount = _total_mapcount;
1529 if (total_swapcount)
1530 *total_swapcount = _total_swapcount;
1531
1532 return map_swapcount;
1533}
1534
1535/*
1536 * We can write to an anon page without COW if there are no other references
1537 * to it. And as a side-effect, free up its swap: because the old content
1538 * on disk will never be read, and seeking back there to write new content
1539 * later would only waste time away from clustering.
1540 *
1541 * NOTE: total_map_swapcount should not be relied upon by the caller if
1542 * reuse_swap_page() returns false, but it may be always overwritten
1543 * (see the other implementation for CONFIG_SWAP=n).
1544 */
1545bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1546{
1547 int count, total_mapcount, total_swapcount;
1548
1549 VM_BUG_ON_PAGE(!PageLocked(page), page);
1550 if (unlikely(PageKsm(page)))
1551 return false;
1552 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1553 &total_swapcount);
1554 if (total_map_swapcount)
1555 *total_map_swapcount = total_mapcount + total_swapcount;
1556 if (count == 1 && PageSwapCache(page) &&
1557 (likely(!PageTransCompound(page)) ||
1558 /* The remaining swap count will be freed soon */
1559 total_swapcount == page_swapcount(page))) {
1560 if (!PageWriteback(page)) {
1561 page = compound_head(page);
1562 delete_from_swap_cache(page);
1563 SetPageDirty(page);
1564 } else {
1565 swp_entry_t entry;
1566 struct swap_info_struct *p;
1567
1568 entry.val = page_private(page);
1569 p = swap_info_get(entry);
1570 if (p->flags & SWP_STABLE_WRITES) {
1571 spin_unlock(&p->lock);
1572 return false;
1573 }
1574 spin_unlock(&p->lock);
1575 }
1576 }
1577
1578 return count <= 1;
1579}
1580
1581/*
1582 * If swap is getting full, or if there are no more mappings of this page,
1583 * then try_to_free_swap is called to free its swap space.
1584 */
1585int try_to_free_swap(struct page *page)
1586{
1587 VM_BUG_ON_PAGE(!PageLocked(page), page);
1588
1589 if (!PageSwapCache(page))
1590 return 0;
1591 if (PageWriteback(page))
1592 return 0;
1593 if (page_swapped(page))
1594 return 0;
1595
1596 /*
1597 * Once hibernation has begun to create its image of memory,
1598 * there's a danger that one of the calls to try_to_free_swap()
1599 * - most probably a call from __try_to_reclaim_swap() while
1600 * hibernation is allocating its own swap pages for the image,
1601 * but conceivably even a call from memory reclaim - will free
1602 * the swap from a page which has already been recorded in the
1603 * image as a clean swapcache page, and then reuse its swap for
1604 * another page of the image. On waking from hibernation, the
1605 * original page might be freed under memory pressure, then
1606 * later read back in from swap, now with the wrong data.
1607 *
1608 * Hibernation suspends storage while it is writing the image
1609 * to disk so check that here.
1610 */
1611 if (pm_suspended_storage())
1612 return 0;
1613
1614 page = compound_head(page);
1615 delete_from_swap_cache(page);
1616 SetPageDirty(page);
1617 return 1;
1618}
1619
1620/*
1621 * Free the swap entry like above, but also try to
1622 * free the page cache entry if it is the last user.
1623 */
1624int free_swap_and_cache(swp_entry_t entry)
1625{
1626 struct swap_info_struct *p;
1627 struct page *page = NULL;
1628 unsigned char count;
1629
1630 if (non_swap_entry(entry))
1631 return 1;
1632
1633 p = _swap_info_get(entry);
1634 if (p) {
1635 count = __swap_entry_free(p, entry, 1);
1636 if (count == SWAP_HAS_CACHE &&
1637 !swap_page_trans_huge_swapped(p, entry)) {
1638 page = find_get_page(swap_address_space(entry),
1639 swp_offset(entry));
1640 if (page && !trylock_page(page)) {
1641 put_page(page);
1642 page = NULL;
1643 }
1644 } else if (!count)
1645 free_swap_slot(entry);
1646 }
1647 if (page) {
1648 /*
1649 * Not mapped elsewhere, or swap space full? Free it!
1650 * Also recheck PageSwapCache now page is locked (above).
1651 */
1652 if (PageSwapCache(page) && !PageWriteback(page) &&
1653 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1654 !swap_page_trans_huge_swapped(p, entry)) {
1655 page = compound_head(page);
1656 delete_from_swap_cache(page);
1657 SetPageDirty(page);
1658 }
1659 unlock_page(page);
1660 put_page(page);
1661 }
1662 return p != NULL;
1663}
1664
1665#ifdef CONFIG_HIBERNATION
1666/*
1667 * Find the swap type that corresponds to given device (if any).
1668 *
1669 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1670 * from 0, in which the swap header is expected to be located.
1671 *
1672 * This is needed for the suspend to disk (aka swsusp).
1673 */
1674int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1675{
1676 struct block_device *bdev = NULL;
1677 int type;
1678
1679 if (device)
1680 bdev = bdget(device);
1681
1682 spin_lock(&swap_lock);
1683 for (type = 0; type < nr_swapfiles; type++) {
1684 struct swap_info_struct *sis = swap_info[type];
1685
1686 if (!(sis->flags & SWP_WRITEOK))
1687 continue;
1688
1689 if (!bdev) {
1690 if (bdev_p)
1691 *bdev_p = bdgrab(sis->bdev);
1692
1693 spin_unlock(&swap_lock);
1694 return type;
1695 }
1696 if (bdev == sis->bdev) {
1697 struct swap_extent *se = &sis->first_swap_extent;
1698
1699 if (se->start_block == offset) {
1700 if (bdev_p)
1701 *bdev_p = bdgrab(sis->bdev);
1702
1703 spin_unlock(&swap_lock);
1704 bdput(bdev);
1705 return type;
1706 }
1707 }
1708 }
1709 spin_unlock(&swap_lock);
1710 if (bdev)
1711 bdput(bdev);
1712
1713 return -ENODEV;
1714}
1715
1716/*
1717 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1718 * corresponding to given index in swap_info (swap type).
1719 */
1720sector_t swapdev_block(int type, pgoff_t offset)
1721{
1722 struct block_device *bdev;
1723 struct swap_info_struct *si = swap_type_to_swap_info(type);
1724
1725 if (!si || !(si->flags & SWP_WRITEOK))
1726 return 0;
1727 return map_swap_entry(swp_entry(type, offset), &bdev);
1728}
1729
1730/*
1731 * Return either the total number of swap pages of given type, or the number
1732 * of free pages of that type (depending on @free)
1733 *
1734 * This is needed for software suspend
1735 */
1736unsigned int count_swap_pages(int type, int free)
1737{
1738 unsigned int n = 0;
1739
1740 spin_lock(&swap_lock);
1741 if ((unsigned int)type < nr_swapfiles) {
1742 struct swap_info_struct *sis = swap_info[type];
1743
1744 spin_lock(&sis->lock);
1745 if (sis->flags & SWP_WRITEOK) {
1746 n = sis->pages;
1747 if (free)
1748 n -= sis->inuse_pages;
1749 }
1750 spin_unlock(&sis->lock);
1751 }
1752 spin_unlock(&swap_lock);
1753 return n;
1754}
1755#endif /* CONFIG_HIBERNATION */
1756
1757static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1758{
1759 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1760}
1761
1762/*
1763 * No need to decide whether this PTE shares the swap entry with others,
1764 * just let do_wp_page work it out if a write is requested later - to
1765 * force COW, vm_page_prot omits write permission from any private vma.
1766 */
1767static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1768 unsigned long addr, swp_entry_t entry, struct page *page)
1769{
1770 struct page *swapcache;
1771 struct mem_cgroup *memcg;
1772 spinlock_t *ptl;
1773 pte_t *pte;
1774 int ret = 1;
1775
1776 swapcache = page;
1777 page = ksm_might_need_to_copy(page, vma, addr);
1778 if (unlikely(!page))
1779 return -ENOMEM;
1780
1781 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1782 &memcg, false)) {
1783 ret = -ENOMEM;
1784 goto out_nolock;
1785 }
1786
1787 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1788 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1789 mem_cgroup_cancel_charge(page, memcg, false);
1790 ret = 0;
1791 goto out;
1792 }
1793
1794 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1795 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1796 get_page(page);
1797 set_pte_at(vma->vm_mm, addr, pte,
1798 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1799 if (page == swapcache) {
1800 page_add_anon_rmap(page, vma, addr, false);
1801 mem_cgroup_commit_charge(page, memcg, true, false);
1802 } else { /* ksm created a completely new copy */
1803 page_add_new_anon_rmap(page, vma, addr, false);
1804 mem_cgroup_commit_charge(page, memcg, false, false);
1805 lru_cache_add_active_or_unevictable(page, vma);
1806 }
1807 swap_free(entry);
1808 /*
1809 * Move the page to the active list so it is not
1810 * immediately swapped out again after swapon.
1811 */
1812 activate_page(page);
1813out:
1814 pte_unmap_unlock(pte, ptl);
1815out_nolock:
1816 if (page != swapcache) {
1817 unlock_page(page);
1818 put_page(page);
1819 }
1820 return ret;
1821}
1822
1823static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1824 unsigned long addr, unsigned long end,
1825 swp_entry_t entry, struct page *page)
1826{
1827 pte_t swp_pte = swp_entry_to_pte(entry);
1828 pte_t *pte;
1829 int ret = 0;
1830
1831 /*
1832 * We don't actually need pte lock while scanning for swp_pte: since
1833 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1834 * page table while we're scanning; though it could get zapped, and on
1835 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1836 * of unmatched parts which look like swp_pte, so unuse_pte must
1837 * recheck under pte lock. Scanning without pte lock lets it be
1838 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1839 */
1840 pte = pte_offset_map(pmd, addr);
1841 do {
1842 /*
1843 * swapoff spends a _lot_ of time in this loop!
1844 * Test inline before going to call unuse_pte.
1845 */
1846 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1847 pte_unmap(pte);
1848 ret = unuse_pte(vma, pmd, addr, entry, page);
1849 if (ret)
1850 goto out;
1851 pte = pte_offset_map(pmd, addr);
1852 }
1853 } while (pte++, addr += PAGE_SIZE, addr != end);
1854 pte_unmap(pte - 1);
1855out:
1856 return ret;
1857}
1858
1859static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1860 unsigned long addr, unsigned long end,
1861 swp_entry_t entry, struct page *page)
1862{
1863 pmd_t *pmd;
1864 unsigned long next;
1865 int ret;
1866
1867 pmd = pmd_offset(pud, addr);
1868 do {
1869 cond_resched();
1870 next = pmd_addr_end(addr, end);
1871 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1872 continue;
1873 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1874 if (ret)
1875 return ret;
1876 } while (pmd++, addr = next, addr != end);
1877 return 0;
1878}
1879
1880static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1881 unsigned long addr, unsigned long end,
1882 swp_entry_t entry, struct page *page)
1883{
1884 pud_t *pud;
1885 unsigned long next;
1886 int ret;
1887
1888 pud = pud_offset(p4d, addr);
1889 do {
1890 next = pud_addr_end(addr, end);
1891 if (pud_none_or_clear_bad(pud))
1892 continue;
1893 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1894 if (ret)
1895 return ret;
1896 } while (pud++, addr = next, addr != end);
1897 return 0;
1898}
1899
1900static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1901 unsigned long addr, unsigned long end,
1902 swp_entry_t entry, struct page *page)
1903{
1904 p4d_t *p4d;
1905 unsigned long next;
1906 int ret;
1907
1908 p4d = p4d_offset(pgd, addr);
1909 do {
1910 next = p4d_addr_end(addr, end);
1911 if (p4d_none_or_clear_bad(p4d))
1912 continue;
1913 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1914 if (ret)
1915 return ret;
1916 } while (p4d++, addr = next, addr != end);
1917 return 0;
1918}
1919
1920static int unuse_vma(struct vm_area_struct *vma,
1921 swp_entry_t entry, struct page *page)
1922{
1923 pgd_t *pgd;
1924 unsigned long addr, end, next;
1925 int ret;
1926
1927 if (page_anon_vma(page)) {
1928 addr = page_address_in_vma(page, vma);
1929 if (addr == -EFAULT)
1930 return 0;
1931 else
1932 end = addr + PAGE_SIZE;
1933 } else {
1934 addr = vma->vm_start;
1935 end = vma->vm_end;
1936 }
1937
1938 pgd = pgd_offset(vma->vm_mm, addr);
1939 do {
1940 next = pgd_addr_end(addr, end);
1941 if (pgd_none_or_clear_bad(pgd))
1942 continue;
1943 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1944 if (ret)
1945 return ret;
1946 } while (pgd++, addr = next, addr != end);
1947 return 0;
1948}
1949
1950static int unuse_mm(struct mm_struct *mm,
1951 swp_entry_t entry, struct page *page)
1952{
1953 struct vm_area_struct *vma;
1954 int ret = 0;
1955
1956 if (!down_read_trylock(&mm->mmap_sem)) {
1957 /*
1958 * Activate page so shrink_inactive_list is unlikely to unmap
1959 * its ptes while lock is dropped, so swapoff can make progress.
1960 */
1961 activate_page(page);
1962 unlock_page(page);
1963 down_read(&mm->mmap_sem);
1964 lock_page(page);
1965 }
1966 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1967 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1968 break;
1969 cond_resched();
1970 }
1971 up_read(&mm->mmap_sem);
1972 return (ret < 0)? ret: 0;
1973}
1974
1975/*
1976 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1977 * from current position to next entry still in use.
1978 * Recycle to start on reaching the end, returning 0 when empty.
1979 */
1980static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1981 unsigned int prev, bool frontswap)
1982{
1983 unsigned int max = si->max;
1984 unsigned int i = prev;
1985 unsigned char count;
1986
1987 /*
1988 * No need for swap_lock here: we're just looking
1989 * for whether an entry is in use, not modifying it; false
1990 * hits are okay, and sys_swapoff() has already prevented new
1991 * allocations from this area (while holding swap_lock).
1992 */
1993 for (;;) {
1994 if (++i >= max) {
1995 if (!prev) {
1996 i = 0;
1997 break;
1998 }
1999 /*
2000 * No entries in use at top of swap_map,
2001 * loop back to start and recheck there.
2002 */
2003 max = prev + 1;
2004 prev = 0;
2005 i = 1;
2006 }
2007 count = READ_ONCE(si->swap_map[i]);
2008 if (count && swap_count(count) != SWAP_MAP_BAD)
2009 if (!frontswap || frontswap_test(si, i))
2010 break;
2011 if ((i % LATENCY_LIMIT) == 0)
2012 cond_resched();
2013 }
2014 return i;
2015}
2016
2017/*
2018 * We completely avoid races by reading each swap page in advance,
2019 * and then search for the process using it. All the necessary
2020 * page table adjustments can then be made atomically.
2021 *
2022 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2023 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2024 */
2025int try_to_unuse(unsigned int type, bool frontswap,
2026 unsigned long pages_to_unuse)
2027{
2028 struct swap_info_struct *si = swap_info[type];
2029 struct mm_struct *start_mm;
2030 volatile unsigned char *swap_map; /* swap_map is accessed without
2031 * locking. Mark it as volatile
2032 * to prevent compiler doing
2033 * something odd.
2034 */
2035 unsigned char swcount;
2036 struct page *page;
2037 swp_entry_t entry;
2038 unsigned int i = 0;
2039 int retval = 0;
2040
2041 /*
2042 * When searching mms for an entry, a good strategy is to
2043 * start at the first mm we freed the previous entry from
2044 * (though actually we don't notice whether we or coincidence
2045 * freed the entry). Initialize this start_mm with a hold.
2046 *
2047 * A simpler strategy would be to start at the last mm we
2048 * freed the previous entry from; but that would take less
2049 * advantage of mmlist ordering, which clusters forked mms
2050 * together, child after parent. If we race with dup_mmap(), we
2051 * prefer to resolve parent before child, lest we miss entries
2052 * duplicated after we scanned child: using last mm would invert
2053 * that.
2054 */
2055 start_mm = &init_mm;
2056 mmget(&init_mm);
2057
2058 /*
2059 * Keep on scanning until all entries have gone. Usually,
2060 * one pass through swap_map is enough, but not necessarily:
2061 * there are races when an instance of an entry might be missed.
2062 */
2063 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2064 if (signal_pending(current)) {
2065 retval = -EINTR;
2066 break;
2067 }
2068
2069 /*
2070 * Get a page for the entry, using the existing swap
2071 * cache page if there is one. Otherwise, get a clean
2072 * page and read the swap into it.
2073 */
2074 swap_map = &si->swap_map[i];
2075 entry = swp_entry(type, i);
2076 page = read_swap_cache_async(entry,
2077 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2078 if (!page) {
2079 /*
2080 * Either swap_duplicate() failed because entry
2081 * has been freed independently, and will not be
2082 * reused since sys_swapoff() already disabled
2083 * allocation from here, or alloc_page() failed.
2084 */
2085 swcount = *swap_map;
2086 /*
2087 * We don't hold lock here, so the swap entry could be
2088 * SWAP_MAP_BAD (when the cluster is discarding).
2089 * Instead of fail out, We can just skip the swap
2090 * entry because swapoff will wait for discarding
2091 * finish anyway.
2092 */
2093 if (!swcount || swcount == SWAP_MAP_BAD)
2094 continue;
2095 retval = -ENOMEM;
2096 break;
2097 }
2098
2099 /*
2100 * Don't hold on to start_mm if it looks like exiting.
2101 */
2102 if (atomic_read(&start_mm->mm_users) == 1) {
2103 mmput(start_mm);
2104 start_mm = &init_mm;
2105 mmget(&init_mm);
2106 }
2107
2108 /*
2109 * Wait for and lock page. When do_swap_page races with
2110 * try_to_unuse, do_swap_page can handle the fault much
2111 * faster than try_to_unuse can locate the entry. This
2112 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2113 * defer to do_swap_page in such a case - in some tests,
2114 * do_swap_page and try_to_unuse repeatedly compete.
2115 */
2116 wait_on_page_locked(page);
2117 wait_on_page_writeback(page);
2118 lock_page(page);
2119 wait_on_page_writeback(page);
2120
2121 /*
2122 * Remove all references to entry.
2123 */
2124 swcount = *swap_map;
2125 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2126 retval = shmem_unuse(entry, page);
2127 /* page has already been unlocked and released */
2128 if (retval < 0)
2129 break;
2130 continue;
2131 }
2132 if (swap_count(swcount) && start_mm != &init_mm)
2133 retval = unuse_mm(start_mm, entry, page);
2134
2135 if (swap_count(*swap_map)) {
2136 int set_start_mm = (*swap_map >= swcount);
2137 struct list_head *p = &start_mm->mmlist;
2138 struct mm_struct *new_start_mm = start_mm;
2139 struct mm_struct *prev_mm = start_mm;
2140 struct mm_struct *mm;
2141
2142 mmget(new_start_mm);
2143 mmget(prev_mm);
2144 spin_lock(&mmlist_lock);
2145 while (swap_count(*swap_map) && !retval &&
2146 (p = p->next) != &start_mm->mmlist) {
2147 mm = list_entry(p, struct mm_struct, mmlist);
2148 if (!mmget_not_zero(mm))
2149 continue;
2150 spin_unlock(&mmlist_lock);
2151 mmput(prev_mm);
2152 prev_mm = mm;
2153
2154 cond_resched();
2155
2156 swcount = *swap_map;
2157 if (!swap_count(swcount)) /* any usage ? */
2158 ;
2159 else if (mm == &init_mm)
2160 set_start_mm = 1;
2161 else
2162 retval = unuse_mm(mm, entry, page);
2163
2164 if (set_start_mm && *swap_map < swcount) {
2165 mmput(new_start_mm);
2166 mmget(mm);
2167 new_start_mm = mm;
2168 set_start_mm = 0;
2169 }
2170 spin_lock(&mmlist_lock);
2171 }
2172 spin_unlock(&mmlist_lock);
2173 mmput(prev_mm);
2174 mmput(start_mm);
2175 start_mm = new_start_mm;
2176 }
2177 if (retval) {
2178 unlock_page(page);
2179 put_page(page);
2180 break;
2181 }
2182
2183 /*
2184 * If a reference remains (rare), we would like to leave
2185 * the page in the swap cache; but try_to_unmap could
2186 * then re-duplicate the entry once we drop page lock,
2187 * so we might loop indefinitely; also, that page could
2188 * not be swapped out to other storage meanwhile. So:
2189 * delete from cache even if there's another reference,
2190 * after ensuring that the data has been saved to disk -
2191 * since if the reference remains (rarer), it will be
2192 * read from disk into another page. Splitting into two
2193 * pages would be incorrect if swap supported "shared
2194 * private" pages, but they are handled by tmpfs files.
2195 *
2196 * Given how unuse_vma() targets one particular offset
2197 * in an anon_vma, once the anon_vma has been determined,
2198 * this splitting happens to be just what is needed to
2199 * handle where KSM pages have been swapped out: re-reading
2200 * is unnecessarily slow, but we can fix that later on.
2201 */
2202 if (swap_count(*swap_map) &&
2203 PageDirty(page) && PageSwapCache(page)) {
2204 struct writeback_control wbc = {
2205 .sync_mode = WB_SYNC_NONE,
2206 };
2207
2208 swap_writepage(compound_head(page), &wbc);
2209 lock_page(page);
2210 wait_on_page_writeback(page);
2211 }
2212
2213 /*
2214 * It is conceivable that a racing task removed this page from
2215 * swap cache just before we acquired the page lock at the top,
2216 * or while we dropped it in unuse_mm(). The page might even
2217 * be back in swap cache on another swap area: that we must not
2218 * delete, since it may not have been written out to swap yet.
2219 */
2220 if (PageSwapCache(page) &&
2221 likely(page_private(page) == entry.val) &&
2222 (!PageTransCompound(page) ||
2223 !swap_page_trans_huge_swapped(si, entry)))
2224 delete_from_swap_cache(compound_head(page));
2225
2226 /*
2227 * So we could skip searching mms once swap count went
2228 * to 1, we did not mark any present ptes as dirty: must
2229 * mark page dirty so shrink_page_list will preserve it.
2230 */
2231 SetPageDirty(page);
2232 unlock_page(page);
2233 put_page(page);
2234
2235 /*
2236 * Make sure that we aren't completely killing
2237 * interactive performance.
2238 */
2239 cond_resched();
2240 if (frontswap && pages_to_unuse > 0) {
2241 if (!--pages_to_unuse)
2242 break;
2243 }
2244 }
2245
2246 mmput(start_mm);
2247 return retval;
2248}
2249
2250/*
2251 * After a successful try_to_unuse, if no swap is now in use, we know
2252 * we can empty the mmlist. swap_lock must be held on entry and exit.
2253 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2254 * added to the mmlist just after page_duplicate - before would be racy.
2255 */
2256static void drain_mmlist(void)
2257{
2258 struct list_head *p, *next;
2259 unsigned int type;
2260
2261 for (type = 0; type < nr_swapfiles; type++)
2262 if (swap_info[type]->inuse_pages)
2263 return;
2264 spin_lock(&mmlist_lock);
2265 list_for_each_safe(p, next, &init_mm.mmlist)
2266 list_del_init(p);
2267 spin_unlock(&mmlist_lock);
2268}
2269
2270/*
2271 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2272 * corresponds to page offset for the specified swap entry.
2273 * Note that the type of this function is sector_t, but it returns page offset
2274 * into the bdev, not sector offset.
2275 */
2276static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2277{
2278 struct swap_info_struct *sis;
2279 struct swap_extent *start_se;
2280 struct swap_extent *se;
2281 pgoff_t offset;
2282
2283 sis = swp_swap_info(entry);
2284 *bdev = sis->bdev;
2285
2286 offset = swp_offset(entry);
2287 start_se = sis->curr_swap_extent;
2288 se = start_se;
2289
2290 for ( ; ; ) {
2291 if (se->start_page <= offset &&
2292 offset < (se->start_page + se->nr_pages)) {
2293 return se->start_block + (offset - se->start_page);
2294 }
2295 se = list_next_entry(se, list);
2296 sis->curr_swap_extent = se;
2297 BUG_ON(se == start_se); /* It *must* be present */
2298 }
2299}
2300
2301/*
2302 * Returns the page offset into bdev for the specified page's swap entry.
2303 */
2304sector_t map_swap_page(struct page *page, struct block_device **bdev)
2305{
2306 swp_entry_t entry;
2307 entry.val = page_private(page);
2308 return map_swap_entry(entry, bdev);
2309}
2310
2311/*
2312 * Free all of a swapdev's extent information
2313 */
2314static void destroy_swap_extents(struct swap_info_struct *sis)
2315{
2316 while (!list_empty(&sis->first_swap_extent.list)) {
2317 struct swap_extent *se;
2318
2319 se = list_first_entry(&sis->first_swap_extent.list,
2320 struct swap_extent, list);
2321 list_del(&se->list);
2322 kfree(se);
2323 }
2324
2325 if (sis->flags & SWP_FILE) {
2326 struct file *swap_file = sis->swap_file;
2327 struct address_space *mapping = swap_file->f_mapping;
2328
2329 sis->flags &= ~SWP_FILE;
2330 mapping->a_ops->swap_deactivate(swap_file);
2331 }
2332}
2333
2334/*
2335 * Add a block range (and the corresponding page range) into this swapdev's
2336 * extent list. The extent list is kept sorted in page order.
2337 *
2338 * This function rather assumes that it is called in ascending page order.
2339 */
2340int
2341add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2342 unsigned long nr_pages, sector_t start_block)
2343{
2344 struct swap_extent *se;
2345 struct swap_extent *new_se;
2346 struct list_head *lh;
2347
2348 if (start_page == 0) {
2349 se = &sis->first_swap_extent;
2350 sis->curr_swap_extent = se;
2351 se->start_page = 0;
2352 se->nr_pages = nr_pages;
2353 se->start_block = start_block;
2354 return 1;
2355 } else {
2356 lh = sis->first_swap_extent.list.prev; /* Highest extent */
2357 se = list_entry(lh, struct swap_extent, list);
2358 BUG_ON(se->start_page + se->nr_pages != start_page);
2359 if (se->start_block + se->nr_pages == start_block) {
2360 /* Merge it */
2361 se->nr_pages += nr_pages;
2362 return 0;
2363 }
2364 }
2365
2366 /*
2367 * No merge. Insert a new extent, preserving ordering.
2368 */
2369 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2370 if (new_se == NULL)
2371 return -ENOMEM;
2372 new_se->start_page = start_page;
2373 new_se->nr_pages = nr_pages;
2374 new_se->start_block = start_block;
2375
2376 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2377 return 1;
2378}
2379
2380/*
2381 * A `swap extent' is a simple thing which maps a contiguous range of pages
2382 * onto a contiguous range of disk blocks. An ordered list of swap extents
2383 * is built at swapon time and is then used at swap_writepage/swap_readpage
2384 * time for locating where on disk a page belongs.
2385 *
2386 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2387 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2388 * swap files identically.
2389 *
2390 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2391 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2392 * swapfiles are handled *identically* after swapon time.
2393 *
2394 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2395 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2396 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2397 * requirements, they are simply tossed out - we will never use those blocks
2398 * for swapping.
2399 *
2400 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2401 * prevents users from writing to the swap device, which will corrupt memory.
2402 *
2403 * The amount of disk space which a single swap extent represents varies.
2404 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2405 * extents in the list. To avoid much list walking, we cache the previous
2406 * search location in `curr_swap_extent', and start new searches from there.
2407 * This is extremely effective. The average number of iterations in
2408 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2409 */
2410static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2411{
2412 struct file *swap_file = sis->swap_file;
2413 struct address_space *mapping = swap_file->f_mapping;
2414 struct inode *inode = mapping->host;
2415 int ret;
2416
2417 if (S_ISBLK(inode->i_mode)) {
2418 ret = add_swap_extent(sis, 0, sis->max, 0);
2419 *span = sis->pages;
2420 return ret;
2421 }
2422
2423 if (mapping->a_ops->swap_activate) {
2424 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2425 if (!ret) {
2426 sis->flags |= SWP_FILE;
2427 ret = add_swap_extent(sis, 0, sis->max, 0);
2428 *span = sis->pages;
2429 }
2430 return ret;
2431 }
2432
2433 return generic_swapfile_activate(sis, swap_file, span);
2434}
2435
2436static int swap_node(struct swap_info_struct *p)
2437{
2438 struct block_device *bdev;
2439
2440 if (p->bdev)
2441 bdev = p->bdev;
2442 else
2443 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2444
2445 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2446}
2447
2448static void _enable_swap_info(struct swap_info_struct *p, int prio,
2449 unsigned char *swap_map,
2450 struct swap_cluster_info *cluster_info)
2451{
2452 int i;
2453
2454 if (prio >= 0)
2455 p->prio = prio;
2456 else
2457 p->prio = --least_priority;
2458 /*
2459 * the plist prio is negated because plist ordering is
2460 * low-to-high, while swap ordering is high-to-low
2461 */
2462 p->list.prio = -p->prio;
2463 for_each_node(i) {
2464 if (p->prio >= 0)
2465 p->avail_lists[i].prio = -p->prio;
2466 else {
2467 if (swap_node(p) == i)
2468 p->avail_lists[i].prio = 1;
2469 else
2470 p->avail_lists[i].prio = -p->prio;
2471 }
2472 }
2473 p->swap_map = swap_map;
2474 p->cluster_info = cluster_info;
2475 p->flags |= SWP_WRITEOK;
2476 atomic_long_add(p->pages, &nr_swap_pages);
2477 total_swap_pages += p->pages;
2478
2479 assert_spin_locked(&swap_lock);
2480 /*
2481 * both lists are plists, and thus priority ordered.
2482 * swap_active_head needs to be priority ordered for swapoff(),
2483 * which on removal of any swap_info_struct with an auto-assigned
2484 * (i.e. negative) priority increments the auto-assigned priority
2485 * of any lower-priority swap_info_structs.
2486 * swap_avail_head needs to be priority ordered for get_swap_page(),
2487 * which allocates swap pages from the highest available priority
2488 * swap_info_struct.
2489 */
2490 plist_add(&p->list, &swap_active_head);
2491 add_to_avail_list(p);
2492}
2493
2494static void enable_swap_info(struct swap_info_struct *p, int prio,
2495 unsigned char *swap_map,
2496 struct swap_cluster_info *cluster_info,
2497 unsigned long *frontswap_map)
2498{
2499 frontswap_init(p->type, frontswap_map);
2500 spin_lock(&swap_lock);
2501 spin_lock(&p->lock);
2502 _enable_swap_info(p, prio, swap_map, cluster_info);
2503 spin_unlock(&p->lock);
2504 spin_unlock(&swap_lock);
2505}
2506
2507static void reinsert_swap_info(struct swap_info_struct *p)
2508{
2509 spin_lock(&swap_lock);
2510 spin_lock(&p->lock);
2511 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2512 spin_unlock(&p->lock);
2513 spin_unlock(&swap_lock);
2514}
2515
2516bool has_usable_swap(void)
2517{
2518 bool ret = true;
2519
2520 spin_lock(&swap_lock);
2521 if (plist_head_empty(&swap_active_head))
2522 ret = false;
2523 spin_unlock(&swap_lock);
2524 return ret;
2525}
2526
2527SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2528{
2529 struct swap_info_struct *p = NULL;
2530 unsigned char *swap_map;
2531 struct swap_cluster_info *cluster_info;
2532 unsigned long *frontswap_map;
2533 struct file *swap_file, *victim;
2534 struct address_space *mapping;
2535 struct inode *inode;
2536 struct filename *pathname;
2537 int err, found = 0;
2538 unsigned int old_block_size;
2539
2540 if (!capable(CAP_SYS_ADMIN))
2541 return -EPERM;
2542
2543 BUG_ON(!current->mm);
2544
2545 pathname = getname(specialfile);
2546 if (IS_ERR(pathname))
2547 return PTR_ERR(pathname);
2548
2549 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2550 err = PTR_ERR(victim);
2551 if (IS_ERR(victim))
2552 goto out;
2553
2554 mapping = victim->f_mapping;
2555 spin_lock(&swap_lock);
2556 plist_for_each_entry(p, &swap_active_head, list) {
2557 if (p->flags & SWP_WRITEOK) {
2558 if (p->swap_file->f_mapping == mapping) {
2559 found = 1;
2560 break;
2561 }
2562 }
2563 }
2564 if (!found) {
2565 err = -EINVAL;
2566 spin_unlock(&swap_lock);
2567 goto out_dput;
2568 }
2569 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2570 vm_unacct_memory(p->pages);
2571 else {
2572 err = -ENOMEM;
2573 spin_unlock(&swap_lock);
2574 goto out_dput;
2575 }
2576 del_from_avail_list(p);
2577 spin_lock(&p->lock);
2578 if (p->prio < 0) {
2579 struct swap_info_struct *si = p;
2580 int nid;
2581
2582 plist_for_each_entry_continue(si, &swap_active_head, list) {
2583 si->prio++;
2584 si->list.prio--;
2585 for_each_node(nid) {
2586 if (si->avail_lists[nid].prio != 1)
2587 si->avail_lists[nid].prio--;
2588 }
2589 }
2590 least_priority++;
2591 }
2592 plist_del(&p->list, &swap_active_head);
2593 atomic_long_sub(p->pages, &nr_swap_pages);
2594 total_swap_pages -= p->pages;
2595 p->flags &= ~SWP_WRITEOK;
2596 spin_unlock(&p->lock);
2597 spin_unlock(&swap_lock);
2598
2599 disable_swap_slots_cache_lock();
2600
2601 set_current_oom_origin();
2602 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2603 clear_current_oom_origin();
2604
2605 if (err) {
2606 /* re-insert swap space back into swap_list */
2607 reinsert_swap_info(p);
2608 reenable_swap_slots_cache_unlock();
2609 goto out_dput;
2610 }
2611
2612 reenable_swap_slots_cache_unlock();
2613
2614 flush_work(&p->discard_work);
2615
2616 destroy_swap_extents(p);
2617 if (p->flags & SWP_CONTINUED)
2618 free_swap_count_continuations(p);
2619
2620 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2621 atomic_dec(&nr_rotate_swap);
2622
2623 mutex_lock(&swapon_mutex);
2624 spin_lock(&swap_lock);
2625 spin_lock(&p->lock);
2626 drain_mmlist();
2627
2628 /* wait for anyone still in scan_swap_map */
2629 p->highest_bit = 0; /* cuts scans short */
2630 while (p->flags >= SWP_SCANNING) {
2631 spin_unlock(&p->lock);
2632 spin_unlock(&swap_lock);
2633 schedule_timeout_uninterruptible(1);
2634 spin_lock(&swap_lock);
2635 spin_lock(&p->lock);
2636 }
2637
2638 swap_file = p->swap_file;
2639 old_block_size = p->old_block_size;
2640 p->swap_file = NULL;
2641 p->max = 0;
2642 swap_map = p->swap_map;
2643 p->swap_map = NULL;
2644 cluster_info = p->cluster_info;
2645 p->cluster_info = NULL;
2646 frontswap_map = frontswap_map_get(p);
2647 spin_unlock(&p->lock);
2648 spin_unlock(&swap_lock);
2649 frontswap_invalidate_area(p->type);
2650 frontswap_map_set(p, NULL);
2651 mutex_unlock(&swapon_mutex);
2652 free_percpu(p->percpu_cluster);
2653 p->percpu_cluster = NULL;
2654 vfree(swap_map);
2655 kvfree(cluster_info);
2656 kvfree(frontswap_map);
2657 /* Destroy swap account information */
2658 swap_cgroup_swapoff(p->type);
2659 exit_swap_address_space(p->type);
2660
2661 inode = mapping->host;
2662 if (S_ISBLK(inode->i_mode)) {
2663 struct block_device *bdev = I_BDEV(inode);
2664
2665 set_blocksize(bdev, old_block_size);
2666 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2667 }
2668
2669 inode_lock(inode);
2670 inode->i_flags &= ~S_SWAPFILE;
2671 inode_unlock(inode);
2672 filp_close(swap_file, NULL);
2673
2674 /*
2675 * Clear the SWP_USED flag after all resources are freed so that swapon
2676 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2677 * not hold p->lock after we cleared its SWP_WRITEOK.
2678 */
2679 spin_lock(&swap_lock);
2680 p->flags = 0;
2681 spin_unlock(&swap_lock);
2682
2683 err = 0;
2684 atomic_inc(&proc_poll_event);
2685 wake_up_interruptible(&proc_poll_wait);
2686
2687out_dput:
2688 filp_close(victim, NULL);
2689out:
2690 putname(pathname);
2691 return err;
2692}
2693
2694#ifdef CONFIG_PROC_FS
2695static __poll_t swaps_poll(struct file *file, poll_table *wait)
2696{
2697 struct seq_file *seq = file->private_data;
2698
2699 poll_wait(file, &proc_poll_wait, wait);
2700
2701 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2702 seq->poll_event = atomic_read(&proc_poll_event);
2703 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2704 }
2705
2706 return EPOLLIN | EPOLLRDNORM;
2707}
2708
2709/* iterator */
2710static void *swap_start(struct seq_file *swap, loff_t *pos)
2711{
2712 struct swap_info_struct *si;
2713 int type;
2714 loff_t l = *pos;
2715
2716 mutex_lock(&swapon_mutex);
2717
2718 if (!l)
2719 return SEQ_START_TOKEN;
2720
2721 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2722 if (!(si->flags & SWP_USED) || !si->swap_map)
2723 continue;
2724 if (!--l)
2725 return si;
2726 }
2727
2728 return NULL;
2729}
2730
2731static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2732{
2733 struct swap_info_struct *si = v;
2734 int type;
2735
2736 if (v == SEQ_START_TOKEN)
2737 type = 0;
2738 else
2739 type = si->type + 1;
2740
2741 for (; (si = swap_type_to_swap_info(type)); type++) {
2742 if (!(si->flags & SWP_USED) || !si->swap_map)
2743 continue;
2744 ++*pos;
2745 return si;
2746 }
2747
2748 return NULL;
2749}
2750
2751static void swap_stop(struct seq_file *swap, void *v)
2752{
2753 mutex_unlock(&swapon_mutex);
2754}
2755
2756static int swap_show(struct seq_file *swap, void *v)
2757{
2758 struct swap_info_struct *si = v;
2759 struct file *file;
2760 int len;
2761
2762 if (si == SEQ_START_TOKEN) {
2763 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2764 return 0;
2765 }
2766
2767 file = si->swap_file;
2768 len = seq_file_path(swap, file, " \t\n\\");
2769 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2770 len < 40 ? 40 - len : 1, " ",
2771 S_ISBLK(file_inode(file)->i_mode) ?
2772 "partition" : "file\t",
2773 si->pages << (PAGE_SHIFT - 10),
2774 si->inuse_pages << (PAGE_SHIFT - 10),
2775 si->prio);
2776 return 0;
2777}
2778
2779static const struct seq_operations swaps_op = {
2780 .start = swap_start,
2781 .next = swap_next,
2782 .stop = swap_stop,
2783 .show = swap_show
2784};
2785
2786static int swaps_open(struct inode *inode, struct file *file)
2787{
2788 struct seq_file *seq;
2789 int ret;
2790
2791 ret = seq_open(file, &swaps_op);
2792 if (ret)
2793 return ret;
2794
2795 seq = file->private_data;
2796 seq->poll_event = atomic_read(&proc_poll_event);
2797 return 0;
2798}
2799
2800static const struct file_operations proc_swaps_operations = {
2801 .open = swaps_open,
2802 .read = seq_read,
2803 .llseek = seq_lseek,
2804 .release = seq_release,
2805 .poll = swaps_poll,
2806};
2807
2808static int __init procswaps_init(void)
2809{
2810 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2811 return 0;
2812}
2813__initcall(procswaps_init);
2814#endif /* CONFIG_PROC_FS */
2815
2816#ifdef MAX_SWAPFILES_CHECK
2817static int __init max_swapfiles_check(void)
2818{
2819 MAX_SWAPFILES_CHECK();
2820 return 0;
2821}
2822late_initcall(max_swapfiles_check);
2823#endif
2824
2825static struct swap_info_struct *alloc_swap_info(void)
2826{
2827 struct swap_info_struct *p;
2828 unsigned int type;
2829 int i;
2830 int size = sizeof(*p) + nr_node_ids * sizeof(struct plist_node);
2831
2832 p = kvzalloc(size, GFP_KERNEL);
2833 if (!p)
2834 return ERR_PTR(-ENOMEM);
2835
2836 spin_lock(&swap_lock);
2837 for (type = 0; type < nr_swapfiles; type++) {
2838 if (!(swap_info[type]->flags & SWP_USED))
2839 break;
2840 }
2841 if (type >= MAX_SWAPFILES) {
2842 spin_unlock(&swap_lock);
2843 kvfree(p);
2844 return ERR_PTR(-EPERM);
2845 }
2846 if (type >= nr_swapfiles) {
2847 p->type = type;
2848 WRITE_ONCE(swap_info[type], p);
2849 /*
2850 * Write swap_info[type] before nr_swapfiles, in case a
2851 * racing procfs swap_start() or swap_next() is reading them.
2852 * (We never shrink nr_swapfiles, we never free this entry.)
2853 */
2854 smp_wmb();
2855 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2856 } else {
2857 kvfree(p);
2858 p = swap_info[type];
2859 /*
2860 * Do not memset this entry: a racing procfs swap_next()
2861 * would be relying on p->type to remain valid.
2862 */
2863 }
2864 INIT_LIST_HEAD(&p->first_swap_extent.list);
2865 plist_node_init(&p->list, 0);
2866 for_each_node(i)
2867 plist_node_init(&p->avail_lists[i], 0);
2868 p->flags = SWP_USED;
2869 spin_unlock(&swap_lock);
2870 spin_lock_init(&p->lock);
2871 spin_lock_init(&p->cont_lock);
2872
2873 return p;
2874}
2875
2876static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2877{
2878 int error;
2879
2880 if (S_ISBLK(inode->i_mode)) {
2881 p->bdev = bdgrab(I_BDEV(inode));
2882 error = blkdev_get(p->bdev,
2883 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2884 if (error < 0) {
2885 p->bdev = NULL;
2886 return error;
2887 }
2888 p->old_block_size = block_size(p->bdev);
2889 error = set_blocksize(p->bdev, PAGE_SIZE);
2890 if (error < 0)
2891 return error;
2892 p->flags |= SWP_BLKDEV;
2893 } else if (S_ISREG(inode->i_mode)) {
2894 p->bdev = inode->i_sb->s_bdev;
2895 }
2896
2897 inode_lock(inode);
2898 if (IS_SWAPFILE(inode))
2899 return -EBUSY;
2900
2901 return 0;
2902}
2903
2904
2905/*
2906 * Find out how many pages are allowed for a single swap device. There
2907 * are two limiting factors:
2908 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2909 * 2) the number of bits in the swap pte, as defined by the different
2910 * architectures.
2911 *
2912 * In order to find the largest possible bit mask, a swap entry with
2913 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2914 * decoded to a swp_entry_t again, and finally the swap offset is
2915 * extracted.
2916 *
2917 * This will mask all the bits from the initial ~0UL mask that can't
2918 * be encoded in either the swp_entry_t or the architecture definition
2919 * of a swap pte.
2920 */
2921unsigned long generic_max_swapfile_size(void)
2922{
2923 return swp_offset(pte_to_swp_entry(
2924 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2925}
2926
2927/* Can be overridden by an architecture for additional checks. */
2928__weak unsigned long max_swapfile_size(void)
2929{
2930 return generic_max_swapfile_size();
2931}
2932
2933static unsigned long read_swap_header(struct swap_info_struct *p,
2934 union swap_header *swap_header,
2935 struct inode *inode)
2936{
2937 int i;
2938 unsigned long maxpages;
2939 unsigned long swapfilepages;
2940 unsigned long last_page;
2941
2942 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2943 pr_err("Unable to find swap-space signature\n");
2944 return 0;
2945 }
2946
2947 /* swap partition endianess hack... */
2948 if (swab32(swap_header->info.version) == 1) {
2949 swab32s(&swap_header->info.version);
2950 swab32s(&swap_header->info.last_page);
2951 swab32s(&swap_header->info.nr_badpages);
2952 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2953 return 0;
2954 for (i = 0; i < swap_header->info.nr_badpages; i++)
2955 swab32s(&swap_header->info.badpages[i]);
2956 }
2957 /* Check the swap header's sub-version */
2958 if (swap_header->info.version != 1) {
2959 pr_warn("Unable to handle swap header version %d\n",
2960 swap_header->info.version);
2961 return 0;
2962 }
2963
2964 p->lowest_bit = 1;
2965 p->cluster_next = 1;
2966 p->cluster_nr = 0;
2967
2968 maxpages = max_swapfile_size();
2969 last_page = swap_header->info.last_page;
2970 if (!last_page) {
2971 pr_warn("Empty swap-file\n");
2972 return 0;
2973 }
2974 if (last_page > maxpages) {
2975 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2976 maxpages << (PAGE_SHIFT - 10),
2977 last_page << (PAGE_SHIFT - 10));
2978 }
2979 if (maxpages > last_page) {
2980 maxpages = last_page + 1;
2981 /* p->max is an unsigned int: don't overflow it */
2982 if ((unsigned int)maxpages == 0)
2983 maxpages = UINT_MAX;
2984 }
2985 p->highest_bit = maxpages - 1;
2986
2987 if (!maxpages)
2988 return 0;
2989 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2990 if (swapfilepages && maxpages > swapfilepages) {
2991 pr_warn("Swap area shorter than signature indicates\n");
2992 return 0;
2993 }
2994 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2995 return 0;
2996 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2997 return 0;
2998
2999 return maxpages;
3000}
3001
3002#define SWAP_CLUSTER_INFO_COLS \
3003 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3004#define SWAP_CLUSTER_SPACE_COLS \
3005 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3006#define SWAP_CLUSTER_COLS \
3007 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3008
3009static int setup_swap_map_and_extents(struct swap_info_struct *p,
3010 union swap_header *swap_header,
3011 unsigned char *swap_map,
3012 struct swap_cluster_info *cluster_info,
3013 unsigned long maxpages,
3014 sector_t *span)
3015{
3016 unsigned int j, k;
3017 unsigned int nr_good_pages;
3018 int nr_extents;
3019 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3020 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3021 unsigned long i, idx;
3022
3023 nr_good_pages = maxpages - 1; /* omit header page */
3024
3025 cluster_list_init(&p->free_clusters);
3026 cluster_list_init(&p->discard_clusters);
3027
3028 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3029 unsigned int page_nr = swap_header->info.badpages[i];
3030 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3031 return -EINVAL;
3032 if (page_nr < maxpages) {
3033 swap_map[page_nr] = SWAP_MAP_BAD;
3034 nr_good_pages--;
3035 /*
3036 * Haven't marked the cluster free yet, no list
3037 * operation involved
3038 */
3039 inc_cluster_info_page(p, cluster_info, page_nr);
3040 }
3041 }
3042
3043 /* Haven't marked the cluster free yet, no list operation involved */
3044 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3045 inc_cluster_info_page(p, cluster_info, i);
3046
3047 if (nr_good_pages) {
3048 swap_map[0] = SWAP_MAP_BAD;
3049 /*
3050 * Not mark the cluster free yet, no list
3051 * operation involved
3052 */
3053 inc_cluster_info_page(p, cluster_info, 0);
3054 p->max = maxpages;
3055 p->pages = nr_good_pages;
3056 nr_extents = setup_swap_extents(p, span);
3057 if (nr_extents < 0)
3058 return nr_extents;
3059 nr_good_pages = p->pages;
3060 }
3061 if (!nr_good_pages) {
3062 pr_warn("Empty swap-file\n");
3063 return -EINVAL;
3064 }
3065
3066 if (!cluster_info)
3067 return nr_extents;
3068
3069
3070 /*
3071 * Reduce false cache line sharing between cluster_info and
3072 * sharing same address space.
3073 */
3074 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3075 j = (k + col) % SWAP_CLUSTER_COLS;
3076 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3077 idx = i * SWAP_CLUSTER_COLS + j;
3078 if (idx >= nr_clusters)
3079 continue;
3080 if (cluster_count(&cluster_info[idx]))
3081 continue;
3082 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3083 cluster_list_add_tail(&p->free_clusters, cluster_info,
3084 idx);
3085 }
3086 }
3087 return nr_extents;
3088}
3089
3090/*
3091 * Helper to sys_swapon determining if a given swap
3092 * backing device queue supports DISCARD operations.
3093 */
3094static bool swap_discardable(struct swap_info_struct *si)
3095{
3096 struct request_queue *q = bdev_get_queue(si->bdev);
3097
3098 if (!q || !blk_queue_discard(q))
3099 return false;
3100
3101 return true;
3102}
3103
3104SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3105{
3106 struct swap_info_struct *p;
3107 struct filename *name;
3108 struct file *swap_file = NULL;
3109 struct address_space *mapping;
3110 int prio;
3111 int error;
3112 union swap_header *swap_header;
3113 int nr_extents;
3114 sector_t span;
3115 unsigned long maxpages;
3116 unsigned char *swap_map = NULL;
3117 struct swap_cluster_info *cluster_info = NULL;
3118 unsigned long *frontswap_map = NULL;
3119 struct page *page = NULL;
3120 struct inode *inode = NULL;
3121 bool inced_nr_rotate_swap = false;
3122
3123 if (swap_flags & ~SWAP_FLAGS_VALID)
3124 return -EINVAL;
3125
3126 if (!capable(CAP_SYS_ADMIN))
3127 return -EPERM;
3128
3129 if (!swap_avail_heads)
3130 return -ENOMEM;
3131
3132 p = alloc_swap_info();
3133 if (IS_ERR(p))
3134 return PTR_ERR(p);
3135
3136 INIT_WORK(&p->discard_work, swap_discard_work);
3137
3138 name = getname(specialfile);
3139 if (IS_ERR(name)) {
3140 error = PTR_ERR(name);
3141 name = NULL;
3142 goto bad_swap;
3143 }
3144 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3145 if (IS_ERR(swap_file)) {
3146 error = PTR_ERR(swap_file);
3147 swap_file = NULL;
3148 goto bad_swap;
3149 }
3150
3151 p->swap_file = swap_file;
3152 mapping = swap_file->f_mapping;
3153 inode = mapping->host;
3154
3155 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3156 error = claim_swapfile(p, inode);
3157 if (unlikely(error))
3158 goto bad_swap;
3159
3160 /*
3161 * Read the swap header.
3162 */
3163 if (!mapping->a_ops->readpage) {
3164 error = -EINVAL;
3165 goto bad_swap;
3166 }
3167 page = read_mapping_page(mapping, 0, swap_file);
3168 if (IS_ERR(page)) {
3169 error = PTR_ERR(page);
3170 goto bad_swap;
3171 }
3172 swap_header = kmap(page);
3173
3174 maxpages = read_swap_header(p, swap_header, inode);
3175 if (unlikely(!maxpages)) {
3176 error = -EINVAL;
3177 goto bad_swap;
3178 }
3179
3180 /* OK, set up the swap map and apply the bad block list */
3181 swap_map = vzalloc(maxpages);
3182 if (!swap_map) {
3183 error = -ENOMEM;
3184 goto bad_swap;
3185 }
3186
3187 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3188 p->flags |= SWP_STABLE_WRITES;
3189
3190 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3191 p->flags |= SWP_SYNCHRONOUS_IO;
3192
3193 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3194 int cpu;
3195 unsigned long ci, nr_cluster;
3196
3197 p->flags |= SWP_SOLIDSTATE;
3198 /*
3199 * select a random position to start with to help wear leveling
3200 * SSD
3201 */
3202 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3203 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3204
3205 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3206 GFP_KERNEL);
3207 if (!cluster_info) {
3208 error = -ENOMEM;
3209 goto bad_swap;
3210 }
3211
3212 for (ci = 0; ci < nr_cluster; ci++)
3213 spin_lock_init(&((cluster_info + ci)->lock));
3214
3215 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3216 if (!p->percpu_cluster) {
3217 error = -ENOMEM;
3218 goto bad_swap;
3219 }
3220 for_each_possible_cpu(cpu) {
3221 struct percpu_cluster *cluster;
3222 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3223 cluster_set_null(&cluster->index);
3224 }
3225 } else {
3226 atomic_inc(&nr_rotate_swap);
3227 inced_nr_rotate_swap = true;
3228 }
3229
3230 error = swap_cgroup_swapon(p->type, maxpages);
3231 if (error)
3232 goto bad_swap;
3233
3234 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3235 cluster_info, maxpages, &span);
3236 if (unlikely(nr_extents < 0)) {
3237 error = nr_extents;
3238 goto bad_swap;
3239 }
3240 /* frontswap enabled? set up bit-per-page map for frontswap */
3241 if (IS_ENABLED(CONFIG_FRONTSWAP))
3242 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3243 sizeof(long),
3244 GFP_KERNEL);
3245
3246 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3247 /*
3248 * When discard is enabled for swap with no particular
3249 * policy flagged, we set all swap discard flags here in
3250 * order to sustain backward compatibility with older
3251 * swapon(8) releases.
3252 */
3253 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3254 SWP_PAGE_DISCARD);
3255
3256 /*
3257 * By flagging sys_swapon, a sysadmin can tell us to
3258 * either do single-time area discards only, or to just
3259 * perform discards for released swap page-clusters.
3260 * Now it's time to adjust the p->flags accordingly.
3261 */
3262 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3263 p->flags &= ~SWP_PAGE_DISCARD;
3264 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3265 p->flags &= ~SWP_AREA_DISCARD;
3266
3267 /* issue a swapon-time discard if it's still required */
3268 if (p->flags & SWP_AREA_DISCARD) {
3269 int err = discard_swap(p);
3270 if (unlikely(err))
3271 pr_err("swapon: discard_swap(%p): %d\n",
3272 p, err);
3273 }
3274 }
3275
3276 error = init_swap_address_space(p->type, maxpages);
3277 if (error)
3278 goto bad_swap;
3279
3280 /*
3281 * Flush any pending IO and dirty mappings before we start using this
3282 * swap device.
3283 */
3284 inode->i_flags |= S_SWAPFILE;
3285 error = inode_drain_writes(inode);
3286 if (error) {
3287 inode->i_flags &= ~S_SWAPFILE;
3288 goto bad_swap;
3289 }
3290
3291 mutex_lock(&swapon_mutex);
3292 prio = -1;
3293 if (swap_flags & SWAP_FLAG_PREFER)
3294 prio =
3295 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3296 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3297
3298 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3299 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3300 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3301 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3302 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3303 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3304 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3305 (frontswap_map) ? "FS" : "");
3306
3307 mutex_unlock(&swapon_mutex);
3308 atomic_inc(&proc_poll_event);
3309 wake_up_interruptible(&proc_poll_wait);
3310
3311 error = 0;
3312 goto out;
3313bad_swap:
3314 free_percpu(p->percpu_cluster);
3315 p->percpu_cluster = NULL;
3316 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3317 set_blocksize(p->bdev, p->old_block_size);
3318 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3319 }
3320 destroy_swap_extents(p);
3321 swap_cgroup_swapoff(p->type);
3322 spin_lock(&swap_lock);
3323 p->swap_file = NULL;
3324 p->flags = 0;
3325 spin_unlock(&swap_lock);
3326 vfree(swap_map);
3327 kvfree(cluster_info);
3328 kvfree(frontswap_map);
3329 if (inced_nr_rotate_swap)
3330 atomic_dec(&nr_rotate_swap);
3331 if (swap_file) {
3332 if (inode) {
3333 inode_unlock(inode);
3334 inode = NULL;
3335 }
3336 filp_close(swap_file, NULL);
3337 }
3338out:
3339 if (page && !IS_ERR(page)) {
3340 kunmap(page);
3341 put_page(page);
3342 }
3343 if (name)
3344 putname(name);
3345 if (inode)
3346 inode_unlock(inode);
3347 if (!error)
3348 enable_swap_slots_cache();
3349 return error;
3350}
3351
3352void si_swapinfo(struct sysinfo *val)
3353{
3354 unsigned int type;
3355 unsigned long nr_to_be_unused = 0;
3356
3357 spin_lock(&swap_lock);
3358 for (type = 0; type < nr_swapfiles; type++) {
3359 struct swap_info_struct *si = swap_info[type];
3360
3361 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3362 nr_to_be_unused += si->inuse_pages;
3363 }
3364 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3365 val->totalswap = total_swap_pages + nr_to_be_unused;
3366 spin_unlock(&swap_lock);
3367}
3368
3369/*
3370 * Verify that a swap entry is valid and increment its swap map count.
3371 *
3372 * Returns error code in following case.
3373 * - success -> 0
3374 * - swp_entry is invalid -> EINVAL
3375 * - swp_entry is migration entry -> EINVAL
3376 * - swap-cache reference is requested but there is already one. -> EEXIST
3377 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3378 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3379 */
3380static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3381{
3382 struct swap_info_struct *p;
3383 struct swap_cluster_info *ci;
3384 unsigned long offset;
3385 unsigned char count;
3386 unsigned char has_cache;
3387 int err = -EINVAL;
3388
3389 if (non_swap_entry(entry))
3390 goto out;
3391
3392 p = swp_swap_info(entry);
3393 if (!p)
3394 goto bad_file;
3395
3396 offset = swp_offset(entry);
3397 if (unlikely(offset >= p->max))
3398 goto out;
3399
3400 ci = lock_cluster_or_swap_info(p, offset);
3401
3402 count = p->swap_map[offset];
3403
3404 /*
3405 * swapin_readahead() doesn't check if a swap entry is valid, so the
3406 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3407 */
3408 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3409 err = -ENOENT;
3410 goto unlock_out;
3411 }
3412
3413 has_cache = count & SWAP_HAS_CACHE;
3414 count &= ~SWAP_HAS_CACHE;
3415 err = 0;
3416
3417 if (usage == SWAP_HAS_CACHE) {
3418
3419 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3420 if (!has_cache && count)
3421 has_cache = SWAP_HAS_CACHE;
3422 else if (has_cache) /* someone else added cache */
3423 err = -EEXIST;
3424 else /* no users remaining */
3425 err = -ENOENT;
3426
3427 } else if (count || has_cache) {
3428
3429 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3430 count += usage;
3431 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3432 err = -EINVAL;
3433 else if (swap_count_continued(p, offset, count))
3434 count = COUNT_CONTINUED;
3435 else
3436 err = -ENOMEM;
3437 } else
3438 err = -ENOENT; /* unused swap entry */
3439
3440 p->swap_map[offset] = count | has_cache;
3441
3442unlock_out:
3443 unlock_cluster_or_swap_info(p, ci);
3444out:
3445 return err;
3446
3447bad_file:
3448 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3449 goto out;
3450}
3451
3452/*
3453 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3454 * (in which case its reference count is never incremented).
3455 */
3456void swap_shmem_alloc(swp_entry_t entry)
3457{
3458 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3459}
3460
3461/*
3462 * Increase reference count of swap entry by 1.
3463 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3464 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3465 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3466 * might occur if a page table entry has got corrupted.
3467 */
3468int swap_duplicate(swp_entry_t entry)
3469{
3470 int err = 0;
3471
3472 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3473 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3474 return err;
3475}
3476
3477/*
3478 * @entry: swap entry for which we allocate swap cache.
3479 *
3480 * Called when allocating swap cache for existing swap entry,
3481 * This can return error codes. Returns 0 at success.
3482 * -EBUSY means there is a swap cache.
3483 * Note: return code is different from swap_duplicate().
3484 */
3485int swapcache_prepare(swp_entry_t entry)
3486{
3487 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3488}
3489
3490struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3491{
3492 return swap_type_to_swap_info(swp_type(entry));
3493}
3494
3495struct swap_info_struct *page_swap_info(struct page *page)
3496{
3497 swp_entry_t entry = { .val = page_private(page) };
3498 return swp_swap_info(entry);
3499}
3500
3501/*
3502 * out-of-line __page_file_ methods to avoid include hell.
3503 */
3504struct address_space *__page_file_mapping(struct page *page)
3505{
3506 return page_swap_info(page)->swap_file->f_mapping;
3507}
3508EXPORT_SYMBOL_GPL(__page_file_mapping);
3509
3510pgoff_t __page_file_index(struct page *page)
3511{
3512 swp_entry_t swap = { .val = page_private(page) };
3513 return swp_offset(swap);
3514}
3515EXPORT_SYMBOL_GPL(__page_file_index);
3516
3517/*
3518 * add_swap_count_continuation - called when a swap count is duplicated
3519 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3520 * page of the original vmalloc'ed swap_map, to hold the continuation count
3521 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3522 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3523 *
3524 * These continuation pages are seldom referenced: the common paths all work
3525 * on the original swap_map, only referring to a continuation page when the
3526 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3527 *
3528 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3529 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3530 * can be called after dropping locks.
3531 */
3532int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3533{
3534 struct swap_info_struct *si;
3535 struct swap_cluster_info *ci;
3536 struct page *head;
3537 struct page *page;
3538 struct page *list_page;
3539 pgoff_t offset;
3540 unsigned char count;
3541
3542 /*
3543 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3544 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3545 */
3546 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3547
3548 si = swap_info_get(entry);
3549 if (!si) {
3550 /*
3551 * An acceptable race has occurred since the failing
3552 * __swap_duplicate(): the swap entry has been freed,
3553 * perhaps even the whole swap_map cleared for swapoff.
3554 */
3555 goto outer;
3556 }
3557
3558 offset = swp_offset(entry);
3559
3560 ci = lock_cluster(si, offset);
3561
3562 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3563
3564 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3565 /*
3566 * The higher the swap count, the more likely it is that tasks
3567 * will race to add swap count continuation: we need to avoid
3568 * over-provisioning.
3569 */
3570 goto out;
3571 }
3572
3573 if (!page) {
3574 unlock_cluster(ci);
3575 spin_unlock(&si->lock);
3576 return -ENOMEM;
3577 }
3578
3579 /*
3580 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3581 * no architecture is using highmem pages for kernel page tables: so it
3582 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3583 */
3584 head = vmalloc_to_page(si->swap_map + offset);
3585 offset &= ~PAGE_MASK;
3586
3587 spin_lock(&si->cont_lock);
3588 /*
3589 * Page allocation does not initialize the page's lru field,
3590 * but it does always reset its private field.
3591 */
3592 if (!page_private(head)) {
3593 BUG_ON(count & COUNT_CONTINUED);
3594 INIT_LIST_HEAD(&head->lru);
3595 set_page_private(head, SWP_CONTINUED);
3596 si->flags |= SWP_CONTINUED;
3597 }
3598
3599 list_for_each_entry(list_page, &head->lru, lru) {
3600 unsigned char *map;
3601
3602 /*
3603 * If the previous map said no continuation, but we've found
3604 * a continuation page, free our allocation and use this one.
3605 */
3606 if (!(count & COUNT_CONTINUED))
3607 goto out_unlock_cont;
3608
3609 map = kmap_atomic(list_page) + offset;
3610 count = *map;
3611 kunmap_atomic(map);
3612
3613 /*
3614 * If this continuation count now has some space in it,
3615 * free our allocation and use this one.
3616 */
3617 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3618 goto out_unlock_cont;
3619 }
3620
3621 list_add_tail(&page->lru, &head->lru);
3622 page = NULL; /* now it's attached, don't free it */
3623out_unlock_cont:
3624 spin_unlock(&si->cont_lock);
3625out:
3626 unlock_cluster(ci);
3627 spin_unlock(&si->lock);
3628outer:
3629 if (page)
3630 __free_page(page);
3631 return 0;
3632}
3633
3634/*
3635 * swap_count_continued - when the original swap_map count is incremented
3636 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3637 * into, carry if so, or else fail until a new continuation page is allocated;
3638 * when the original swap_map count is decremented from 0 with continuation,
3639 * borrow from the continuation and report whether it still holds more.
3640 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3641 * lock.
3642 */
3643static bool swap_count_continued(struct swap_info_struct *si,
3644 pgoff_t offset, unsigned char count)
3645{
3646 struct page *head;
3647 struct page *page;
3648 unsigned char *map;
3649 bool ret;
3650
3651 head = vmalloc_to_page(si->swap_map + offset);
3652 if (page_private(head) != SWP_CONTINUED) {
3653 BUG_ON(count & COUNT_CONTINUED);
3654 return false; /* need to add count continuation */
3655 }
3656
3657 spin_lock(&si->cont_lock);
3658 offset &= ~PAGE_MASK;
3659 page = list_entry(head->lru.next, struct page, lru);
3660 map = kmap_atomic(page) + offset;
3661
3662 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3663 goto init_map; /* jump over SWAP_CONT_MAX checks */
3664
3665 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3666 /*
3667 * Think of how you add 1 to 999
3668 */
3669 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3670 kunmap_atomic(map);
3671 page = list_entry(page->lru.next, struct page, lru);
3672 BUG_ON(page == head);
3673 map = kmap_atomic(page) + offset;
3674 }
3675 if (*map == SWAP_CONT_MAX) {
3676 kunmap_atomic(map);
3677 page = list_entry(page->lru.next, struct page, lru);
3678 if (page == head) {
3679 ret = false; /* add count continuation */
3680 goto out;
3681 }
3682 map = kmap_atomic(page) + offset;
3683init_map: *map = 0; /* we didn't zero the page */
3684 }
3685 *map += 1;
3686 kunmap_atomic(map);
3687 page = list_entry(page->lru.prev, struct page, lru);
3688 while (page != head) {
3689 map = kmap_atomic(page) + offset;
3690 *map = COUNT_CONTINUED;
3691 kunmap_atomic(map);
3692 page = list_entry(page->lru.prev, struct page, lru);
3693 }
3694 ret = true; /* incremented */
3695
3696 } else { /* decrementing */
3697 /*
3698 * Think of how you subtract 1 from 1000
3699 */
3700 BUG_ON(count != COUNT_CONTINUED);
3701 while (*map == COUNT_CONTINUED) {
3702 kunmap_atomic(map);
3703 page = list_entry(page->lru.next, struct page, lru);
3704 BUG_ON(page == head);
3705 map = kmap_atomic(page) + offset;
3706 }
3707 BUG_ON(*map == 0);
3708 *map -= 1;
3709 if (*map == 0)
3710 count = 0;
3711 kunmap_atomic(map);
3712 page = list_entry(page->lru.prev, struct page, lru);
3713 while (page != head) {
3714 map = kmap_atomic(page) + offset;
3715 *map = SWAP_CONT_MAX | count;
3716 count = COUNT_CONTINUED;
3717 kunmap_atomic(map);
3718 page = list_entry(page->lru.prev, struct page, lru);
3719 }
3720 ret = count == COUNT_CONTINUED;
3721 }
3722out:
3723 spin_unlock(&si->cont_lock);
3724 return ret;
3725}
3726
3727/*
3728 * free_swap_count_continuations - swapoff free all the continuation pages
3729 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3730 */
3731static void free_swap_count_continuations(struct swap_info_struct *si)
3732{
3733 pgoff_t offset;
3734
3735 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3736 struct page *head;
3737 head = vmalloc_to_page(si->swap_map + offset);
3738 if (page_private(head)) {
3739 struct page *page, *next;
3740
3741 list_for_each_entry_safe(page, next, &head->lru, lru) {
3742 list_del(&page->lru);
3743 __free_page(page);
3744 }
3745 }
3746 }
3747}
3748
3749#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3750void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3751 gfp_t gfp_mask)
3752{
3753 struct swap_info_struct *si, *next;
3754 if (!(gfp_mask & __GFP_IO) || !memcg)
3755 return;
3756
3757 if (!blk_cgroup_congested())
3758 return;
3759
3760 /*
3761 * We've already scheduled a throttle, avoid taking the global swap
3762 * lock.
3763 */
3764 if (current->throttle_queue)
3765 return;
3766
3767 spin_lock(&swap_avail_lock);
3768 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3769 avail_lists[node]) {
3770 if (si->bdev) {
3771 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3772 true);
3773 break;
3774 }
3775 }
3776 spin_unlock(&swap_avail_lock);
3777}
3778#endif
3779
3780static int __init swapfile_init(void)
3781{
3782 int nid;
3783
3784 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3785 GFP_KERNEL);
3786 if (!swap_avail_heads) {
3787 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3788 return -ENOMEM;
3789 }
3790
3791 for_each_node(nid)
3792 plist_head_init(&swap_avail_heads[nid]);
3793
3794 return 0;
3795}
3796subsys_initcall(swapfile_init);