blob: 803b124bb085af6645e8db98247b9fb4370b0c49 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
8#ifdef CONFIG_SLOB
9/*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
24 slab_flags_t flags; /* Active flags on the slab */
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31};
32
33#endif /* CONFIG_SLOB */
34
35#ifdef CONFIG_SLAB
36#include <linux/slab_def.h>
37#endif
38
39#ifdef CONFIG_SLUB
40#include <linux/slub_def.h>
41#endif
42
43#include <linux/memcontrol.h>
44#include <linux/fault-inject.h>
45#include <linux/kasan.h>
46#include <linux/kmemleak.h>
47#include <linux/random.h>
48#include <linux/sched/mm.h>
49
50/*
51 * State of the slab allocator.
52 *
53 * This is used to describe the states of the allocator during bootup.
54 * Allocators use this to gradually bootstrap themselves. Most allocators
55 * have the problem that the structures used for managing slab caches are
56 * allocated from slab caches themselves.
57 */
58enum slab_state {
59 DOWN, /* No slab functionality yet */
60 PARTIAL, /* SLUB: kmem_cache_node available */
61 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
62 UP, /* Slab caches usable but not all extras yet */
63 FULL /* Everything is working */
64};
65
66extern enum slab_state slab_state;
67
68/* The slab cache mutex protects the management structures during changes */
69extern struct mutex slab_mutex;
70
71/* The list of all slab caches on the system */
72extern struct list_head slab_caches;
73
74/* The slab cache that manages slab cache information */
75extern struct kmem_cache *kmem_cache;
76
77/* A table of kmalloc cache names and sizes */
78extern const struct kmalloc_info_struct {
79 const char *name;
80 unsigned int size;
81} kmalloc_info[];
82
83#ifndef CONFIG_SLOB
84/* Kmalloc array related functions */
85void setup_kmalloc_cache_index_table(void);
86void create_kmalloc_caches(slab_flags_t);
87
88/* Find the kmalloc slab corresponding for a certain size */
89struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90#endif
91
92
93/* Functions provided by the slab allocators */
94int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
95
96struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
97 slab_flags_t flags, unsigned int useroffset,
98 unsigned int usersize);
99extern void create_boot_cache(struct kmem_cache *, const char *name,
100 unsigned int size, slab_flags_t flags,
101 unsigned int useroffset, unsigned int usersize);
102
103int slab_unmergeable(struct kmem_cache *s);
104struct kmem_cache *find_mergeable(unsigned size, unsigned align,
105 slab_flags_t flags, const char *name, void (*ctor)(void *));
106#ifndef CONFIG_SLOB
107struct kmem_cache *
108__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
109 slab_flags_t flags, void (*ctor)(void *));
110
111slab_flags_t kmem_cache_flags(unsigned int object_size,
112 slab_flags_t flags, const char *name,
113 void (*ctor)(void *));
114#else
115static inline struct kmem_cache *
116__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
117 slab_flags_t flags, void (*ctor)(void *))
118{ return NULL; }
119
120static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
121 slab_flags_t flags, const char *name,
122 void (*ctor)(void *))
123{
124 return flags;
125}
126#endif
127
128
129/* Legal flag mask for kmem_cache_create(), for various configurations */
130#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
131 SLAB_CACHE_DMA32 | SLAB_PANIC | \
132 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
133
134#if defined(CONFIG_DEBUG_SLAB)
135#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
136#elif defined(CONFIG_SLUB_DEBUG)
137#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
138 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
139#else
140#define SLAB_DEBUG_FLAGS (0)
141#endif
142
143#if defined(CONFIG_SLAB)
144#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
145 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
146 SLAB_ACCOUNT)
147#elif defined(CONFIG_SLUB)
148#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
149 SLAB_TEMPORARY | SLAB_ACCOUNT)
150#else
151#define SLAB_CACHE_FLAGS (0)
152#endif
153
154/* Common flags available with current configuration */
155#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
156
157/* Common flags permitted for kmem_cache_create */
158#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
159 SLAB_RED_ZONE | \
160 SLAB_POISON | \
161 SLAB_STORE_USER | \
162 SLAB_TRACE | \
163 SLAB_CONSISTENCY_CHECKS | \
164 SLAB_MEM_SPREAD | \
165 SLAB_NOLEAKTRACE | \
166 SLAB_RECLAIM_ACCOUNT | \
167 SLAB_TEMPORARY | \
168 SLAB_ACCOUNT)
169
170bool __kmem_cache_empty(struct kmem_cache *);
171int __kmem_cache_shutdown(struct kmem_cache *);
172void __kmem_cache_release(struct kmem_cache *);
173int __kmem_cache_shrink(struct kmem_cache *);
174void __kmemcg_cache_deactivate(struct kmem_cache *s);
175void slab_kmem_cache_release(struct kmem_cache *);
176
177struct seq_file;
178struct file;
179
180struct slabinfo {
181 unsigned long active_objs;
182 unsigned long num_objs;
183 unsigned long active_slabs;
184 unsigned long num_slabs;
185 unsigned long shared_avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int shared;
189 unsigned int objects_per_slab;
190 unsigned int cache_order;
191};
192
193void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
194void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
195ssize_t slabinfo_write(struct file *file, const char __user *buffer,
196 size_t count, loff_t *ppos);
197
198/*
199 * Generic implementation of bulk operations
200 * These are useful for situations in which the allocator cannot
201 * perform optimizations. In that case segments of the object listed
202 * may be allocated or freed using these operations.
203 */
204void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
205int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
206
207#ifdef CONFIG_MEMCG_KMEM
208
209/* List of all root caches. */
210extern struct list_head slab_root_caches;
211#define root_caches_node memcg_params.__root_caches_node
212
213/*
214 * Iterate over all memcg caches of the given root cache. The caller must hold
215 * slab_mutex.
216 */
217#define for_each_memcg_cache(iter, root) \
218 list_for_each_entry(iter, &(root)->memcg_params.children, \
219 memcg_params.children_node)
220
221static inline bool is_root_cache(struct kmem_cache *s)
222{
223 return !s->memcg_params.root_cache;
224}
225
226static inline bool slab_equal_or_root(struct kmem_cache *s,
227 struct kmem_cache *p)
228{
229 return p == s || p == s->memcg_params.root_cache;
230}
231
232/*
233 * We use suffixes to the name in memcg because we can't have caches
234 * created in the system with the same name. But when we print them
235 * locally, better refer to them with the base name
236 */
237static inline const char *cache_name(struct kmem_cache *s)
238{
239 if (!is_root_cache(s))
240 s = s->memcg_params.root_cache;
241 return s->name;
242}
243
244/*
245 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
246 * That said the caller must assure the memcg's cache won't go away by either
247 * taking a css reference to the owner cgroup, or holding the slab_mutex.
248 */
249static inline struct kmem_cache *
250cache_from_memcg_idx(struct kmem_cache *s, int idx)
251{
252 struct kmem_cache *cachep;
253 struct memcg_cache_array *arr;
254
255 rcu_read_lock();
256 arr = rcu_dereference(s->memcg_params.memcg_caches);
257
258 /*
259 * Make sure we will access the up-to-date value. The code updating
260 * memcg_caches issues a write barrier to match this (see
261 * memcg_create_kmem_cache()).
262 */
263 cachep = READ_ONCE(arr->entries[idx]);
264 rcu_read_unlock();
265
266 return cachep;
267}
268
269static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
270{
271 if (is_root_cache(s))
272 return s;
273 return s->memcg_params.root_cache;
274}
275
276static __always_inline int memcg_charge_slab(struct page *page,
277 gfp_t gfp, int order,
278 struct kmem_cache *s)
279{
280 if (!memcg_kmem_enabled())
281 return 0;
282 if (is_root_cache(s))
283 return 0;
284 return memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
285}
286
287static __always_inline void memcg_uncharge_slab(struct page *page, int order,
288 struct kmem_cache *s)
289{
290 if (!memcg_kmem_enabled())
291 return;
292 memcg_kmem_uncharge(page, order);
293}
294
295extern void slab_init_memcg_params(struct kmem_cache *);
296extern void memcg_link_cache(struct kmem_cache *s);
297extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
298 void (*deact_fn)(struct kmem_cache *));
299
300#else /* CONFIG_MEMCG_KMEM */
301
302/* If !memcg, all caches are root. */
303#define slab_root_caches slab_caches
304#define root_caches_node list
305
306#define for_each_memcg_cache(iter, root) \
307 for ((void)(iter), (void)(root); 0; )
308
309static inline bool is_root_cache(struct kmem_cache *s)
310{
311 return true;
312}
313
314static inline bool slab_equal_or_root(struct kmem_cache *s,
315 struct kmem_cache *p)
316{
317 return true;
318}
319
320static inline const char *cache_name(struct kmem_cache *s)
321{
322 return s->name;
323}
324
325static inline struct kmem_cache *
326cache_from_memcg_idx(struct kmem_cache *s, int idx)
327{
328 return NULL;
329}
330
331static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
332{
333 return s;
334}
335
336static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
337 struct kmem_cache *s)
338{
339 return 0;
340}
341
342static inline void memcg_uncharge_slab(struct page *page, int order,
343 struct kmem_cache *s)
344{
345}
346
347static inline void slab_init_memcg_params(struct kmem_cache *s)
348{
349}
350
351static inline void memcg_link_cache(struct kmem_cache *s)
352{
353}
354
355#endif /* CONFIG_MEMCG_KMEM */
356
357static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
358{
359 struct kmem_cache *cachep;
360 struct page *page;
361
362 /*
363 * When kmemcg is not being used, both assignments should return the
364 * same value. but we don't want to pay the assignment price in that
365 * case. If it is not compiled in, the compiler should be smart enough
366 * to not do even the assignment. In that case, slab_equal_or_root
367 * will also be a constant.
368 */
369 if (!memcg_kmem_enabled() &&
370 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
371 return s;
372
373 page = virt_to_head_page(x);
374 cachep = page->slab_cache;
375 if (slab_equal_or_root(cachep, s))
376 return cachep;
377
378 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
379 __func__, s->name, cachep->name);
380 WARN_ON_ONCE(1);
381 return s;
382}
383
384static inline size_t slab_ksize(const struct kmem_cache *s)
385{
386#ifndef CONFIG_SLUB
387 return s->object_size;
388
389#else /* CONFIG_SLUB */
390# ifdef CONFIG_SLUB_DEBUG
391 /*
392 * Debugging requires use of the padding between object
393 * and whatever may come after it.
394 */
395 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
396 return s->object_size;
397# endif
398 if (s->flags & SLAB_KASAN)
399 return s->object_size;
400 /*
401 * If we have the need to store the freelist pointer
402 * back there or track user information then we can
403 * only use the space before that information.
404 */
405 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
406 return s->inuse;
407 /*
408 * Else we can use all the padding etc for the allocation
409 */
410 return s->size;
411#endif
412}
413
414static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
415 gfp_t flags)
416{
417 flags &= gfp_allowed_mask;
418
419 fs_reclaim_acquire(flags);
420 fs_reclaim_release(flags);
421
422 might_sleep_if(gfpflags_allow_blocking(flags));
423
424 if (should_failslab(s, flags))
425 return NULL;
426
427 if (memcg_kmem_enabled() &&
428 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
429 return memcg_kmem_get_cache(s);
430
431 return s;
432}
433
434static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
435 size_t size, void **p)
436{
437 size_t i;
438
439 flags &= gfp_allowed_mask;
440 for (i = 0; i < size; i++) {
441 p[i] = kasan_slab_alloc(s, p[i], flags);
442 kmemleak_alloc_recursive(p[i], s->object_size, 1,
443 s->flags, flags);
444 }
445
446 if (memcg_kmem_enabled())
447 memcg_kmem_put_cache(s);
448}
449
450#ifndef CONFIG_SLOB
451/*
452 * The slab lists for all objects.
453 */
454struct kmem_cache_node {
455 spinlock_t list_lock;
456
457#ifdef CONFIG_SLAB
458 struct list_head slabs_partial; /* partial list first, better asm code */
459 struct list_head slabs_full;
460 struct list_head slabs_free;
461 unsigned long total_slabs; /* length of all slab lists */
462 unsigned long free_slabs; /* length of free slab list only */
463 unsigned long free_objects;
464 unsigned int free_limit;
465 unsigned int colour_next; /* Per-node cache coloring */
466 struct array_cache *shared; /* shared per node */
467 struct alien_cache **alien; /* on other nodes */
468 unsigned long next_reap; /* updated without locking */
469 int free_touched; /* updated without locking */
470#endif
471
472#ifdef CONFIG_SLUB
473 unsigned long nr_partial;
474 struct list_head partial;
475#ifdef CONFIG_SLUB_DEBUG
476 atomic_long_t nr_slabs;
477 atomic_long_t total_objects;
478 struct list_head full;
479#endif
480#endif
481
482};
483
484static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
485{
486 return s->node[node];
487}
488
489/*
490 * Iterator over all nodes. The body will be executed for each node that has
491 * a kmem_cache_node structure allocated (which is true for all online nodes)
492 */
493#define for_each_kmem_cache_node(__s, __node, __n) \
494 for (__node = 0; __node < nr_node_ids; __node++) \
495 if ((__n = get_node(__s, __node)))
496
497#endif
498
499void *slab_start(struct seq_file *m, loff_t *pos);
500void *slab_next(struct seq_file *m, void *p, loff_t *pos);
501void slab_stop(struct seq_file *m, void *p);
502void *memcg_slab_start(struct seq_file *m, loff_t *pos);
503void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
504void memcg_slab_stop(struct seq_file *m, void *p);
505int memcg_slab_show(struct seq_file *m, void *p);
506
507#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
508void dump_unreclaimable_slab(void);
509#else
510static inline void dump_unreclaimable_slab(void)
511{
512}
513#endif
514
515void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
516
517#ifdef CONFIG_SLAB_FREELIST_RANDOM
518int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
519 gfp_t gfp);
520void cache_random_seq_destroy(struct kmem_cache *cachep);
521#else
522static inline int cache_random_seq_create(struct kmem_cache *cachep,
523 unsigned int count, gfp_t gfp)
524{
525 return 0;
526}
527static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
528#endif /* CONFIG_SLAB_FREELIST_RANDOM */
529
530static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
531{
532 if (static_branch_unlikely(&init_on_alloc)) {
533 if (c->ctor)
534 return false;
535 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
536 return flags & __GFP_ZERO;
537 return true;
538 }
539 return flags & __GFP_ZERO;
540}
541
542static inline bool slab_want_init_on_free(struct kmem_cache *c)
543{
544 if (static_branch_unlikely(&init_on_free))
545 return !(c->ctor ||
546 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
547 return false;
548}
549
550#endif /* MM_SLAB_H */