blob: fa53bb09495d65312df7cbab2d46e121a74d58cc [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/poison.h>
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
98#include <linux/cpuset.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
107#include <linux/string.h>
108#include <linux/uaccess.h>
109#include <linux/nodemask.h>
110#include <linux/kmemleak.h>
111#include <linux/mempolicy.h>
112#include <linux/mutex.h>
113#include <linux/fault-inject.h>
114#include <linux/rtmutex.h>
115#include <linux/reciprocal_div.h>
116#include <linux/debugobjects.h>
117#include <linux/memory.h>
118#include <linux/prefetch.h>
119#include <linux/sched/task_stack.h>
120
121#include <net/sock.h>
122
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
127#include <trace/events/kmem.h>
128
129#include "internal.h"
130
131#include "slab.h"
132
133/*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172/*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194};
195
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206#define CACHE_CACHE 0
207#define SIZE_NODE (MAX_NUMNODES)
208
209static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215static void cache_reap(struct work_struct *unused);
216
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222static int slab_early_init = 1;
223
224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226static void kmem_cache_node_init(struct kmem_cache_node *parent)
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
303#define STATS_INC_NODEFREES(x) do { } while (0)
304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
305#define STATS_SET_FREEABLE(x, i) do { } while (0)
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
313
314/*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327static int obj_offset(struct kmem_cache *cachep)
328{
329 return cachep->obj_offset;
330}
331
332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337}
338
339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348}
349
350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354}
355
356#else
357
358#define obj_offset(x) 0
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
367static inline bool is_store_user_clean(struct kmem_cache *cachep)
368{
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
371
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
376
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381}
382
383#else
384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386#endif
387
388/*
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
391 */
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
395static bool slab_max_order_set __initdata;
396
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401}
402
403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405{
406 return page->s_mem + cache->size * idx;
407}
408
409#define BOOT_CPUCACHE_ENTRIES 1
410/* internal cache of cache description objs */
411static struct kmem_cache kmem_cache_boot = {
412 .batchcount = 1,
413 .limit = BOOT_CPUCACHE_ENTRIES,
414 .shared = 1,
415 .size = sizeof(struct kmem_cache),
416 .name = "kmem_cache",
417};
418
419static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
420
421static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
422{
423 return this_cpu_ptr(cachep->cpu_cache);
424}
425
426/*
427 * Calculate the number of objects and left-over bytes for a given buffer size.
428 */
429static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
430 slab_flags_t flags, size_t *left_over)
431{
432 unsigned int num;
433 size_t slab_size = PAGE_SIZE << gfporder;
434
435 /*
436 * The slab management structure can be either off the slab or
437 * on it. For the latter case, the memory allocated for a
438 * slab is used for:
439 *
440 * - @buffer_size bytes for each object
441 * - One freelist_idx_t for each object
442 *
443 * We don't need to consider alignment of freelist because
444 * freelist will be at the end of slab page. The objects will be
445 * at the correct alignment.
446 *
447 * If the slab management structure is off the slab, then the
448 * alignment will already be calculated into the size. Because
449 * the slabs are all pages aligned, the objects will be at the
450 * correct alignment when allocated.
451 */
452 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
453 num = slab_size / buffer_size;
454 *left_over = slab_size % buffer_size;
455 } else {
456 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
457 *left_over = slab_size %
458 (buffer_size + sizeof(freelist_idx_t));
459 }
460
461 return num;
462}
463
464#if DEBUG
465#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
466
467static void __slab_error(const char *function, struct kmem_cache *cachep,
468 char *msg)
469{
470 pr_err("slab error in %s(): cache `%s': %s\n",
471 function, cachep->name, msg);
472 dump_stack();
473 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
474}
475#endif
476
477/*
478 * By default on NUMA we use alien caches to stage the freeing of
479 * objects allocated from other nodes. This causes massive memory
480 * inefficiencies when using fake NUMA setup to split memory into a
481 * large number of small nodes, so it can be disabled on the command
482 * line
483 */
484
485static int use_alien_caches __read_mostly = 1;
486static int __init noaliencache_setup(char *s)
487{
488 use_alien_caches = 0;
489 return 1;
490}
491__setup("noaliencache", noaliencache_setup);
492
493static int __init slab_max_order_setup(char *str)
494{
495 get_option(&str, &slab_max_order);
496 slab_max_order = slab_max_order < 0 ? 0 :
497 min(slab_max_order, MAX_ORDER - 1);
498 slab_max_order_set = true;
499
500 return 1;
501}
502__setup("slab_max_order=", slab_max_order_setup);
503
504#ifdef CONFIG_NUMA
505/*
506 * Special reaping functions for NUMA systems called from cache_reap().
507 * These take care of doing round robin flushing of alien caches (containing
508 * objects freed on different nodes from which they were allocated) and the
509 * flushing of remote pcps by calling drain_node_pages.
510 */
511static DEFINE_PER_CPU(unsigned long, slab_reap_node);
512
513static void init_reap_node(int cpu)
514{
515 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
516 node_online_map);
517}
518
519static void next_reap_node(void)
520{
521 int node = __this_cpu_read(slab_reap_node);
522
523 node = next_node_in(node, node_online_map);
524 __this_cpu_write(slab_reap_node, node);
525}
526
527#else
528#define init_reap_node(cpu) do { } while (0)
529#define next_reap_node(void) do { } while (0)
530#endif
531
532/*
533 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
534 * via the workqueue/eventd.
535 * Add the CPU number into the expiration time to minimize the possibility of
536 * the CPUs getting into lockstep and contending for the global cache chain
537 * lock.
538 */
539static void start_cpu_timer(int cpu)
540{
541 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
542
543 if (reap_work->work.func == NULL) {
544 init_reap_node(cpu);
545 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
546 schedule_delayed_work_on(cpu, reap_work,
547 __round_jiffies_relative(HZ, cpu));
548 }
549}
550
551static void init_arraycache(struct array_cache *ac, int limit, int batch)
552{
553 if (ac) {
554 ac->avail = 0;
555 ac->limit = limit;
556 ac->batchcount = batch;
557 ac->touched = 0;
558 }
559}
560
561static struct array_cache *alloc_arraycache(int node, int entries,
562 int batchcount, gfp_t gfp)
563{
564 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
565 struct array_cache *ac = NULL;
566
567 ac = kmalloc_node(memsize, gfp, node);
568 /*
569 * The array_cache structures contain pointers to free object.
570 * However, when such objects are allocated or transferred to another
571 * cache the pointers are not cleared and they could be counted as
572 * valid references during a kmemleak scan. Therefore, kmemleak must
573 * not scan such objects.
574 */
575 kmemleak_no_scan(ac);
576 init_arraycache(ac, entries, batchcount);
577 return ac;
578}
579
580static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
581 struct page *page, void *objp)
582{
583 struct kmem_cache_node *n;
584 int page_node;
585 LIST_HEAD(list);
586
587 page_node = page_to_nid(page);
588 n = get_node(cachep, page_node);
589
590 spin_lock(&n->list_lock);
591 free_block(cachep, &objp, 1, page_node, &list);
592 spin_unlock(&n->list_lock);
593
594 slabs_destroy(cachep, &list);
595}
596
597/*
598 * Transfer objects in one arraycache to another.
599 * Locking must be handled by the caller.
600 *
601 * Return the number of entries transferred.
602 */
603static int transfer_objects(struct array_cache *to,
604 struct array_cache *from, unsigned int max)
605{
606 /* Figure out how many entries to transfer */
607 int nr = min3(from->avail, max, to->limit - to->avail);
608
609 if (!nr)
610 return 0;
611
612 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
613 sizeof(void *) *nr);
614
615 from->avail -= nr;
616 to->avail += nr;
617 return nr;
618}
619
620#ifndef CONFIG_NUMA
621
622#define drain_alien_cache(cachep, alien) do { } while (0)
623#define reap_alien(cachep, n) do { } while (0)
624
625static inline struct alien_cache **alloc_alien_cache(int node,
626 int limit, gfp_t gfp)
627{
628 return NULL;
629}
630
631static inline void free_alien_cache(struct alien_cache **ac_ptr)
632{
633}
634
635static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
636{
637 return 0;
638}
639
640static inline void *alternate_node_alloc(struct kmem_cache *cachep,
641 gfp_t flags)
642{
643 return NULL;
644}
645
646static inline void *____cache_alloc_node(struct kmem_cache *cachep,
647 gfp_t flags, int nodeid)
648{
649 return NULL;
650}
651
652static inline gfp_t gfp_exact_node(gfp_t flags)
653{
654 return flags & ~__GFP_NOFAIL;
655}
656
657#else /* CONFIG_NUMA */
658
659static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
660static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
661
662static struct alien_cache *__alloc_alien_cache(int node, int entries,
663 int batch, gfp_t gfp)
664{
665 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
666 struct alien_cache *alc = NULL;
667
668 alc = kmalloc_node(memsize, gfp, node);
669 if (alc) {
670 kmemleak_no_scan(alc);
671 init_arraycache(&alc->ac, entries, batch);
672 spin_lock_init(&alc->lock);
673 }
674 return alc;
675}
676
677static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
678{
679 struct alien_cache **alc_ptr;
680 size_t memsize = sizeof(void *) * nr_node_ids;
681 int i;
682
683 if (limit > 1)
684 limit = 12;
685 alc_ptr = kzalloc_node(memsize, gfp, node);
686 if (!alc_ptr)
687 return NULL;
688
689 for_each_node(i) {
690 if (i == node || !node_online(i))
691 continue;
692 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
693 if (!alc_ptr[i]) {
694 for (i--; i >= 0; i--)
695 kfree(alc_ptr[i]);
696 kfree(alc_ptr);
697 return NULL;
698 }
699 }
700 return alc_ptr;
701}
702
703static void free_alien_cache(struct alien_cache **alc_ptr)
704{
705 int i;
706
707 if (!alc_ptr)
708 return;
709 for_each_node(i)
710 kfree(alc_ptr[i]);
711 kfree(alc_ptr);
712}
713
714static void __drain_alien_cache(struct kmem_cache *cachep,
715 struct array_cache *ac, int node,
716 struct list_head *list)
717{
718 struct kmem_cache_node *n = get_node(cachep, node);
719
720 if (ac->avail) {
721 spin_lock(&n->list_lock);
722 /*
723 * Stuff objects into the remote nodes shared array first.
724 * That way we could avoid the overhead of putting the objects
725 * into the free lists and getting them back later.
726 */
727 if (n->shared)
728 transfer_objects(n->shared, ac, ac->limit);
729
730 free_block(cachep, ac->entry, ac->avail, node, list);
731 ac->avail = 0;
732 spin_unlock(&n->list_lock);
733 }
734}
735
736/*
737 * Called from cache_reap() to regularly drain alien caches round robin.
738 */
739static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
740{
741 int node = __this_cpu_read(slab_reap_node);
742
743 if (n->alien) {
744 struct alien_cache *alc = n->alien[node];
745 struct array_cache *ac;
746
747 if (alc) {
748 ac = &alc->ac;
749 if (ac->avail && spin_trylock_irq(&alc->lock)) {
750 LIST_HEAD(list);
751
752 __drain_alien_cache(cachep, ac, node, &list);
753 spin_unlock_irq(&alc->lock);
754 slabs_destroy(cachep, &list);
755 }
756 }
757 }
758}
759
760static void drain_alien_cache(struct kmem_cache *cachep,
761 struct alien_cache **alien)
762{
763 int i = 0;
764 struct alien_cache *alc;
765 struct array_cache *ac;
766 unsigned long flags;
767
768 for_each_online_node(i) {
769 alc = alien[i];
770 if (alc) {
771 LIST_HEAD(list);
772
773 ac = &alc->ac;
774 spin_lock_irqsave(&alc->lock, flags);
775 __drain_alien_cache(cachep, ac, i, &list);
776 spin_unlock_irqrestore(&alc->lock, flags);
777 slabs_destroy(cachep, &list);
778 }
779 }
780}
781
782static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
783 int node, int page_node)
784{
785 struct kmem_cache_node *n;
786 struct alien_cache *alien = NULL;
787 struct array_cache *ac;
788 LIST_HEAD(list);
789
790 n = get_node(cachep, node);
791 STATS_INC_NODEFREES(cachep);
792 if (n->alien && n->alien[page_node]) {
793 alien = n->alien[page_node];
794 ac = &alien->ac;
795 spin_lock(&alien->lock);
796 if (unlikely(ac->avail == ac->limit)) {
797 STATS_INC_ACOVERFLOW(cachep);
798 __drain_alien_cache(cachep, ac, page_node, &list);
799 }
800 ac->entry[ac->avail++] = objp;
801 spin_unlock(&alien->lock);
802 slabs_destroy(cachep, &list);
803 } else {
804 n = get_node(cachep, page_node);
805 spin_lock(&n->list_lock);
806 free_block(cachep, &objp, 1, page_node, &list);
807 spin_unlock(&n->list_lock);
808 slabs_destroy(cachep, &list);
809 }
810 return 1;
811}
812
813static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
814{
815 int page_node = page_to_nid(virt_to_page(objp));
816 int node = numa_mem_id();
817 /*
818 * Make sure we are not freeing a object from another node to the array
819 * cache on this cpu.
820 */
821 if (likely(node == page_node))
822 return 0;
823
824 return __cache_free_alien(cachep, objp, node, page_node);
825}
826
827/*
828 * Construct gfp mask to allocate from a specific node but do not reclaim or
829 * warn about failures.
830 */
831static inline gfp_t gfp_exact_node(gfp_t flags)
832{
833 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
834}
835#endif
836
837static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
838{
839 struct kmem_cache_node *n;
840
841 /*
842 * Set up the kmem_cache_node for cpu before we can
843 * begin anything. Make sure some other cpu on this
844 * node has not already allocated this
845 */
846 n = get_node(cachep, node);
847 if (n) {
848 spin_lock_irq(&n->list_lock);
849 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
850 cachep->num;
851 spin_unlock_irq(&n->list_lock);
852
853 return 0;
854 }
855
856 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
857 if (!n)
858 return -ENOMEM;
859
860 kmem_cache_node_init(n);
861 n->next_reap = jiffies + REAPTIMEOUT_NODE +
862 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
863
864 n->free_limit =
865 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
866
867 /*
868 * The kmem_cache_nodes don't come and go as CPUs
869 * come and go. slab_mutex is sufficient
870 * protection here.
871 */
872 cachep->node[node] = n;
873
874 return 0;
875}
876
877#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
878/*
879 * Allocates and initializes node for a node on each slab cache, used for
880 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
881 * will be allocated off-node since memory is not yet online for the new node.
882 * When hotplugging memory or a cpu, existing node are not replaced if
883 * already in use.
884 *
885 * Must hold slab_mutex.
886 */
887static int init_cache_node_node(int node)
888{
889 int ret;
890 struct kmem_cache *cachep;
891
892 list_for_each_entry(cachep, &slab_caches, list) {
893 ret = init_cache_node(cachep, node, GFP_KERNEL);
894 if (ret)
895 return ret;
896 }
897
898 return 0;
899}
900#endif
901
902static int setup_kmem_cache_node(struct kmem_cache *cachep,
903 int node, gfp_t gfp, bool force_change)
904{
905 int ret = -ENOMEM;
906 struct kmem_cache_node *n;
907 struct array_cache *old_shared = NULL;
908 struct array_cache *new_shared = NULL;
909 struct alien_cache **new_alien = NULL;
910 LIST_HEAD(list);
911
912 if (use_alien_caches) {
913 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
914 if (!new_alien)
915 goto fail;
916 }
917
918 if (cachep->shared) {
919 new_shared = alloc_arraycache(node,
920 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
921 if (!new_shared)
922 goto fail;
923 }
924
925 ret = init_cache_node(cachep, node, gfp);
926 if (ret)
927 goto fail;
928
929 n = get_node(cachep, node);
930 spin_lock_irq(&n->list_lock);
931 if (n->shared && force_change) {
932 free_block(cachep, n->shared->entry,
933 n->shared->avail, node, &list);
934 n->shared->avail = 0;
935 }
936
937 if (!n->shared || force_change) {
938 old_shared = n->shared;
939 n->shared = new_shared;
940 new_shared = NULL;
941 }
942
943 if (!n->alien) {
944 n->alien = new_alien;
945 new_alien = NULL;
946 }
947
948 spin_unlock_irq(&n->list_lock);
949 slabs_destroy(cachep, &list);
950
951 /*
952 * To protect lockless access to n->shared during irq disabled context.
953 * If n->shared isn't NULL in irq disabled context, accessing to it is
954 * guaranteed to be valid until irq is re-enabled, because it will be
955 * freed after synchronize_sched().
956 */
957 if (old_shared && force_change)
958 synchronize_sched();
959
960fail:
961 kfree(old_shared);
962 kfree(new_shared);
963 free_alien_cache(new_alien);
964
965 return ret;
966}
967
968#ifdef CONFIG_SMP
969
970static void cpuup_canceled(long cpu)
971{
972 struct kmem_cache *cachep;
973 struct kmem_cache_node *n = NULL;
974 int node = cpu_to_mem(cpu);
975 const struct cpumask *mask = cpumask_of_node(node);
976
977 list_for_each_entry(cachep, &slab_caches, list) {
978 struct array_cache *nc;
979 struct array_cache *shared;
980 struct alien_cache **alien;
981 LIST_HEAD(list);
982
983 n = get_node(cachep, node);
984 if (!n)
985 continue;
986
987 spin_lock_irq(&n->list_lock);
988
989 /* Free limit for this kmem_cache_node */
990 n->free_limit -= cachep->batchcount;
991
992 /* cpu is dead; no one can alloc from it. */
993 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
994 if (nc) {
995 free_block(cachep, nc->entry, nc->avail, node, &list);
996 nc->avail = 0;
997 }
998
999 if (!cpumask_empty(mask)) {
1000 spin_unlock_irq(&n->list_lock);
1001 goto free_slab;
1002 }
1003
1004 shared = n->shared;
1005 if (shared) {
1006 free_block(cachep, shared->entry,
1007 shared->avail, node, &list);
1008 n->shared = NULL;
1009 }
1010
1011 alien = n->alien;
1012 n->alien = NULL;
1013
1014 spin_unlock_irq(&n->list_lock);
1015
1016 kfree(shared);
1017 if (alien) {
1018 drain_alien_cache(cachep, alien);
1019 free_alien_cache(alien);
1020 }
1021
1022free_slab:
1023 slabs_destroy(cachep, &list);
1024 }
1025 /*
1026 * In the previous loop, all the objects were freed to
1027 * the respective cache's slabs, now we can go ahead and
1028 * shrink each nodelist to its limit.
1029 */
1030 list_for_each_entry(cachep, &slab_caches, list) {
1031 n = get_node(cachep, node);
1032 if (!n)
1033 continue;
1034 drain_freelist(cachep, n, INT_MAX);
1035 }
1036}
1037
1038static int cpuup_prepare(long cpu)
1039{
1040 struct kmem_cache *cachep;
1041 int node = cpu_to_mem(cpu);
1042 int err;
1043
1044 /*
1045 * We need to do this right in the beginning since
1046 * alloc_arraycache's are going to use this list.
1047 * kmalloc_node allows us to add the slab to the right
1048 * kmem_cache_node and not this cpu's kmem_cache_node
1049 */
1050 err = init_cache_node_node(node);
1051 if (err < 0)
1052 goto bad;
1053
1054 /*
1055 * Now we can go ahead with allocating the shared arrays and
1056 * array caches
1057 */
1058 list_for_each_entry(cachep, &slab_caches, list) {
1059 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1060 if (err)
1061 goto bad;
1062 }
1063
1064 return 0;
1065bad:
1066 cpuup_canceled(cpu);
1067 return -ENOMEM;
1068}
1069
1070int slab_prepare_cpu(unsigned int cpu)
1071{
1072 int err;
1073
1074 mutex_lock(&slab_mutex);
1075 err = cpuup_prepare(cpu);
1076 mutex_unlock(&slab_mutex);
1077 return err;
1078}
1079
1080/*
1081 * This is called for a failed online attempt and for a successful
1082 * offline.
1083 *
1084 * Even if all the cpus of a node are down, we don't free the
1085 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1086 * a kmalloc allocation from another cpu for memory from the node of
1087 * the cpu going down. The list3 structure is usually allocated from
1088 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1089 */
1090int slab_dead_cpu(unsigned int cpu)
1091{
1092 mutex_lock(&slab_mutex);
1093 cpuup_canceled(cpu);
1094 mutex_unlock(&slab_mutex);
1095 return 0;
1096}
1097#endif
1098
1099static int slab_online_cpu(unsigned int cpu)
1100{
1101 start_cpu_timer(cpu);
1102 return 0;
1103}
1104
1105static int slab_offline_cpu(unsigned int cpu)
1106{
1107 /*
1108 * Shutdown cache reaper. Note that the slab_mutex is held so
1109 * that if cache_reap() is invoked it cannot do anything
1110 * expensive but will only modify reap_work and reschedule the
1111 * timer.
1112 */
1113 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1114 /* Now the cache_reaper is guaranteed to be not running. */
1115 per_cpu(slab_reap_work, cpu).work.func = NULL;
1116 return 0;
1117}
1118
1119#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1120/*
1121 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1122 * Returns -EBUSY if all objects cannot be drained so that the node is not
1123 * removed.
1124 *
1125 * Must hold slab_mutex.
1126 */
1127static int __meminit drain_cache_node_node(int node)
1128{
1129 struct kmem_cache *cachep;
1130 int ret = 0;
1131
1132 list_for_each_entry(cachep, &slab_caches, list) {
1133 struct kmem_cache_node *n;
1134
1135 n = get_node(cachep, node);
1136 if (!n)
1137 continue;
1138
1139 drain_freelist(cachep, n, INT_MAX);
1140
1141 if (!list_empty(&n->slabs_full) ||
1142 !list_empty(&n->slabs_partial)) {
1143 ret = -EBUSY;
1144 break;
1145 }
1146 }
1147 return ret;
1148}
1149
1150static int __meminit slab_memory_callback(struct notifier_block *self,
1151 unsigned long action, void *arg)
1152{
1153 struct memory_notify *mnb = arg;
1154 int ret = 0;
1155 int nid;
1156
1157 nid = mnb->status_change_nid;
1158 if (nid < 0)
1159 goto out;
1160
1161 switch (action) {
1162 case MEM_GOING_ONLINE:
1163 mutex_lock(&slab_mutex);
1164 ret = init_cache_node_node(nid);
1165 mutex_unlock(&slab_mutex);
1166 break;
1167 case MEM_GOING_OFFLINE:
1168 mutex_lock(&slab_mutex);
1169 ret = drain_cache_node_node(nid);
1170 mutex_unlock(&slab_mutex);
1171 break;
1172 case MEM_ONLINE:
1173 case MEM_OFFLINE:
1174 case MEM_CANCEL_ONLINE:
1175 case MEM_CANCEL_OFFLINE:
1176 break;
1177 }
1178out:
1179 return notifier_from_errno(ret);
1180}
1181#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1182
1183/*
1184 * swap the static kmem_cache_node with kmalloced memory
1185 */
1186static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1187 int nodeid)
1188{
1189 struct kmem_cache_node *ptr;
1190
1191 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1192 BUG_ON(!ptr);
1193
1194 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1195 /*
1196 * Do not assume that spinlocks can be initialized via memcpy:
1197 */
1198 spin_lock_init(&ptr->list_lock);
1199
1200 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1201 cachep->node[nodeid] = ptr;
1202}
1203
1204/*
1205 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1206 * size of kmem_cache_node.
1207 */
1208static void __init set_up_node(struct kmem_cache *cachep, int index)
1209{
1210 int node;
1211
1212 for_each_online_node(node) {
1213 cachep->node[node] = &init_kmem_cache_node[index + node];
1214 cachep->node[node]->next_reap = jiffies +
1215 REAPTIMEOUT_NODE +
1216 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1217 }
1218}
1219
1220/*
1221 * Initialisation. Called after the page allocator have been initialised and
1222 * before smp_init().
1223 */
1224void __init kmem_cache_init(void)
1225{
1226 int i;
1227
1228 kmem_cache = &kmem_cache_boot;
1229
1230 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1231 use_alien_caches = 0;
1232
1233 for (i = 0; i < NUM_INIT_LISTS; i++)
1234 kmem_cache_node_init(&init_kmem_cache_node[i]);
1235
1236 /*
1237 * Fragmentation resistance on low memory - only use bigger
1238 * page orders on machines with more than 32MB of memory if
1239 * not overridden on the command line.
1240 */
1241 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1242 slab_max_order = SLAB_MAX_ORDER_HI;
1243
1244 /* Bootstrap is tricky, because several objects are allocated
1245 * from caches that do not exist yet:
1246 * 1) initialize the kmem_cache cache: it contains the struct
1247 * kmem_cache structures of all caches, except kmem_cache itself:
1248 * kmem_cache is statically allocated.
1249 * Initially an __init data area is used for the head array and the
1250 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1251 * array at the end of the bootstrap.
1252 * 2) Create the first kmalloc cache.
1253 * The struct kmem_cache for the new cache is allocated normally.
1254 * An __init data area is used for the head array.
1255 * 3) Create the remaining kmalloc caches, with minimally sized
1256 * head arrays.
1257 * 4) Replace the __init data head arrays for kmem_cache and the first
1258 * kmalloc cache with kmalloc allocated arrays.
1259 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1260 * the other cache's with kmalloc allocated memory.
1261 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1262 */
1263
1264 /* 1) create the kmem_cache */
1265
1266 /*
1267 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1268 */
1269 create_boot_cache(kmem_cache, "kmem_cache",
1270 offsetof(struct kmem_cache, node) +
1271 nr_node_ids * sizeof(struct kmem_cache_node *),
1272 SLAB_HWCACHE_ALIGN, 0, 0);
1273 list_add(&kmem_cache->list, &slab_caches);
1274 memcg_link_cache(kmem_cache);
1275 slab_state = PARTIAL;
1276
1277 /*
1278 * Initialize the caches that provide memory for the kmem_cache_node
1279 * structures first. Without this, further allocations will bug.
1280 */
1281 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1282 kmalloc_info[INDEX_NODE].name,
1283 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1284 0, kmalloc_size(INDEX_NODE));
1285 slab_state = PARTIAL_NODE;
1286 setup_kmalloc_cache_index_table();
1287
1288 slab_early_init = 0;
1289
1290 /* 5) Replace the bootstrap kmem_cache_node */
1291 {
1292 int nid;
1293
1294 for_each_online_node(nid) {
1295 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1296
1297 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1298 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1299 }
1300 }
1301
1302 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1303}
1304
1305void __init kmem_cache_init_late(void)
1306{
1307 struct kmem_cache *cachep;
1308
1309 /* 6) resize the head arrays to their final sizes */
1310 mutex_lock(&slab_mutex);
1311 list_for_each_entry(cachep, &slab_caches, list)
1312 if (enable_cpucache(cachep, GFP_NOWAIT))
1313 BUG();
1314 mutex_unlock(&slab_mutex);
1315
1316 /* Done! */
1317 slab_state = FULL;
1318
1319#ifdef CONFIG_NUMA
1320 /*
1321 * Register a memory hotplug callback that initializes and frees
1322 * node.
1323 */
1324 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1325#endif
1326
1327 /*
1328 * The reap timers are started later, with a module init call: That part
1329 * of the kernel is not yet operational.
1330 */
1331}
1332
1333static int __init cpucache_init(void)
1334{
1335 int ret;
1336
1337 /*
1338 * Register the timers that return unneeded pages to the page allocator
1339 */
1340 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1341 slab_online_cpu, slab_offline_cpu);
1342 WARN_ON(ret < 0);
1343
1344 return 0;
1345}
1346__initcall(cpucache_init);
1347
1348static noinline void
1349slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1350{
1351#if DEBUG
1352 struct kmem_cache_node *n;
1353 unsigned long flags;
1354 int node;
1355 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1356 DEFAULT_RATELIMIT_BURST);
1357
1358 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1359 return;
1360
1361 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1362 nodeid, gfpflags, &gfpflags);
1363 pr_warn(" cache: %s, object size: %d, order: %d\n",
1364 cachep->name, cachep->size, cachep->gfporder);
1365
1366 for_each_kmem_cache_node(cachep, node, n) {
1367 unsigned long total_slabs, free_slabs, free_objs;
1368
1369 spin_lock_irqsave(&n->list_lock, flags);
1370 total_slabs = n->total_slabs;
1371 free_slabs = n->free_slabs;
1372 free_objs = n->free_objects;
1373 spin_unlock_irqrestore(&n->list_lock, flags);
1374
1375 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1376 node, total_slabs - free_slabs, total_slabs,
1377 (total_slabs * cachep->num) - free_objs,
1378 total_slabs * cachep->num);
1379 }
1380#endif
1381}
1382
1383/*
1384 * Interface to system's page allocator. No need to hold the
1385 * kmem_cache_node ->list_lock.
1386 *
1387 * If we requested dmaable memory, we will get it. Even if we
1388 * did not request dmaable memory, we might get it, but that
1389 * would be relatively rare and ignorable.
1390 */
1391static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1392 int nodeid)
1393{
1394 struct page *page;
1395 int nr_pages;
1396
1397 flags |= cachep->allocflags;
1398
1399 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1400 if (!page) {
1401 slab_out_of_memory(cachep, flags, nodeid);
1402 return NULL;
1403 }
1404
1405 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1406 __free_pages(page, cachep->gfporder);
1407 return NULL;
1408 }
1409
1410 nr_pages = (1 << cachep->gfporder);
1411 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1412 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1413 else
1414 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1415
1416 __SetPageSlab(page);
1417 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1418 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1419 SetPageSlabPfmemalloc(page);
1420
1421 return page;
1422}
1423
1424/*
1425 * Interface to system's page release.
1426 */
1427static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1428{
1429 int order = cachep->gfporder;
1430 unsigned long nr_freed = (1 << order);
1431
1432 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1433 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1434 else
1435 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1436
1437 BUG_ON(!PageSlab(page));
1438 __ClearPageSlabPfmemalloc(page);
1439 __ClearPageSlab(page);
1440 page_mapcount_reset(page);
1441 page->mapping = NULL;
1442
1443 if (current->reclaim_state)
1444 current->reclaim_state->reclaimed_slab += nr_freed;
1445 memcg_uncharge_slab(page, order, cachep);
1446 __free_pages(page, order);
1447}
1448
1449static void kmem_rcu_free(struct rcu_head *head)
1450{
1451 struct kmem_cache *cachep;
1452 struct page *page;
1453
1454 page = container_of(head, struct page, rcu_head);
1455 cachep = page->slab_cache;
1456
1457 kmem_freepages(cachep, page);
1458}
1459
1460#if DEBUG
1461static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1462{
1463 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1464 (cachep->size % PAGE_SIZE) == 0)
1465 return true;
1466
1467 return false;
1468}
1469
1470#ifdef CONFIG_DEBUG_PAGEALLOC
1471static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1472 unsigned long caller)
1473{
1474 int size = cachep->object_size;
1475
1476 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1477
1478 if (size < 5 * sizeof(unsigned long))
1479 return;
1480
1481 *addr++ = 0x12345678;
1482 *addr++ = caller;
1483 *addr++ = smp_processor_id();
1484 size -= 3 * sizeof(unsigned long);
1485 {
1486 unsigned long *sptr = &caller;
1487 unsigned long svalue;
1488
1489 while (!kstack_end(sptr)) {
1490 svalue = *sptr++;
1491 if (kernel_text_address(svalue)) {
1492 *addr++ = svalue;
1493 size -= sizeof(unsigned long);
1494 if (size <= sizeof(unsigned long))
1495 break;
1496 }
1497 }
1498
1499 }
1500 *addr++ = 0x87654321;
1501}
1502
1503static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1504 int map, unsigned long caller)
1505{
1506 if (!is_debug_pagealloc_cache(cachep))
1507 return;
1508
1509 if (caller)
1510 store_stackinfo(cachep, objp, caller);
1511
1512 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1513}
1514
1515#else
1516static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1517 int map, unsigned long caller) {}
1518
1519#endif
1520
1521static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1522{
1523 int size = cachep->object_size;
1524 addr = &((char *)addr)[obj_offset(cachep)];
1525
1526 memset(addr, val, size);
1527 *(unsigned char *)(addr + size - 1) = POISON_END;
1528}
1529
1530static void dump_line(char *data, int offset, int limit)
1531{
1532 int i;
1533 unsigned char error = 0;
1534 int bad_count = 0;
1535
1536 pr_err("%03x: ", offset);
1537 for (i = 0; i < limit; i++) {
1538 if (data[offset + i] != POISON_FREE) {
1539 error = data[offset + i];
1540 bad_count++;
1541 }
1542 }
1543 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1544 &data[offset], limit, 1);
1545
1546 if (bad_count == 1) {
1547 error ^= POISON_FREE;
1548 if (!(error & (error - 1))) {
1549 pr_err("Single bit error detected. Probably bad RAM.\n");
1550#ifdef CONFIG_X86
1551 pr_err("Run memtest86+ or a similar memory test tool.\n");
1552#else
1553 pr_err("Run a memory test tool.\n");
1554#endif
1555 }
1556 }
1557}
1558#endif
1559
1560#if DEBUG
1561
1562static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1563{
1564 int i, size;
1565 char *realobj;
1566
1567 if (cachep->flags & SLAB_RED_ZONE) {
1568 pr_err("Redzone: 0x%llx/0x%llx\n",
1569 *dbg_redzone1(cachep, objp),
1570 *dbg_redzone2(cachep, objp));
1571 }
1572
1573 if (cachep->flags & SLAB_STORE_USER)
1574 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1575 realobj = (char *)objp + obj_offset(cachep);
1576 size = cachep->object_size;
1577 for (i = 0; i < size && lines; i += 16, lines--) {
1578 int limit;
1579 limit = 16;
1580 if (i + limit > size)
1581 limit = size - i;
1582 dump_line(realobj, i, limit);
1583 }
1584}
1585
1586static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1587{
1588 char *realobj;
1589 int size, i;
1590 int lines = 0;
1591
1592 if (is_debug_pagealloc_cache(cachep))
1593 return;
1594
1595 realobj = (char *)objp + obj_offset(cachep);
1596 size = cachep->object_size;
1597
1598 for (i = 0; i < size; i++) {
1599 char exp = POISON_FREE;
1600 if (i == size - 1)
1601 exp = POISON_END;
1602 if (realobj[i] != exp) {
1603 int limit;
1604 /* Mismatch ! */
1605 /* Print header */
1606 if (lines == 0) {
1607 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1608 print_tainted(), cachep->name,
1609 realobj, size);
1610 print_objinfo(cachep, objp, 0);
1611 }
1612 /* Hexdump the affected line */
1613 i = (i / 16) * 16;
1614 limit = 16;
1615 if (i + limit > size)
1616 limit = size - i;
1617 dump_line(realobj, i, limit);
1618 i += 16;
1619 lines++;
1620 /* Limit to 5 lines */
1621 if (lines > 5)
1622 break;
1623 }
1624 }
1625 if (lines != 0) {
1626 /* Print some data about the neighboring objects, if they
1627 * exist:
1628 */
1629 struct page *page = virt_to_head_page(objp);
1630 unsigned int objnr;
1631
1632 objnr = obj_to_index(cachep, page, objp);
1633 if (objnr) {
1634 objp = index_to_obj(cachep, page, objnr - 1);
1635 realobj = (char *)objp + obj_offset(cachep);
1636 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1637 print_objinfo(cachep, objp, 2);
1638 }
1639 if (objnr + 1 < cachep->num) {
1640 objp = index_to_obj(cachep, page, objnr + 1);
1641 realobj = (char *)objp + obj_offset(cachep);
1642 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1643 print_objinfo(cachep, objp, 2);
1644 }
1645 }
1646}
1647#endif
1648
1649#if DEBUG
1650static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1651 struct page *page)
1652{
1653 int i;
1654
1655 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1656 poison_obj(cachep, page->freelist - obj_offset(cachep),
1657 POISON_FREE);
1658 }
1659
1660 for (i = 0; i < cachep->num; i++) {
1661 void *objp = index_to_obj(cachep, page, i);
1662
1663 if (cachep->flags & SLAB_POISON) {
1664 check_poison_obj(cachep, objp);
1665 slab_kernel_map(cachep, objp, 1, 0);
1666 }
1667 if (cachep->flags & SLAB_RED_ZONE) {
1668 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1669 slab_error(cachep, "start of a freed object was overwritten");
1670 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1671 slab_error(cachep, "end of a freed object was overwritten");
1672 }
1673 }
1674}
1675#else
1676static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1677 struct page *page)
1678{
1679}
1680#endif
1681
1682/**
1683 * slab_destroy - destroy and release all objects in a slab
1684 * @cachep: cache pointer being destroyed
1685 * @page: page pointer being destroyed
1686 *
1687 * Destroy all the objs in a slab page, and release the mem back to the system.
1688 * Before calling the slab page must have been unlinked from the cache. The
1689 * kmem_cache_node ->list_lock is not held/needed.
1690 */
1691static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1692{
1693 void *freelist;
1694
1695 freelist = page->freelist;
1696 slab_destroy_debugcheck(cachep, page);
1697 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1698 call_rcu(&page->rcu_head, kmem_rcu_free);
1699 else
1700 kmem_freepages(cachep, page);
1701
1702 /*
1703 * From now on, we don't use freelist
1704 * although actual page can be freed in rcu context
1705 */
1706 if (OFF_SLAB(cachep))
1707 kmem_cache_free(cachep->freelist_cache, freelist);
1708}
1709
1710static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1711{
1712 struct page *page, *n;
1713
1714 list_for_each_entry_safe(page, n, list, lru) {
1715 list_del(&page->lru);
1716 slab_destroy(cachep, page);
1717 }
1718}
1719
1720/**
1721 * calculate_slab_order - calculate size (page order) of slabs
1722 * @cachep: pointer to the cache that is being created
1723 * @size: size of objects to be created in this cache.
1724 * @flags: slab allocation flags
1725 *
1726 * Also calculates the number of objects per slab.
1727 *
1728 * This could be made much more intelligent. For now, try to avoid using
1729 * high order pages for slabs. When the gfp() functions are more friendly
1730 * towards high-order requests, this should be changed.
1731 */
1732static size_t calculate_slab_order(struct kmem_cache *cachep,
1733 size_t size, slab_flags_t flags)
1734{
1735 size_t left_over = 0;
1736 int gfporder;
1737
1738 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1739 unsigned int num;
1740 size_t remainder;
1741
1742 num = cache_estimate(gfporder, size, flags, &remainder);
1743 if (!num)
1744 continue;
1745
1746 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1747 if (num > SLAB_OBJ_MAX_NUM)
1748 break;
1749
1750 if (flags & CFLGS_OFF_SLAB) {
1751 struct kmem_cache *freelist_cache;
1752 size_t freelist_size;
1753
1754 freelist_size = num * sizeof(freelist_idx_t);
1755 freelist_cache = kmalloc_slab(freelist_size, 0u);
1756 if (!freelist_cache)
1757 continue;
1758
1759 /*
1760 * Needed to avoid possible looping condition
1761 * in cache_grow_begin()
1762 */
1763 if (OFF_SLAB(freelist_cache))
1764 continue;
1765
1766 /* check if off slab has enough benefit */
1767 if (freelist_cache->size > cachep->size / 2)
1768 continue;
1769 }
1770
1771 /* Found something acceptable - save it away */
1772 cachep->num = num;
1773 cachep->gfporder = gfporder;
1774 left_over = remainder;
1775
1776 /*
1777 * A VFS-reclaimable slab tends to have most allocations
1778 * as GFP_NOFS and we really don't want to have to be allocating
1779 * higher-order pages when we are unable to shrink dcache.
1780 */
1781 if (flags & SLAB_RECLAIM_ACCOUNT)
1782 break;
1783
1784 /*
1785 * Large number of objects is good, but very large slabs are
1786 * currently bad for the gfp()s.
1787 */
1788 if (gfporder >= slab_max_order)
1789 break;
1790
1791 /*
1792 * Acceptable internal fragmentation?
1793 */
1794 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1795 break;
1796 }
1797 return left_over;
1798}
1799
1800static struct array_cache __percpu *alloc_kmem_cache_cpus(
1801 struct kmem_cache *cachep, int entries, int batchcount)
1802{
1803 int cpu;
1804 size_t size;
1805 struct array_cache __percpu *cpu_cache;
1806
1807 size = sizeof(void *) * entries + sizeof(struct array_cache);
1808 cpu_cache = __alloc_percpu(size, sizeof(void *));
1809
1810 if (!cpu_cache)
1811 return NULL;
1812
1813 for_each_possible_cpu(cpu) {
1814 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1815 entries, batchcount);
1816 }
1817
1818 return cpu_cache;
1819}
1820
1821static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1822{
1823 if (slab_state >= FULL)
1824 return enable_cpucache(cachep, gfp);
1825
1826 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1827 if (!cachep->cpu_cache)
1828 return 1;
1829
1830 if (slab_state == DOWN) {
1831 /* Creation of first cache (kmem_cache). */
1832 set_up_node(kmem_cache, CACHE_CACHE);
1833 } else if (slab_state == PARTIAL) {
1834 /* For kmem_cache_node */
1835 set_up_node(cachep, SIZE_NODE);
1836 } else {
1837 int node;
1838
1839 for_each_online_node(node) {
1840 cachep->node[node] = kmalloc_node(
1841 sizeof(struct kmem_cache_node), gfp, node);
1842 BUG_ON(!cachep->node[node]);
1843 kmem_cache_node_init(cachep->node[node]);
1844 }
1845 }
1846
1847 cachep->node[numa_mem_id()]->next_reap =
1848 jiffies + REAPTIMEOUT_NODE +
1849 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1850
1851 cpu_cache_get(cachep)->avail = 0;
1852 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1853 cpu_cache_get(cachep)->batchcount = 1;
1854 cpu_cache_get(cachep)->touched = 0;
1855 cachep->batchcount = 1;
1856 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1857 return 0;
1858}
1859
1860slab_flags_t kmem_cache_flags(unsigned int object_size,
1861 slab_flags_t flags, const char *name,
1862 void (*ctor)(void *))
1863{
1864 return flags;
1865}
1866
1867struct kmem_cache *
1868__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1869 slab_flags_t flags, void (*ctor)(void *))
1870{
1871 struct kmem_cache *cachep;
1872
1873 cachep = find_mergeable(size, align, flags, name, ctor);
1874 if (cachep) {
1875 cachep->refcount++;
1876
1877 /*
1878 * Adjust the object sizes so that we clear
1879 * the complete object on kzalloc.
1880 */
1881 cachep->object_size = max_t(int, cachep->object_size, size);
1882 }
1883 return cachep;
1884}
1885
1886static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1887 size_t size, slab_flags_t flags)
1888{
1889 size_t left;
1890
1891 cachep->num = 0;
1892
1893 /*
1894 * If slab auto-initialization on free is enabled, store the freelist
1895 * off-slab, so that its contents don't end up in one of the allocated
1896 * objects.
1897 */
1898 if (unlikely(slab_want_init_on_free(cachep)))
1899 return false;
1900
1901 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1902 return false;
1903
1904 left = calculate_slab_order(cachep, size,
1905 flags | CFLGS_OBJFREELIST_SLAB);
1906 if (!cachep->num)
1907 return false;
1908
1909 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1910 return false;
1911
1912 cachep->colour = left / cachep->colour_off;
1913
1914 return true;
1915}
1916
1917static bool set_off_slab_cache(struct kmem_cache *cachep,
1918 size_t size, slab_flags_t flags)
1919{
1920 size_t left;
1921
1922 cachep->num = 0;
1923
1924 /*
1925 * Always use on-slab management when SLAB_NOLEAKTRACE
1926 * to avoid recursive calls into kmemleak.
1927 */
1928 if (flags & SLAB_NOLEAKTRACE)
1929 return false;
1930
1931 /*
1932 * Size is large, assume best to place the slab management obj
1933 * off-slab (should allow better packing of objs).
1934 */
1935 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1936 if (!cachep->num)
1937 return false;
1938
1939 /*
1940 * If the slab has been placed off-slab, and we have enough space then
1941 * move it on-slab. This is at the expense of any extra colouring.
1942 */
1943 if (left >= cachep->num * sizeof(freelist_idx_t))
1944 return false;
1945
1946 cachep->colour = left / cachep->colour_off;
1947
1948 return true;
1949}
1950
1951static bool set_on_slab_cache(struct kmem_cache *cachep,
1952 size_t size, slab_flags_t flags)
1953{
1954 size_t left;
1955
1956 cachep->num = 0;
1957
1958 left = calculate_slab_order(cachep, size, flags);
1959 if (!cachep->num)
1960 return false;
1961
1962 cachep->colour = left / cachep->colour_off;
1963
1964 return true;
1965}
1966
1967/**
1968 * __kmem_cache_create - Create a cache.
1969 * @cachep: cache management descriptor
1970 * @flags: SLAB flags
1971 *
1972 * Returns a ptr to the cache on success, NULL on failure.
1973 * Cannot be called within a int, but can be interrupted.
1974 * The @ctor is run when new pages are allocated by the cache.
1975 *
1976 * The flags are
1977 *
1978 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1979 * to catch references to uninitialised memory.
1980 *
1981 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1982 * for buffer overruns.
1983 *
1984 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1985 * cacheline. This can be beneficial if you're counting cycles as closely
1986 * as davem.
1987 */
1988int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1989{
1990 size_t ralign = BYTES_PER_WORD;
1991 gfp_t gfp;
1992 int err;
1993 unsigned int size = cachep->size;
1994
1995#if DEBUG
1996#if FORCED_DEBUG
1997 /*
1998 * Enable redzoning and last user accounting, except for caches with
1999 * large objects, if the increased size would increase the object size
2000 * above the next power of two: caches with object sizes just above a
2001 * power of two have a significant amount of internal fragmentation.
2002 */
2003 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2004 2 * sizeof(unsigned long long)))
2005 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2006 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2007 flags |= SLAB_POISON;
2008#endif
2009#endif
2010
2011 /*
2012 * Check that size is in terms of words. This is needed to avoid
2013 * unaligned accesses for some archs when redzoning is used, and makes
2014 * sure any on-slab bufctl's are also correctly aligned.
2015 */
2016 size = ALIGN(size, BYTES_PER_WORD);
2017
2018 if (flags & SLAB_RED_ZONE) {
2019 ralign = REDZONE_ALIGN;
2020 /* If redzoning, ensure that the second redzone is suitably
2021 * aligned, by adjusting the object size accordingly. */
2022 size = ALIGN(size, REDZONE_ALIGN);
2023 }
2024
2025 /* 3) caller mandated alignment */
2026 if (ralign < cachep->align) {
2027 ralign = cachep->align;
2028 }
2029 /* disable debug if necessary */
2030 if (ralign > __alignof__(unsigned long long))
2031 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2032 /*
2033 * 4) Store it.
2034 */
2035 cachep->align = ralign;
2036 cachep->colour_off = cache_line_size();
2037 /* Offset must be a multiple of the alignment. */
2038 if (cachep->colour_off < cachep->align)
2039 cachep->colour_off = cachep->align;
2040
2041 if (slab_is_available())
2042 gfp = GFP_KERNEL;
2043 else
2044 gfp = GFP_NOWAIT;
2045
2046#if DEBUG
2047
2048 /*
2049 * Both debugging options require word-alignment which is calculated
2050 * into align above.
2051 */
2052 if (flags & SLAB_RED_ZONE) {
2053 /* add space for red zone words */
2054 cachep->obj_offset += sizeof(unsigned long long);
2055 size += 2 * sizeof(unsigned long long);
2056 }
2057 if (flags & SLAB_STORE_USER) {
2058 /* user store requires one word storage behind the end of
2059 * the real object. But if the second red zone needs to be
2060 * aligned to 64 bits, we must allow that much space.
2061 */
2062 if (flags & SLAB_RED_ZONE)
2063 size += REDZONE_ALIGN;
2064 else
2065 size += BYTES_PER_WORD;
2066 }
2067#endif
2068
2069 kasan_cache_create(cachep, &size, &flags);
2070
2071 size = ALIGN(size, cachep->align);
2072 /*
2073 * We should restrict the number of objects in a slab to implement
2074 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2075 */
2076 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2077 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2078
2079#if DEBUG
2080 /*
2081 * To activate debug pagealloc, off-slab management is necessary
2082 * requirement. In early phase of initialization, small sized slab
2083 * doesn't get initialized so it would not be possible. So, we need
2084 * to check size >= 256. It guarantees that all necessary small
2085 * sized slab is initialized in current slab initialization sequence.
2086 */
2087 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2088 size >= 256 && cachep->object_size > cache_line_size()) {
2089 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2090 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2091
2092 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2093 flags |= CFLGS_OFF_SLAB;
2094 cachep->obj_offset += tmp_size - size;
2095 size = tmp_size;
2096 goto done;
2097 }
2098 }
2099 }
2100#endif
2101
2102 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2103 flags |= CFLGS_OBJFREELIST_SLAB;
2104 goto done;
2105 }
2106
2107 if (set_off_slab_cache(cachep, size, flags)) {
2108 flags |= CFLGS_OFF_SLAB;
2109 goto done;
2110 }
2111
2112 if (set_on_slab_cache(cachep, size, flags))
2113 goto done;
2114
2115 return -E2BIG;
2116
2117done:
2118 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2119 cachep->flags = flags;
2120 cachep->allocflags = __GFP_COMP;
2121 if (flags & SLAB_CACHE_DMA)
2122 cachep->allocflags |= GFP_DMA;
2123 if (flags & SLAB_CACHE_DMA32)
2124 cachep->allocflags |= GFP_DMA32;
2125 if (flags & SLAB_RECLAIM_ACCOUNT)
2126 cachep->allocflags |= __GFP_RECLAIMABLE;
2127 cachep->size = size;
2128 cachep->reciprocal_buffer_size = reciprocal_value(size);
2129
2130#if DEBUG
2131 /*
2132 * If we're going to use the generic kernel_map_pages()
2133 * poisoning, then it's going to smash the contents of
2134 * the redzone and userword anyhow, so switch them off.
2135 */
2136 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2137 (cachep->flags & SLAB_POISON) &&
2138 is_debug_pagealloc_cache(cachep))
2139 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2140#endif
2141
2142 if (OFF_SLAB(cachep)) {
2143 cachep->freelist_cache =
2144 kmalloc_slab(cachep->freelist_size, 0u);
2145 }
2146
2147 err = setup_cpu_cache(cachep, gfp);
2148 if (err) {
2149 __kmem_cache_release(cachep);
2150 return err;
2151 }
2152
2153 return 0;
2154}
2155
2156#if DEBUG
2157static void check_irq_off(void)
2158{
2159 BUG_ON(!irqs_disabled());
2160}
2161
2162static void check_irq_on(void)
2163{
2164 BUG_ON(irqs_disabled());
2165}
2166
2167static void check_mutex_acquired(void)
2168{
2169 BUG_ON(!mutex_is_locked(&slab_mutex));
2170}
2171
2172static void check_spinlock_acquired(struct kmem_cache *cachep)
2173{
2174#ifdef CONFIG_SMP
2175 check_irq_off();
2176 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2177#endif
2178}
2179
2180static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2181{
2182#ifdef CONFIG_SMP
2183 check_irq_off();
2184 assert_spin_locked(&get_node(cachep, node)->list_lock);
2185#endif
2186}
2187
2188#else
2189#define check_irq_off() do { } while(0)
2190#define check_irq_on() do { } while(0)
2191#define check_mutex_acquired() do { } while(0)
2192#define check_spinlock_acquired(x) do { } while(0)
2193#define check_spinlock_acquired_node(x, y) do { } while(0)
2194#endif
2195
2196static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2197 int node, bool free_all, struct list_head *list)
2198{
2199 int tofree;
2200
2201 if (!ac || !ac->avail)
2202 return;
2203
2204 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2205 if (tofree > ac->avail)
2206 tofree = (ac->avail + 1) / 2;
2207
2208 free_block(cachep, ac->entry, tofree, node, list);
2209 ac->avail -= tofree;
2210 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2211}
2212
2213static void do_drain(void *arg)
2214{
2215 struct kmem_cache *cachep = arg;
2216 struct array_cache *ac;
2217 int node = numa_mem_id();
2218 struct kmem_cache_node *n;
2219 LIST_HEAD(list);
2220
2221 check_irq_off();
2222 ac = cpu_cache_get(cachep);
2223 n = get_node(cachep, node);
2224 spin_lock(&n->list_lock);
2225 free_block(cachep, ac->entry, ac->avail, node, &list);
2226 spin_unlock(&n->list_lock);
2227 slabs_destroy(cachep, &list);
2228 ac->avail = 0;
2229}
2230
2231static void drain_cpu_caches(struct kmem_cache *cachep)
2232{
2233 struct kmem_cache_node *n;
2234 int node;
2235 LIST_HEAD(list);
2236
2237 on_each_cpu(do_drain, cachep, 1);
2238 check_irq_on();
2239 for_each_kmem_cache_node(cachep, node, n)
2240 if (n->alien)
2241 drain_alien_cache(cachep, n->alien);
2242
2243 for_each_kmem_cache_node(cachep, node, n) {
2244 spin_lock_irq(&n->list_lock);
2245 drain_array_locked(cachep, n->shared, node, true, &list);
2246 spin_unlock_irq(&n->list_lock);
2247
2248 slabs_destroy(cachep, &list);
2249 }
2250}
2251
2252/*
2253 * Remove slabs from the list of free slabs.
2254 * Specify the number of slabs to drain in tofree.
2255 *
2256 * Returns the actual number of slabs released.
2257 */
2258static int drain_freelist(struct kmem_cache *cache,
2259 struct kmem_cache_node *n, int tofree)
2260{
2261 struct list_head *p;
2262 int nr_freed;
2263 struct page *page;
2264
2265 nr_freed = 0;
2266 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2267
2268 spin_lock_irq(&n->list_lock);
2269 p = n->slabs_free.prev;
2270 if (p == &n->slabs_free) {
2271 spin_unlock_irq(&n->list_lock);
2272 goto out;
2273 }
2274
2275 page = list_entry(p, struct page, lru);
2276 list_del(&page->lru);
2277 n->free_slabs--;
2278 n->total_slabs--;
2279 /*
2280 * Safe to drop the lock. The slab is no longer linked
2281 * to the cache.
2282 */
2283 n->free_objects -= cache->num;
2284 spin_unlock_irq(&n->list_lock);
2285 slab_destroy(cache, page);
2286 nr_freed++;
2287 }
2288out:
2289 return nr_freed;
2290}
2291
2292bool __kmem_cache_empty(struct kmem_cache *s)
2293{
2294 int node;
2295 struct kmem_cache_node *n;
2296
2297 for_each_kmem_cache_node(s, node, n)
2298 if (!list_empty(&n->slabs_full) ||
2299 !list_empty(&n->slabs_partial))
2300 return false;
2301 return true;
2302}
2303
2304int __kmem_cache_shrink(struct kmem_cache *cachep)
2305{
2306 int ret = 0;
2307 int node;
2308 struct kmem_cache_node *n;
2309
2310 drain_cpu_caches(cachep);
2311
2312 check_irq_on();
2313 for_each_kmem_cache_node(cachep, node, n) {
2314 drain_freelist(cachep, n, INT_MAX);
2315
2316 ret += !list_empty(&n->slabs_full) ||
2317 !list_empty(&n->slabs_partial);
2318 }
2319 return (ret ? 1 : 0);
2320}
2321
2322#ifdef CONFIG_MEMCG
2323void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2324{
2325 __kmem_cache_shrink(cachep);
2326}
2327#endif
2328
2329int __kmem_cache_shutdown(struct kmem_cache *cachep)
2330{
2331 return __kmem_cache_shrink(cachep);
2332}
2333
2334void __kmem_cache_release(struct kmem_cache *cachep)
2335{
2336 int i;
2337 struct kmem_cache_node *n;
2338
2339 cache_random_seq_destroy(cachep);
2340
2341 free_percpu(cachep->cpu_cache);
2342
2343 /* NUMA: free the node structures */
2344 for_each_kmem_cache_node(cachep, i, n) {
2345 kfree(n->shared);
2346 free_alien_cache(n->alien);
2347 kfree(n);
2348 cachep->node[i] = NULL;
2349 }
2350}
2351
2352/*
2353 * Get the memory for a slab management obj.
2354 *
2355 * For a slab cache when the slab descriptor is off-slab, the
2356 * slab descriptor can't come from the same cache which is being created,
2357 * Because if it is the case, that means we defer the creation of
2358 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2359 * And we eventually call down to __kmem_cache_create(), which
2360 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2361 * This is a "chicken-and-egg" problem.
2362 *
2363 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2364 * which are all initialized during kmem_cache_init().
2365 */
2366static void *alloc_slabmgmt(struct kmem_cache *cachep,
2367 struct page *page, int colour_off,
2368 gfp_t local_flags, int nodeid)
2369{
2370 void *freelist;
2371 void *addr = page_address(page);
2372
2373 page->s_mem = addr + colour_off;
2374 page->active = 0;
2375
2376 if (OBJFREELIST_SLAB(cachep))
2377 freelist = NULL;
2378 else if (OFF_SLAB(cachep)) {
2379 /* Slab management obj is off-slab. */
2380 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2381 local_flags, nodeid);
2382 freelist = kasan_reset_tag(freelist);
2383 if (!freelist)
2384 return NULL;
2385 } else {
2386 /* We will use last bytes at the slab for freelist */
2387 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2388 cachep->freelist_size;
2389 }
2390
2391 return freelist;
2392}
2393
2394static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2395{
2396 return ((freelist_idx_t *)page->freelist)[idx];
2397}
2398
2399static inline void set_free_obj(struct page *page,
2400 unsigned int idx, freelist_idx_t val)
2401{
2402 ((freelist_idx_t *)(page->freelist))[idx] = val;
2403}
2404
2405static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2406{
2407#if DEBUG
2408 int i;
2409
2410 for (i = 0; i < cachep->num; i++) {
2411 void *objp = index_to_obj(cachep, page, i);
2412
2413 if (cachep->flags & SLAB_STORE_USER)
2414 *dbg_userword(cachep, objp) = NULL;
2415
2416 if (cachep->flags & SLAB_RED_ZONE) {
2417 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2418 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2419 }
2420 /*
2421 * Constructors are not allowed to allocate memory from the same
2422 * cache which they are a constructor for. Otherwise, deadlock.
2423 * They must also be threaded.
2424 */
2425 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2426 kasan_unpoison_object_data(cachep,
2427 objp + obj_offset(cachep));
2428 cachep->ctor(objp + obj_offset(cachep));
2429 kasan_poison_object_data(
2430 cachep, objp + obj_offset(cachep));
2431 }
2432
2433 if (cachep->flags & SLAB_RED_ZONE) {
2434 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2435 slab_error(cachep, "constructor overwrote the end of an object");
2436 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2437 slab_error(cachep, "constructor overwrote the start of an object");
2438 }
2439 /* need to poison the objs? */
2440 if (cachep->flags & SLAB_POISON) {
2441 poison_obj(cachep, objp, POISON_FREE);
2442 slab_kernel_map(cachep, objp, 0, 0);
2443 }
2444 }
2445#endif
2446}
2447
2448#ifdef CONFIG_SLAB_FREELIST_RANDOM
2449/* Hold information during a freelist initialization */
2450union freelist_init_state {
2451 struct {
2452 unsigned int pos;
2453 unsigned int *list;
2454 unsigned int count;
2455 };
2456 struct rnd_state rnd_state;
2457};
2458
2459/*
2460 * Initialize the state based on the randomization methode available.
2461 * return true if the pre-computed list is available, false otherwize.
2462 */
2463static bool freelist_state_initialize(union freelist_init_state *state,
2464 struct kmem_cache *cachep,
2465 unsigned int count)
2466{
2467 bool ret;
2468 unsigned int rand;
2469
2470 /* Use best entropy available to define a random shift */
2471 rand = get_random_int();
2472
2473 /* Use a random state if the pre-computed list is not available */
2474 if (!cachep->random_seq) {
2475 prandom_seed_state(&state->rnd_state, rand);
2476 ret = false;
2477 } else {
2478 state->list = cachep->random_seq;
2479 state->count = count;
2480 state->pos = rand % count;
2481 ret = true;
2482 }
2483 return ret;
2484}
2485
2486/* Get the next entry on the list and randomize it using a random shift */
2487static freelist_idx_t next_random_slot(union freelist_init_state *state)
2488{
2489 if (state->pos >= state->count)
2490 state->pos = 0;
2491 return state->list[state->pos++];
2492}
2493
2494/* Swap two freelist entries */
2495static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2496{
2497 swap(((freelist_idx_t *)page->freelist)[a],
2498 ((freelist_idx_t *)page->freelist)[b]);
2499}
2500
2501/*
2502 * Shuffle the freelist initialization state based on pre-computed lists.
2503 * return true if the list was successfully shuffled, false otherwise.
2504 */
2505static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2506{
2507 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2508 union freelist_init_state state;
2509 bool precomputed;
2510
2511 if (count < 2)
2512 return false;
2513
2514 precomputed = freelist_state_initialize(&state, cachep, count);
2515
2516 /* Take a random entry as the objfreelist */
2517 if (OBJFREELIST_SLAB(cachep)) {
2518 if (!precomputed)
2519 objfreelist = count - 1;
2520 else
2521 objfreelist = next_random_slot(&state);
2522 page->freelist = index_to_obj(cachep, page, objfreelist) +
2523 obj_offset(cachep);
2524 count--;
2525 }
2526
2527 /*
2528 * On early boot, generate the list dynamically.
2529 * Later use a pre-computed list for speed.
2530 */
2531 if (!precomputed) {
2532 for (i = 0; i < count; i++)
2533 set_free_obj(page, i, i);
2534
2535 /* Fisher-Yates shuffle */
2536 for (i = count - 1; i > 0; i--) {
2537 rand = prandom_u32_state(&state.rnd_state);
2538 rand %= (i + 1);
2539 swap_free_obj(page, i, rand);
2540 }
2541 } else {
2542 for (i = 0; i < count; i++)
2543 set_free_obj(page, i, next_random_slot(&state));
2544 }
2545
2546 if (OBJFREELIST_SLAB(cachep))
2547 set_free_obj(page, cachep->num - 1, objfreelist);
2548
2549 return true;
2550}
2551#else
2552static inline bool shuffle_freelist(struct kmem_cache *cachep,
2553 struct page *page)
2554{
2555 return false;
2556}
2557#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2558
2559static void cache_init_objs(struct kmem_cache *cachep,
2560 struct page *page)
2561{
2562 int i;
2563 void *objp;
2564 bool shuffled;
2565
2566 cache_init_objs_debug(cachep, page);
2567
2568 /* Try to randomize the freelist if enabled */
2569 shuffled = shuffle_freelist(cachep, page);
2570
2571 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2572 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2573 obj_offset(cachep);
2574 }
2575
2576 for (i = 0; i < cachep->num; i++) {
2577 objp = index_to_obj(cachep, page, i);
2578 objp = kasan_init_slab_obj(cachep, objp);
2579
2580 /* constructor could break poison info */
2581 if (DEBUG == 0 && cachep->ctor) {
2582 kasan_unpoison_object_data(cachep, objp);
2583 cachep->ctor(objp);
2584 kasan_poison_object_data(cachep, objp);
2585 }
2586
2587 if (!shuffled)
2588 set_free_obj(page, i, i);
2589 }
2590}
2591
2592static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2593{
2594 void *objp;
2595
2596 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2597 page->active++;
2598
2599#if DEBUG
2600 if (cachep->flags & SLAB_STORE_USER)
2601 set_store_user_dirty(cachep);
2602#endif
2603
2604 return objp;
2605}
2606
2607static void slab_put_obj(struct kmem_cache *cachep,
2608 struct page *page, void *objp)
2609{
2610 unsigned int objnr = obj_to_index(cachep, page, objp);
2611#if DEBUG
2612 unsigned int i;
2613
2614 /* Verify double free bug */
2615 for (i = page->active; i < cachep->num; i++) {
2616 if (get_free_obj(page, i) == objnr) {
2617 pr_err("slab: double free detected in cache '%s', objp %px\n",
2618 cachep->name, objp);
2619 BUG();
2620 }
2621 }
2622#endif
2623 page->active--;
2624 if (!page->freelist)
2625 page->freelist = objp + obj_offset(cachep);
2626
2627 set_free_obj(page, page->active, objnr);
2628}
2629
2630/*
2631 * Map pages beginning at addr to the given cache and slab. This is required
2632 * for the slab allocator to be able to lookup the cache and slab of a
2633 * virtual address for kfree, ksize, and slab debugging.
2634 */
2635static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2636 void *freelist)
2637{
2638 page->slab_cache = cache;
2639 page->freelist = freelist;
2640}
2641
2642/*
2643 * Grow (by 1) the number of slabs within a cache. This is called by
2644 * kmem_cache_alloc() when there are no active objs left in a cache.
2645 */
2646static struct page *cache_grow_begin(struct kmem_cache *cachep,
2647 gfp_t flags, int nodeid)
2648{
2649 void *freelist;
2650 size_t offset;
2651 gfp_t local_flags;
2652 int page_node;
2653 struct kmem_cache_node *n;
2654 struct page *page;
2655
2656 /*
2657 * Be lazy and only check for valid flags here, keeping it out of the
2658 * critical path in kmem_cache_alloc().
2659 */
2660 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2661 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2662 flags &= ~GFP_SLAB_BUG_MASK;
2663 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2664 invalid_mask, &invalid_mask, flags, &flags);
2665 dump_stack();
2666 }
2667 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2668 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2669
2670 check_irq_off();
2671 if (gfpflags_allow_blocking(local_flags))
2672 local_irq_enable();
2673
2674 /*
2675 * Get mem for the objs. Attempt to allocate a physical page from
2676 * 'nodeid'.
2677 */
2678 page = kmem_getpages(cachep, local_flags, nodeid);
2679 if (!page)
2680 goto failed;
2681
2682 page_node = page_to_nid(page);
2683 n = get_node(cachep, page_node);
2684
2685 /* Get colour for the slab, and cal the next value. */
2686 n->colour_next++;
2687 if (n->colour_next >= cachep->colour)
2688 n->colour_next = 0;
2689
2690 offset = n->colour_next;
2691 if (offset >= cachep->colour)
2692 offset = 0;
2693
2694 offset *= cachep->colour_off;
2695
2696 /*
2697 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2698 * page_address() in the latter returns a non-tagged pointer,
2699 * as it should be for slab pages.
2700 */
2701 kasan_poison_slab(page);
2702
2703 /* Get slab management. */
2704 freelist = alloc_slabmgmt(cachep, page, offset,
2705 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2706 if (OFF_SLAB(cachep) && !freelist)
2707 goto opps1;
2708
2709 slab_map_pages(cachep, page, freelist);
2710
2711 cache_init_objs(cachep, page);
2712
2713 if (gfpflags_allow_blocking(local_flags))
2714 local_irq_disable();
2715
2716 return page;
2717
2718opps1:
2719 kmem_freepages(cachep, page);
2720failed:
2721 if (gfpflags_allow_blocking(local_flags))
2722 local_irq_disable();
2723 return NULL;
2724}
2725
2726static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2727{
2728 struct kmem_cache_node *n;
2729 void *list = NULL;
2730
2731 check_irq_off();
2732
2733 if (!page)
2734 return;
2735
2736 INIT_LIST_HEAD(&page->lru);
2737 n = get_node(cachep, page_to_nid(page));
2738
2739 spin_lock(&n->list_lock);
2740 n->total_slabs++;
2741 if (!page->active) {
2742 list_add_tail(&page->lru, &(n->slabs_free));
2743 n->free_slabs++;
2744 } else
2745 fixup_slab_list(cachep, n, page, &list);
2746
2747 STATS_INC_GROWN(cachep);
2748 n->free_objects += cachep->num - page->active;
2749 spin_unlock(&n->list_lock);
2750
2751 fixup_objfreelist_debug(cachep, &list);
2752}
2753
2754#if DEBUG
2755
2756/*
2757 * Perform extra freeing checks:
2758 * - detect bad pointers.
2759 * - POISON/RED_ZONE checking
2760 */
2761static void kfree_debugcheck(const void *objp)
2762{
2763 if (!virt_addr_valid(objp)) {
2764 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2765 (unsigned long)objp);
2766 BUG();
2767 }
2768}
2769
2770static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2771{
2772 unsigned long long redzone1, redzone2;
2773
2774 redzone1 = *dbg_redzone1(cache, obj);
2775 redzone2 = *dbg_redzone2(cache, obj);
2776
2777 /*
2778 * Redzone is ok.
2779 */
2780 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2781 return;
2782
2783 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2784 slab_error(cache, "double free detected");
2785 else
2786 slab_error(cache, "memory outside object was overwritten");
2787
2788 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2789 obj, redzone1, redzone2);
2790}
2791
2792static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2793 unsigned long caller)
2794{
2795 unsigned int objnr;
2796 struct page *page;
2797
2798 BUG_ON(virt_to_cache(objp) != cachep);
2799
2800 objp -= obj_offset(cachep);
2801 kfree_debugcheck(objp);
2802 page = virt_to_head_page(objp);
2803
2804 if (cachep->flags & SLAB_RED_ZONE) {
2805 verify_redzone_free(cachep, objp);
2806 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2807 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2808 }
2809 if (cachep->flags & SLAB_STORE_USER) {
2810 set_store_user_dirty(cachep);
2811 *dbg_userword(cachep, objp) = (void *)caller;
2812 }
2813
2814 objnr = obj_to_index(cachep, page, objp);
2815
2816 BUG_ON(objnr >= cachep->num);
2817 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2818
2819 if (cachep->flags & SLAB_POISON) {
2820 poison_obj(cachep, objp, POISON_FREE);
2821 slab_kernel_map(cachep, objp, 0, caller);
2822 }
2823 return objp;
2824}
2825
2826#else
2827#define kfree_debugcheck(x) do { } while(0)
2828#define cache_free_debugcheck(x,objp,z) (objp)
2829#endif
2830
2831static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2832 void **list)
2833{
2834#if DEBUG
2835 void *next = *list;
2836 void *objp;
2837
2838 while (next) {
2839 objp = next - obj_offset(cachep);
2840 next = *(void **)next;
2841 poison_obj(cachep, objp, POISON_FREE);
2842 }
2843#endif
2844}
2845
2846static inline void fixup_slab_list(struct kmem_cache *cachep,
2847 struct kmem_cache_node *n, struct page *page,
2848 void **list)
2849{
2850 /* move slabp to correct slabp list: */
2851 list_del(&page->lru);
2852 if (page->active == cachep->num) {
2853 list_add(&page->lru, &n->slabs_full);
2854 if (OBJFREELIST_SLAB(cachep)) {
2855#if DEBUG
2856 /* Poisoning will be done without holding the lock */
2857 if (cachep->flags & SLAB_POISON) {
2858 void **objp = page->freelist;
2859
2860 *objp = *list;
2861 *list = objp;
2862 }
2863#endif
2864 page->freelist = NULL;
2865 }
2866 } else
2867 list_add(&page->lru, &n->slabs_partial);
2868}
2869
2870/* Try to find non-pfmemalloc slab if needed */
2871static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2872 struct page *page, bool pfmemalloc)
2873{
2874 if (!page)
2875 return NULL;
2876
2877 if (pfmemalloc)
2878 return page;
2879
2880 if (!PageSlabPfmemalloc(page))
2881 return page;
2882
2883 /* No need to keep pfmemalloc slab if we have enough free objects */
2884 if (n->free_objects > n->free_limit) {
2885 ClearPageSlabPfmemalloc(page);
2886 return page;
2887 }
2888
2889 /* Move pfmemalloc slab to the end of list to speed up next search */
2890 list_del(&page->lru);
2891 if (!page->active) {
2892 list_add_tail(&page->lru, &n->slabs_free);
2893 n->free_slabs++;
2894 } else
2895 list_add_tail(&page->lru, &n->slabs_partial);
2896
2897 list_for_each_entry(page, &n->slabs_partial, lru) {
2898 if (!PageSlabPfmemalloc(page))
2899 return page;
2900 }
2901
2902 n->free_touched = 1;
2903 list_for_each_entry(page, &n->slabs_free, lru) {
2904 if (!PageSlabPfmemalloc(page)) {
2905 n->free_slabs--;
2906 return page;
2907 }
2908 }
2909
2910 return NULL;
2911}
2912
2913static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2914{
2915 struct page *page;
2916
2917 assert_spin_locked(&n->list_lock);
2918 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2919 if (!page) {
2920 n->free_touched = 1;
2921 page = list_first_entry_or_null(&n->slabs_free, struct page,
2922 lru);
2923 if (page)
2924 n->free_slabs--;
2925 }
2926
2927 if (sk_memalloc_socks())
2928 page = get_valid_first_slab(n, page, pfmemalloc);
2929
2930 return page;
2931}
2932
2933static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2934 struct kmem_cache_node *n, gfp_t flags)
2935{
2936 struct page *page;
2937 void *obj;
2938 void *list = NULL;
2939
2940 if (!gfp_pfmemalloc_allowed(flags))
2941 return NULL;
2942
2943 spin_lock(&n->list_lock);
2944 page = get_first_slab(n, true);
2945 if (!page) {
2946 spin_unlock(&n->list_lock);
2947 return NULL;
2948 }
2949
2950 obj = slab_get_obj(cachep, page);
2951 n->free_objects--;
2952
2953 fixup_slab_list(cachep, n, page, &list);
2954
2955 spin_unlock(&n->list_lock);
2956 fixup_objfreelist_debug(cachep, &list);
2957
2958 return obj;
2959}
2960
2961/*
2962 * Slab list should be fixed up by fixup_slab_list() for existing slab
2963 * or cache_grow_end() for new slab
2964 */
2965static __always_inline int alloc_block(struct kmem_cache *cachep,
2966 struct array_cache *ac, struct page *page, int batchcount)
2967{
2968 /*
2969 * There must be at least one object available for
2970 * allocation.
2971 */
2972 BUG_ON(page->active >= cachep->num);
2973
2974 while (page->active < cachep->num && batchcount--) {
2975 STATS_INC_ALLOCED(cachep);
2976 STATS_INC_ACTIVE(cachep);
2977 STATS_SET_HIGH(cachep);
2978
2979 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2980 }
2981
2982 return batchcount;
2983}
2984
2985static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2986{
2987 int batchcount;
2988 struct kmem_cache_node *n;
2989 struct array_cache *ac, *shared;
2990 int node;
2991 void *list = NULL;
2992 struct page *page;
2993
2994 check_irq_off();
2995 node = numa_mem_id();
2996
2997 ac = cpu_cache_get(cachep);
2998 batchcount = ac->batchcount;
2999 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3000 /*
3001 * If there was little recent activity on this cache, then
3002 * perform only a partial refill. Otherwise we could generate
3003 * refill bouncing.
3004 */
3005 batchcount = BATCHREFILL_LIMIT;
3006 }
3007 n = get_node(cachep, node);
3008
3009 BUG_ON(ac->avail > 0 || !n);
3010 shared = READ_ONCE(n->shared);
3011 if (!n->free_objects && (!shared || !shared->avail))
3012 goto direct_grow;
3013
3014 spin_lock(&n->list_lock);
3015 shared = READ_ONCE(n->shared);
3016
3017 /* See if we can refill from the shared array */
3018 if (shared && transfer_objects(ac, shared, batchcount)) {
3019 shared->touched = 1;
3020 goto alloc_done;
3021 }
3022
3023 while (batchcount > 0) {
3024 /* Get slab alloc is to come from. */
3025 page = get_first_slab(n, false);
3026 if (!page)
3027 goto must_grow;
3028
3029 check_spinlock_acquired(cachep);
3030
3031 batchcount = alloc_block(cachep, ac, page, batchcount);
3032 fixup_slab_list(cachep, n, page, &list);
3033 }
3034
3035must_grow:
3036 n->free_objects -= ac->avail;
3037alloc_done:
3038 spin_unlock(&n->list_lock);
3039 fixup_objfreelist_debug(cachep, &list);
3040
3041direct_grow:
3042 if (unlikely(!ac->avail)) {
3043 /* Check if we can use obj in pfmemalloc slab */
3044 if (sk_memalloc_socks()) {
3045 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3046
3047 if (obj)
3048 return obj;
3049 }
3050
3051 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3052
3053 /*
3054 * cache_grow_begin() can reenable interrupts,
3055 * then ac could change.
3056 */
3057 ac = cpu_cache_get(cachep);
3058 if (!ac->avail && page)
3059 alloc_block(cachep, ac, page, batchcount);
3060 cache_grow_end(cachep, page);
3061
3062 if (!ac->avail)
3063 return NULL;
3064 }
3065 ac->touched = 1;
3066
3067 return ac->entry[--ac->avail];
3068}
3069
3070static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3071 gfp_t flags)
3072{
3073 might_sleep_if(gfpflags_allow_blocking(flags));
3074}
3075
3076#if DEBUG
3077static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3078 gfp_t flags, void *objp, unsigned long caller)
3079{
3080 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3081 if (!objp)
3082 return objp;
3083 if (cachep->flags & SLAB_POISON) {
3084 check_poison_obj(cachep, objp);
3085 slab_kernel_map(cachep, objp, 1, 0);
3086 poison_obj(cachep, objp, POISON_INUSE);
3087 }
3088 if (cachep->flags & SLAB_STORE_USER)
3089 *dbg_userword(cachep, objp) = (void *)caller;
3090
3091 if (cachep->flags & SLAB_RED_ZONE) {
3092 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3093 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3094 slab_error(cachep, "double free, or memory outside object was overwritten");
3095 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3096 objp, *dbg_redzone1(cachep, objp),
3097 *dbg_redzone2(cachep, objp));
3098 }
3099 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3100 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3101 }
3102
3103 objp += obj_offset(cachep);
3104 if (cachep->ctor && cachep->flags & SLAB_POISON)
3105 cachep->ctor(objp);
3106 if (ARCH_SLAB_MINALIGN &&
3107 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3108 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3109 objp, (int)ARCH_SLAB_MINALIGN);
3110 }
3111 return objp;
3112}
3113#else
3114#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3115#endif
3116
3117static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3118{
3119 void *objp;
3120 struct array_cache *ac;
3121
3122 check_irq_off();
3123
3124 ac = cpu_cache_get(cachep);
3125 if (likely(ac->avail)) {
3126 ac->touched = 1;
3127 objp = ac->entry[--ac->avail];
3128
3129 STATS_INC_ALLOCHIT(cachep);
3130 goto out;
3131 }
3132
3133 STATS_INC_ALLOCMISS(cachep);
3134 objp = cache_alloc_refill(cachep, flags);
3135 /*
3136 * the 'ac' may be updated by cache_alloc_refill(),
3137 * and kmemleak_erase() requires its correct value.
3138 */
3139 ac = cpu_cache_get(cachep);
3140
3141out:
3142 /*
3143 * To avoid a false negative, if an object that is in one of the
3144 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3145 * treat the array pointers as a reference to the object.
3146 */
3147 if (objp)
3148 kmemleak_erase(&ac->entry[ac->avail]);
3149 return objp;
3150}
3151
3152#ifdef CONFIG_NUMA
3153/*
3154 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3155 *
3156 * If we are in_interrupt, then process context, including cpusets and
3157 * mempolicy, may not apply and should not be used for allocation policy.
3158 */
3159static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3160{
3161 int nid_alloc, nid_here;
3162
3163 if (in_interrupt() || (flags & __GFP_THISNODE))
3164 return NULL;
3165 nid_alloc = nid_here = numa_mem_id();
3166 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3167 nid_alloc = cpuset_slab_spread_node();
3168 else if (current->mempolicy)
3169 nid_alloc = mempolicy_slab_node();
3170 if (nid_alloc != nid_here)
3171 return ____cache_alloc_node(cachep, flags, nid_alloc);
3172 return NULL;
3173}
3174
3175/*
3176 * Fallback function if there was no memory available and no objects on a
3177 * certain node and fall back is permitted. First we scan all the
3178 * available node for available objects. If that fails then we
3179 * perform an allocation without specifying a node. This allows the page
3180 * allocator to do its reclaim / fallback magic. We then insert the
3181 * slab into the proper nodelist and then allocate from it.
3182 */
3183static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3184{
3185 struct zonelist *zonelist;
3186 struct zoneref *z;
3187 struct zone *zone;
3188 enum zone_type high_zoneidx = gfp_zone(flags);
3189 void *obj = NULL;
3190 struct page *page;
3191 int nid;
3192 unsigned int cpuset_mems_cookie;
3193
3194 if (flags & __GFP_THISNODE)
3195 return NULL;
3196
3197retry_cpuset:
3198 cpuset_mems_cookie = read_mems_allowed_begin();
3199 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3200
3201retry:
3202 /*
3203 * Look through allowed nodes for objects available
3204 * from existing per node queues.
3205 */
3206 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3207 nid = zone_to_nid(zone);
3208
3209 if (cpuset_zone_allowed(zone, flags) &&
3210 get_node(cache, nid) &&
3211 get_node(cache, nid)->free_objects) {
3212 obj = ____cache_alloc_node(cache,
3213 gfp_exact_node(flags), nid);
3214 if (obj)
3215 break;
3216 }
3217 }
3218
3219 if (!obj) {
3220 /*
3221 * This allocation will be performed within the constraints
3222 * of the current cpuset / memory policy requirements.
3223 * We may trigger various forms of reclaim on the allowed
3224 * set and go into memory reserves if necessary.
3225 */
3226 page = cache_grow_begin(cache, flags, numa_mem_id());
3227 cache_grow_end(cache, page);
3228 if (page) {
3229 nid = page_to_nid(page);
3230 obj = ____cache_alloc_node(cache,
3231 gfp_exact_node(flags), nid);
3232
3233 /*
3234 * Another processor may allocate the objects in
3235 * the slab since we are not holding any locks.
3236 */
3237 if (!obj)
3238 goto retry;
3239 }
3240 }
3241
3242 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3243 goto retry_cpuset;
3244 return obj;
3245}
3246
3247/*
3248 * A interface to enable slab creation on nodeid
3249 */
3250static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3251 int nodeid)
3252{
3253 struct page *page;
3254 struct kmem_cache_node *n;
3255 void *obj = NULL;
3256 void *list = NULL;
3257
3258 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3259 n = get_node(cachep, nodeid);
3260 BUG_ON(!n);
3261
3262 check_irq_off();
3263 spin_lock(&n->list_lock);
3264 page = get_first_slab(n, false);
3265 if (!page)
3266 goto must_grow;
3267
3268 check_spinlock_acquired_node(cachep, nodeid);
3269
3270 STATS_INC_NODEALLOCS(cachep);
3271 STATS_INC_ACTIVE(cachep);
3272 STATS_SET_HIGH(cachep);
3273
3274 BUG_ON(page->active == cachep->num);
3275
3276 obj = slab_get_obj(cachep, page);
3277 n->free_objects--;
3278
3279 fixup_slab_list(cachep, n, page, &list);
3280
3281 spin_unlock(&n->list_lock);
3282 fixup_objfreelist_debug(cachep, &list);
3283 return obj;
3284
3285must_grow:
3286 spin_unlock(&n->list_lock);
3287 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3288 if (page) {
3289 /* This slab isn't counted yet so don't update free_objects */
3290 obj = slab_get_obj(cachep, page);
3291 }
3292 cache_grow_end(cachep, page);
3293
3294 return obj ? obj : fallback_alloc(cachep, flags);
3295}
3296
3297static __always_inline void *
3298slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3299 unsigned long caller)
3300{
3301 unsigned long save_flags;
3302 void *ptr;
3303 int slab_node = numa_mem_id();
3304
3305 flags &= gfp_allowed_mask;
3306 cachep = slab_pre_alloc_hook(cachep, flags);
3307 if (unlikely(!cachep))
3308 return NULL;
3309
3310 cache_alloc_debugcheck_before(cachep, flags);
3311 local_irq_save(save_flags);
3312
3313 if (nodeid == NUMA_NO_NODE)
3314 nodeid = slab_node;
3315
3316 if (unlikely(!get_node(cachep, nodeid))) {
3317 /* Node not bootstrapped yet */
3318 ptr = fallback_alloc(cachep, flags);
3319 goto out;
3320 }
3321
3322 if (nodeid == slab_node) {
3323 /*
3324 * Use the locally cached objects if possible.
3325 * However ____cache_alloc does not allow fallback
3326 * to other nodes. It may fail while we still have
3327 * objects on other nodes available.
3328 */
3329 ptr = ____cache_alloc(cachep, flags);
3330 if (ptr)
3331 goto out;
3332 }
3333 /* ___cache_alloc_node can fall back to other nodes */
3334 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3335 out:
3336 local_irq_restore(save_flags);
3337 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3338
3339 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr)
3340 memset(ptr, 0, cachep->object_size);
3341
3342 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3343 return ptr;
3344}
3345
3346static __always_inline void *
3347__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3348{
3349 void *objp;
3350
3351 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3352 objp = alternate_node_alloc(cache, flags);
3353 if (objp)
3354 goto out;
3355 }
3356 objp = ____cache_alloc(cache, flags);
3357
3358 /*
3359 * We may just have run out of memory on the local node.
3360 * ____cache_alloc_node() knows how to locate memory on other nodes
3361 */
3362 if (!objp)
3363 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3364
3365 out:
3366 return objp;
3367}
3368#else
3369
3370static __always_inline void *
3371__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3372{
3373 return ____cache_alloc(cachep, flags);
3374}
3375
3376#endif /* CONFIG_NUMA */
3377
3378static __always_inline void *
3379slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3380{
3381 unsigned long save_flags;
3382 void *objp;
3383
3384 flags &= gfp_allowed_mask;
3385 cachep = slab_pre_alloc_hook(cachep, flags);
3386 if (unlikely(!cachep))
3387 return NULL;
3388
3389 cache_alloc_debugcheck_before(cachep, flags);
3390 local_irq_save(save_flags);
3391 objp = __do_cache_alloc(cachep, flags);
3392 local_irq_restore(save_flags);
3393 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3394 prefetchw(objp);
3395
3396 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp)
3397 memset(objp, 0, cachep->object_size);
3398
3399 slab_post_alloc_hook(cachep, flags, 1, &objp);
3400 return objp;
3401}
3402
3403/*
3404 * Caller needs to acquire correct kmem_cache_node's list_lock
3405 * @list: List of detached free slabs should be freed by caller
3406 */
3407static void free_block(struct kmem_cache *cachep, void **objpp,
3408 int nr_objects, int node, struct list_head *list)
3409{
3410 int i;
3411 struct kmem_cache_node *n = get_node(cachep, node);
3412 struct page *page;
3413
3414 n->free_objects += nr_objects;
3415
3416 for (i = 0; i < nr_objects; i++) {
3417 void *objp;
3418 struct page *page;
3419
3420 objp = objpp[i];
3421
3422 page = virt_to_head_page(objp);
3423 list_del(&page->lru);
3424 check_spinlock_acquired_node(cachep, node);
3425 slab_put_obj(cachep, page, objp);
3426 STATS_DEC_ACTIVE(cachep);
3427
3428 /* fixup slab chains */
3429 if (page->active == 0) {
3430 list_add(&page->lru, &n->slabs_free);
3431 n->free_slabs++;
3432 } else {
3433 /* Unconditionally move a slab to the end of the
3434 * partial list on free - maximum time for the
3435 * other objects to be freed, too.
3436 */
3437 list_add_tail(&page->lru, &n->slabs_partial);
3438 }
3439 }
3440
3441 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3442 n->free_objects -= cachep->num;
3443
3444 page = list_last_entry(&n->slabs_free, struct page, lru);
3445 list_move(&page->lru, list);
3446 n->free_slabs--;
3447 n->total_slabs--;
3448 }
3449}
3450
3451static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3452{
3453 int batchcount;
3454 struct kmem_cache_node *n;
3455 int node = numa_mem_id();
3456 LIST_HEAD(list);
3457
3458 batchcount = ac->batchcount;
3459
3460 check_irq_off();
3461 n = get_node(cachep, node);
3462 spin_lock(&n->list_lock);
3463 if (n->shared) {
3464 struct array_cache *shared_array = n->shared;
3465 int max = shared_array->limit - shared_array->avail;
3466 if (max) {
3467 if (batchcount > max)
3468 batchcount = max;
3469 memcpy(&(shared_array->entry[shared_array->avail]),
3470 ac->entry, sizeof(void *) * batchcount);
3471 shared_array->avail += batchcount;
3472 goto free_done;
3473 }
3474 }
3475
3476 free_block(cachep, ac->entry, batchcount, node, &list);
3477free_done:
3478#if STATS
3479 {
3480 int i = 0;
3481 struct page *page;
3482
3483 list_for_each_entry(page, &n->slabs_free, lru) {
3484 BUG_ON(page->active);
3485
3486 i++;
3487 }
3488 STATS_SET_FREEABLE(cachep, i);
3489 }
3490#endif
3491 spin_unlock(&n->list_lock);
3492 slabs_destroy(cachep, &list);
3493 ac->avail -= batchcount;
3494 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3495}
3496
3497/*
3498 * Release an obj back to its cache. If the obj has a constructed state, it must
3499 * be in this state _before_ it is released. Called with disabled ints.
3500 */
3501static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3502 unsigned long caller)
3503{
3504 /* Put the object into the quarantine, don't touch it for now. */
3505 if (kasan_slab_free(cachep, objp, _RET_IP_))
3506 return;
3507
3508 ___cache_free(cachep, objp, caller);
3509}
3510
3511void ___cache_free(struct kmem_cache *cachep, void *objp,
3512 unsigned long caller)
3513{
3514 struct array_cache *ac = cpu_cache_get(cachep);
3515
3516 check_irq_off();
3517 if (unlikely(slab_want_init_on_free(cachep)))
3518 memset(objp, 0, cachep->object_size);
3519 kmemleak_free_recursive(objp, cachep->flags);
3520 objp = cache_free_debugcheck(cachep, objp, caller);
3521
3522 /*
3523 * Skip calling cache_free_alien() when the platform is not numa.
3524 * This will avoid cache misses that happen while accessing slabp (which
3525 * is per page memory reference) to get nodeid. Instead use a global
3526 * variable to skip the call, which is mostly likely to be present in
3527 * the cache.
3528 */
3529 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3530 return;
3531
3532 if (ac->avail < ac->limit) {
3533 STATS_INC_FREEHIT(cachep);
3534 } else {
3535 STATS_INC_FREEMISS(cachep);
3536 cache_flusharray(cachep, ac);
3537 }
3538
3539 if (sk_memalloc_socks()) {
3540 struct page *page = virt_to_head_page(objp);
3541
3542 if (unlikely(PageSlabPfmemalloc(page))) {
3543 cache_free_pfmemalloc(cachep, page, objp);
3544 return;
3545 }
3546 }
3547
3548 ac->entry[ac->avail++] = objp;
3549}
3550
3551/**
3552 * kmem_cache_alloc - Allocate an object
3553 * @cachep: The cache to allocate from.
3554 * @flags: See kmalloc().
3555 *
3556 * Allocate an object from this cache. The flags are only relevant
3557 * if the cache has no available objects.
3558 */
3559void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3560{
3561 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3562
3563 trace_kmem_cache_alloc(_RET_IP_, ret,
3564 cachep->object_size, cachep->size, flags);
3565
3566 return ret;
3567}
3568EXPORT_SYMBOL(kmem_cache_alloc);
3569
3570static __always_inline void
3571cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3572 size_t size, void **p, unsigned long caller)
3573{
3574 size_t i;
3575
3576 for (i = 0; i < size; i++)
3577 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3578}
3579
3580int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3581 void **p)
3582{
3583 size_t i;
3584
3585 s = slab_pre_alloc_hook(s, flags);
3586 if (!s)
3587 return 0;
3588
3589 cache_alloc_debugcheck_before(s, flags);
3590
3591 local_irq_disable();
3592 for (i = 0; i < size; i++) {
3593 void *objp = __do_cache_alloc(s, flags);
3594
3595 if (unlikely(!objp))
3596 goto error;
3597 p[i] = objp;
3598 }
3599 local_irq_enable();
3600
3601 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3602
3603 /* Clear memory outside IRQ disabled section */
3604 if (unlikely(slab_want_init_on_alloc(flags, s)))
3605 for (i = 0; i < size; i++)
3606 memset(p[i], 0, s->object_size);
3607
3608 slab_post_alloc_hook(s, flags, size, p);
3609 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3610 return size;
3611error:
3612 local_irq_enable();
3613 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3614 slab_post_alloc_hook(s, flags, i, p);
3615 __kmem_cache_free_bulk(s, i, p);
3616 return 0;
3617}
3618EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3619
3620#ifdef CONFIG_TRACING
3621void *
3622kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3623{
3624 void *ret;
3625
3626 ret = slab_alloc(cachep, flags, _RET_IP_);
3627
3628 ret = kasan_kmalloc(cachep, ret, size, flags);
3629 trace_kmalloc(_RET_IP_, ret,
3630 size, cachep->size, flags);
3631 return ret;
3632}
3633EXPORT_SYMBOL(kmem_cache_alloc_trace);
3634#endif
3635
3636#ifdef CONFIG_NUMA
3637/**
3638 * kmem_cache_alloc_node - Allocate an object on the specified node
3639 * @cachep: The cache to allocate from.
3640 * @flags: See kmalloc().
3641 * @nodeid: node number of the target node.
3642 *
3643 * Identical to kmem_cache_alloc but it will allocate memory on the given
3644 * node, which can improve the performance for cpu bound structures.
3645 *
3646 * Fallback to other node is possible if __GFP_THISNODE is not set.
3647 */
3648void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3649{
3650 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3651
3652 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3653 cachep->object_size, cachep->size,
3654 flags, nodeid);
3655
3656 return ret;
3657}
3658EXPORT_SYMBOL(kmem_cache_alloc_node);
3659
3660#ifdef CONFIG_TRACING
3661void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3662 gfp_t flags,
3663 int nodeid,
3664 size_t size)
3665{
3666 void *ret;
3667
3668 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3669
3670 ret = kasan_kmalloc(cachep, ret, size, flags);
3671 trace_kmalloc_node(_RET_IP_, ret,
3672 size, cachep->size,
3673 flags, nodeid);
3674 return ret;
3675}
3676EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3677#endif
3678
3679static __always_inline void *
3680__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3681{
3682 struct kmem_cache *cachep;
3683 void *ret;
3684
3685 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3686 return NULL;
3687 cachep = kmalloc_slab(size, flags);
3688 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3689 return cachep;
3690 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3691 ret = kasan_kmalloc(cachep, ret, size, flags);
3692
3693 return ret;
3694}
3695
3696void *__kmalloc_node(size_t size, gfp_t flags, int node)
3697{
3698 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3699}
3700EXPORT_SYMBOL(__kmalloc_node);
3701
3702void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3703 int node, unsigned long caller)
3704{
3705 return __do_kmalloc_node(size, flags, node, caller);
3706}
3707EXPORT_SYMBOL(__kmalloc_node_track_caller);
3708#endif /* CONFIG_NUMA */
3709
3710/**
3711 * __do_kmalloc - allocate memory
3712 * @size: how many bytes of memory are required.
3713 * @flags: the type of memory to allocate (see kmalloc).
3714 * @caller: function caller for debug tracking of the caller
3715 */
3716static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3717 unsigned long caller)
3718{
3719 struct kmem_cache *cachep;
3720 void *ret;
3721
3722 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3723 return NULL;
3724 cachep = kmalloc_slab(size, flags);
3725 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3726 return cachep;
3727 ret = slab_alloc(cachep, flags, caller);
3728
3729 ret = kasan_kmalloc(cachep, ret, size, flags);
3730 trace_kmalloc(caller, ret,
3731 size, cachep->size, flags);
3732
3733 return ret;
3734}
3735
3736void *__kmalloc(size_t size, gfp_t flags)
3737{
3738 return __do_kmalloc(size, flags, _RET_IP_);
3739}
3740EXPORT_SYMBOL(__kmalloc);
3741
3742void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3743{
3744 return __do_kmalloc(size, flags, caller);
3745}
3746EXPORT_SYMBOL(__kmalloc_track_caller);
3747
3748/**
3749 * kmem_cache_free - Deallocate an object
3750 * @cachep: The cache the allocation was from.
3751 * @objp: The previously allocated object.
3752 *
3753 * Free an object which was previously allocated from this
3754 * cache.
3755 */
3756void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3757{
3758 unsigned long flags;
3759 cachep = cache_from_obj(cachep, objp);
3760 if (!cachep)
3761 return;
3762
3763 local_irq_save(flags);
3764 debug_check_no_locks_freed(objp, cachep->object_size);
3765 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3766 debug_check_no_obj_freed(objp, cachep->object_size);
3767 __cache_free(cachep, objp, _RET_IP_);
3768 local_irq_restore(flags);
3769
3770 trace_kmem_cache_free(_RET_IP_, objp);
3771}
3772EXPORT_SYMBOL(kmem_cache_free);
3773
3774void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3775{
3776 struct kmem_cache *s;
3777 size_t i;
3778
3779 local_irq_disable();
3780 for (i = 0; i < size; i++) {
3781 void *objp = p[i];
3782
3783 if (!orig_s) /* called via kfree_bulk */
3784 s = virt_to_cache(objp);
3785 else
3786 s = cache_from_obj(orig_s, objp);
3787
3788 debug_check_no_locks_freed(objp, s->object_size);
3789 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3790 debug_check_no_obj_freed(objp, s->object_size);
3791
3792 __cache_free(s, objp, _RET_IP_);
3793 }
3794 local_irq_enable();
3795
3796 /* FIXME: add tracing */
3797}
3798EXPORT_SYMBOL(kmem_cache_free_bulk);
3799
3800/**
3801 * kfree - free previously allocated memory
3802 * @objp: pointer returned by kmalloc.
3803 *
3804 * If @objp is NULL, no operation is performed.
3805 *
3806 * Don't free memory not originally allocated by kmalloc()
3807 * or you will run into trouble.
3808 */
3809void kfree(const void *objp)
3810{
3811 struct kmem_cache *c;
3812 unsigned long flags;
3813
3814 trace_kfree(_RET_IP_, objp);
3815
3816 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3817 return;
3818 local_irq_save(flags);
3819 kfree_debugcheck(objp);
3820 c = virt_to_cache(objp);
3821 debug_check_no_locks_freed(objp, c->object_size);
3822
3823 debug_check_no_obj_freed(objp, c->object_size);
3824 __cache_free(c, (void *)objp, _RET_IP_);
3825 local_irq_restore(flags);
3826}
3827EXPORT_SYMBOL(kfree);
3828
3829/*
3830 * This initializes kmem_cache_node or resizes various caches for all nodes.
3831 */
3832static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3833{
3834 int ret;
3835 int node;
3836 struct kmem_cache_node *n;
3837
3838 for_each_online_node(node) {
3839 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3840 if (ret)
3841 goto fail;
3842
3843 }
3844
3845 return 0;
3846
3847fail:
3848 if (!cachep->list.next) {
3849 /* Cache is not active yet. Roll back what we did */
3850 node--;
3851 while (node >= 0) {
3852 n = get_node(cachep, node);
3853 if (n) {
3854 kfree(n->shared);
3855 free_alien_cache(n->alien);
3856 kfree(n);
3857 cachep->node[node] = NULL;
3858 }
3859 node--;
3860 }
3861 }
3862 return -ENOMEM;
3863}
3864
3865/* Always called with the slab_mutex held */
3866static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3867 int batchcount, int shared, gfp_t gfp)
3868{
3869 struct array_cache __percpu *cpu_cache, *prev;
3870 int cpu;
3871
3872 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3873 if (!cpu_cache)
3874 return -ENOMEM;
3875
3876 prev = cachep->cpu_cache;
3877 cachep->cpu_cache = cpu_cache;
3878 /*
3879 * Without a previous cpu_cache there's no need to synchronize remote
3880 * cpus, so skip the IPIs.
3881 */
3882 if (prev)
3883 kick_all_cpus_sync();
3884
3885 check_irq_on();
3886 cachep->batchcount = batchcount;
3887 cachep->limit = limit;
3888 cachep->shared = shared;
3889
3890 if (!prev)
3891 goto setup_node;
3892
3893 for_each_online_cpu(cpu) {
3894 LIST_HEAD(list);
3895 int node;
3896 struct kmem_cache_node *n;
3897 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3898
3899 node = cpu_to_mem(cpu);
3900 n = get_node(cachep, node);
3901 spin_lock_irq(&n->list_lock);
3902 free_block(cachep, ac->entry, ac->avail, node, &list);
3903 spin_unlock_irq(&n->list_lock);
3904 slabs_destroy(cachep, &list);
3905 }
3906 free_percpu(prev);
3907
3908setup_node:
3909 return setup_kmem_cache_nodes(cachep, gfp);
3910}
3911
3912static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3913 int batchcount, int shared, gfp_t gfp)
3914{
3915 int ret;
3916 struct kmem_cache *c;
3917
3918 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3919
3920 if (slab_state < FULL)
3921 return ret;
3922
3923 if ((ret < 0) || !is_root_cache(cachep))
3924 return ret;
3925
3926 lockdep_assert_held(&slab_mutex);
3927 for_each_memcg_cache(c, cachep) {
3928 /* return value determined by the root cache only */
3929 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3930 }
3931
3932 return ret;
3933}
3934
3935/* Called with slab_mutex held always */
3936static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3937{
3938 int err;
3939 int limit = 0;
3940 int shared = 0;
3941 int batchcount = 0;
3942
3943 err = cache_random_seq_create(cachep, cachep->num, gfp);
3944 if (err)
3945 goto end;
3946
3947 if (!is_root_cache(cachep)) {
3948 struct kmem_cache *root = memcg_root_cache(cachep);
3949 limit = root->limit;
3950 shared = root->shared;
3951 batchcount = root->batchcount;
3952 }
3953
3954 if (limit && shared && batchcount)
3955 goto skip_setup;
3956 /*
3957 * The head array serves three purposes:
3958 * - create a LIFO ordering, i.e. return objects that are cache-warm
3959 * - reduce the number of spinlock operations.
3960 * - reduce the number of linked list operations on the slab and
3961 * bufctl chains: array operations are cheaper.
3962 * The numbers are guessed, we should auto-tune as described by
3963 * Bonwick.
3964 */
3965 if (cachep->size > 131072)
3966 limit = 1;
3967 else if (cachep->size > PAGE_SIZE)
3968 limit = 8;
3969 else if (cachep->size > 1024)
3970 limit = 24;
3971 else if (cachep->size > 256)
3972 limit = 54;
3973 else
3974 limit = 120;
3975
3976 /*
3977 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3978 * allocation behaviour: Most allocs on one cpu, most free operations
3979 * on another cpu. For these cases, an efficient object passing between
3980 * cpus is necessary. This is provided by a shared array. The array
3981 * replaces Bonwick's magazine layer.
3982 * On uniprocessor, it's functionally equivalent (but less efficient)
3983 * to a larger limit. Thus disabled by default.
3984 */
3985 shared = 0;
3986 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3987 shared = 8;
3988
3989#if DEBUG
3990 /*
3991 * With debugging enabled, large batchcount lead to excessively long
3992 * periods with disabled local interrupts. Limit the batchcount
3993 */
3994 if (limit > 32)
3995 limit = 32;
3996#endif
3997 batchcount = (limit + 1) / 2;
3998skip_setup:
3999 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4000end:
4001 if (err)
4002 pr_err("enable_cpucache failed for %s, error %d\n",
4003 cachep->name, -err);
4004 return err;
4005}
4006
4007/*
4008 * Drain an array if it contains any elements taking the node lock only if
4009 * necessary. Note that the node listlock also protects the array_cache
4010 * if drain_array() is used on the shared array.
4011 */
4012static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4013 struct array_cache *ac, int node)
4014{
4015 LIST_HEAD(list);
4016
4017 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4018 check_mutex_acquired();
4019
4020 if (!ac || !ac->avail)
4021 return;
4022
4023 if (ac->touched) {
4024 ac->touched = 0;
4025 return;
4026 }
4027
4028 spin_lock_irq(&n->list_lock);
4029 drain_array_locked(cachep, ac, node, false, &list);
4030 spin_unlock_irq(&n->list_lock);
4031
4032 slabs_destroy(cachep, &list);
4033}
4034
4035/**
4036 * cache_reap - Reclaim memory from caches.
4037 * @w: work descriptor
4038 *
4039 * Called from workqueue/eventd every few seconds.
4040 * Purpose:
4041 * - clear the per-cpu caches for this CPU.
4042 * - return freeable pages to the main free memory pool.
4043 *
4044 * If we cannot acquire the cache chain mutex then just give up - we'll try
4045 * again on the next iteration.
4046 */
4047static void cache_reap(struct work_struct *w)
4048{
4049 struct kmem_cache *searchp;
4050 struct kmem_cache_node *n;
4051 int node = numa_mem_id();
4052 struct delayed_work *work = to_delayed_work(w);
4053
4054 if (!mutex_trylock(&slab_mutex))
4055 /* Give up. Setup the next iteration. */
4056 goto out;
4057
4058 list_for_each_entry(searchp, &slab_caches, list) {
4059 check_irq_on();
4060
4061 /*
4062 * We only take the node lock if absolutely necessary and we
4063 * have established with reasonable certainty that
4064 * we can do some work if the lock was obtained.
4065 */
4066 n = get_node(searchp, node);
4067
4068 reap_alien(searchp, n);
4069
4070 drain_array(searchp, n, cpu_cache_get(searchp), node);
4071
4072 /*
4073 * These are racy checks but it does not matter
4074 * if we skip one check or scan twice.
4075 */
4076 if (time_after(n->next_reap, jiffies))
4077 goto next;
4078
4079 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4080
4081 drain_array(searchp, n, n->shared, node);
4082
4083 if (n->free_touched)
4084 n->free_touched = 0;
4085 else {
4086 int freed;
4087
4088 freed = drain_freelist(searchp, n, (n->free_limit +
4089 5 * searchp->num - 1) / (5 * searchp->num));
4090 STATS_ADD_REAPED(searchp, freed);
4091 }
4092next:
4093 cond_resched();
4094 }
4095 check_irq_on();
4096 mutex_unlock(&slab_mutex);
4097 next_reap_node();
4098out:
4099 /* Set up the next iteration */
4100 schedule_delayed_work_on(smp_processor_id(), work,
4101 round_jiffies_relative(REAPTIMEOUT_AC));
4102}
4103
4104void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4105{
4106 unsigned long active_objs, num_objs, active_slabs;
4107 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4108 unsigned long free_slabs = 0;
4109 int node;
4110 struct kmem_cache_node *n;
4111
4112 for_each_kmem_cache_node(cachep, node, n) {
4113 check_irq_on();
4114 spin_lock_irq(&n->list_lock);
4115
4116 total_slabs += n->total_slabs;
4117 free_slabs += n->free_slabs;
4118 free_objs += n->free_objects;
4119
4120 if (n->shared)
4121 shared_avail += n->shared->avail;
4122
4123 spin_unlock_irq(&n->list_lock);
4124 }
4125 num_objs = total_slabs * cachep->num;
4126 active_slabs = total_slabs - free_slabs;
4127 active_objs = num_objs - free_objs;
4128
4129 sinfo->active_objs = active_objs;
4130 sinfo->num_objs = num_objs;
4131 sinfo->active_slabs = active_slabs;
4132 sinfo->num_slabs = total_slabs;
4133 sinfo->shared_avail = shared_avail;
4134 sinfo->limit = cachep->limit;
4135 sinfo->batchcount = cachep->batchcount;
4136 sinfo->shared = cachep->shared;
4137 sinfo->objects_per_slab = cachep->num;
4138 sinfo->cache_order = cachep->gfporder;
4139}
4140
4141void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4142{
4143#if STATS
4144 { /* node stats */
4145 unsigned long high = cachep->high_mark;
4146 unsigned long allocs = cachep->num_allocations;
4147 unsigned long grown = cachep->grown;
4148 unsigned long reaped = cachep->reaped;
4149 unsigned long errors = cachep->errors;
4150 unsigned long max_freeable = cachep->max_freeable;
4151 unsigned long node_allocs = cachep->node_allocs;
4152 unsigned long node_frees = cachep->node_frees;
4153 unsigned long overflows = cachep->node_overflow;
4154
4155 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4156 allocs, high, grown,
4157 reaped, errors, max_freeable, node_allocs,
4158 node_frees, overflows);
4159 }
4160 /* cpu stats */
4161 {
4162 unsigned long allochit = atomic_read(&cachep->allochit);
4163 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4164 unsigned long freehit = atomic_read(&cachep->freehit);
4165 unsigned long freemiss = atomic_read(&cachep->freemiss);
4166
4167 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4168 allochit, allocmiss, freehit, freemiss);
4169 }
4170#endif
4171}
4172
4173#define MAX_SLABINFO_WRITE 128
4174/**
4175 * slabinfo_write - Tuning for the slab allocator
4176 * @file: unused
4177 * @buffer: user buffer
4178 * @count: data length
4179 * @ppos: unused
4180 */
4181ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4182 size_t count, loff_t *ppos)
4183{
4184 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4185 int limit, batchcount, shared, res;
4186 struct kmem_cache *cachep;
4187
4188 if (count > MAX_SLABINFO_WRITE)
4189 return -EINVAL;
4190 if (copy_from_user(&kbuf, buffer, count))
4191 return -EFAULT;
4192 kbuf[MAX_SLABINFO_WRITE] = '\0';
4193
4194 tmp = strchr(kbuf, ' ');
4195 if (!tmp)
4196 return -EINVAL;
4197 *tmp = '\0';
4198 tmp++;
4199 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4200 return -EINVAL;
4201
4202 /* Find the cache in the chain of caches. */
4203 mutex_lock(&slab_mutex);
4204 res = -EINVAL;
4205 list_for_each_entry(cachep, &slab_caches, list) {
4206 if (!strcmp(cachep->name, kbuf)) {
4207 if (limit < 1 || batchcount < 1 ||
4208 batchcount > limit || shared < 0) {
4209 res = 0;
4210 } else {
4211 res = do_tune_cpucache(cachep, limit,
4212 batchcount, shared,
4213 GFP_KERNEL);
4214 }
4215 break;
4216 }
4217 }
4218 mutex_unlock(&slab_mutex);
4219 if (res >= 0)
4220 res = count;
4221 return res;
4222}
4223
4224#ifdef CONFIG_DEBUG_SLAB_LEAK
4225
4226static inline int add_caller(unsigned long *n, unsigned long v)
4227{
4228 unsigned long *p;
4229 int l;
4230 if (!v)
4231 return 1;
4232 l = n[1];
4233 p = n + 2;
4234 while (l) {
4235 int i = l/2;
4236 unsigned long *q = p + 2 * i;
4237 if (*q == v) {
4238 q[1]++;
4239 return 1;
4240 }
4241 if (*q > v) {
4242 l = i;
4243 } else {
4244 p = q + 2;
4245 l -= i + 1;
4246 }
4247 }
4248 if (++n[1] == n[0])
4249 return 0;
4250 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4251 p[0] = v;
4252 p[1] = 1;
4253 return 1;
4254}
4255
4256static void handle_slab(unsigned long *n, struct kmem_cache *c,
4257 struct page *page)
4258{
4259 void *p;
4260 int i, j;
4261 unsigned long v;
4262
4263 if (n[0] == n[1])
4264 return;
4265 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4266 bool active = true;
4267
4268 for (j = page->active; j < c->num; j++) {
4269 if (get_free_obj(page, j) == i) {
4270 active = false;
4271 break;
4272 }
4273 }
4274
4275 if (!active)
4276 continue;
4277
4278 /*
4279 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4280 * mapping is established when actual object allocation and
4281 * we could mistakenly access the unmapped object in the cpu
4282 * cache.
4283 */
4284 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4285 continue;
4286
4287 if (!add_caller(n, v))
4288 return;
4289 }
4290}
4291
4292static void show_symbol(struct seq_file *m, unsigned long address)
4293{
4294#ifdef CONFIG_KALLSYMS
4295 unsigned long offset, size;
4296 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4297
4298 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4299 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4300 if (modname[0])
4301 seq_printf(m, " [%s]", modname);
4302 return;
4303 }
4304#endif
4305 seq_printf(m, "%px", (void *)address);
4306}
4307
4308static int leaks_show(struct seq_file *m, void *p)
4309{
4310 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
4311 root_caches_node);
4312 struct page *page;
4313 struct kmem_cache_node *n;
4314 const char *name;
4315 unsigned long *x = m->private;
4316 int node;
4317 int i;
4318
4319 if (!(cachep->flags & SLAB_STORE_USER))
4320 return 0;
4321 if (!(cachep->flags & SLAB_RED_ZONE))
4322 return 0;
4323
4324 /*
4325 * Set store_user_clean and start to grab stored user information
4326 * for all objects on this cache. If some alloc/free requests comes
4327 * during the processing, information would be wrong so restart
4328 * whole processing.
4329 */
4330 do {
4331 drain_cpu_caches(cachep);
4332 /*
4333 * drain_cpu_caches() could make kmemleak_object and
4334 * debug_objects_cache dirty, so reset afterwards.
4335 */
4336 set_store_user_clean(cachep);
4337
4338 x[1] = 0;
4339
4340 for_each_kmem_cache_node(cachep, node, n) {
4341
4342 check_irq_on();
4343 spin_lock_irq(&n->list_lock);
4344
4345 list_for_each_entry(page, &n->slabs_full, lru)
4346 handle_slab(x, cachep, page);
4347 list_for_each_entry(page, &n->slabs_partial, lru)
4348 handle_slab(x, cachep, page);
4349 spin_unlock_irq(&n->list_lock);
4350 }
4351 } while (!is_store_user_clean(cachep));
4352
4353 name = cachep->name;
4354 if (x[0] == x[1]) {
4355 /* Increase the buffer size */
4356 mutex_unlock(&slab_mutex);
4357 m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
4358 GFP_KERNEL);
4359 if (!m->private) {
4360 /* Too bad, we are really out */
4361 m->private = x;
4362 mutex_lock(&slab_mutex);
4363 return -ENOMEM;
4364 }
4365 *(unsigned long *)m->private = x[0] * 2;
4366 kfree(x);
4367 mutex_lock(&slab_mutex);
4368 /* Now make sure this entry will be retried */
4369 m->count = m->size;
4370 return 0;
4371 }
4372 for (i = 0; i < x[1]; i++) {
4373 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4374 show_symbol(m, x[2*i+2]);
4375 seq_putc(m, '\n');
4376 }
4377
4378 return 0;
4379}
4380
4381static const struct seq_operations slabstats_op = {
4382 .start = slab_start,
4383 .next = slab_next,
4384 .stop = slab_stop,
4385 .show = leaks_show,
4386};
4387
4388static int slabstats_open(struct inode *inode, struct file *file)
4389{
4390 unsigned long *n;
4391
4392 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4393 if (!n)
4394 return -ENOMEM;
4395
4396 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4397
4398 return 0;
4399}
4400
4401static const struct file_operations proc_slabstats_operations = {
4402 .open = slabstats_open,
4403 .read = seq_read,
4404 .llseek = seq_lseek,
4405 .release = seq_release_private,
4406};
4407#endif
4408
4409static int __init slab_proc_init(void)
4410{
4411#ifdef CONFIG_DEBUG_SLAB_LEAK
4412 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4413#endif
4414 return 0;
4415}
4416module_init(slab_proc_init);
4417
4418#ifdef CONFIG_HARDENED_USERCOPY
4419/*
4420 * Rejects incorrectly sized objects and objects that are to be copied
4421 * to/from userspace but do not fall entirely within the containing slab
4422 * cache's usercopy region.
4423 *
4424 * Returns NULL if check passes, otherwise const char * to name of cache
4425 * to indicate an error.
4426 */
4427void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4428 bool to_user)
4429{
4430 struct kmem_cache *cachep;
4431 unsigned int objnr;
4432 unsigned long offset;
4433
4434 ptr = kasan_reset_tag(ptr);
4435
4436 /* Find and validate object. */
4437 cachep = page->slab_cache;
4438 objnr = obj_to_index(cachep, page, (void *)ptr);
4439 BUG_ON(objnr >= cachep->num);
4440
4441 /* Find offset within object. */
4442 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4443
4444 /* Allow address range falling entirely within usercopy region. */
4445 if (offset >= cachep->useroffset &&
4446 offset - cachep->useroffset <= cachep->usersize &&
4447 n <= cachep->useroffset - offset + cachep->usersize)
4448 return;
4449
4450 /*
4451 * If the copy is still within the allocated object, produce
4452 * a warning instead of rejecting the copy. This is intended
4453 * to be a temporary method to find any missing usercopy
4454 * whitelists.
4455 */
4456 if (usercopy_fallback &&
4457 offset <= cachep->object_size &&
4458 n <= cachep->object_size - offset) {
4459 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4460 return;
4461 }
4462
4463 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4464}
4465#endif /* CONFIG_HARDENED_USERCOPY */
4466
4467/**
4468 * ksize - get the actual amount of memory allocated for a given object
4469 * @objp: Pointer to the object
4470 *
4471 * kmalloc may internally round up allocations and return more memory
4472 * than requested. ksize() can be used to determine the actual amount of
4473 * memory allocated. The caller may use this additional memory, even though
4474 * a smaller amount of memory was initially specified with the kmalloc call.
4475 * The caller must guarantee that objp points to a valid object previously
4476 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4477 * must not be freed during the duration of the call.
4478 */
4479size_t ksize(const void *objp)
4480{
4481 size_t size;
4482
4483 BUG_ON(!objp);
4484 if (unlikely(objp == ZERO_SIZE_PTR))
4485 return 0;
4486
4487 size = virt_to_cache(objp)->object_size;
4488 /* We assume that ksize callers could use the whole allocated area,
4489 * so we need to unpoison this area.
4490 */
4491 kasan_unpoison_shadow(objp, size);
4492
4493 return size;
4494}
4495EXPORT_SYMBOL(ksize);