[Feature]Upload Modem source code
Change-Id: Id4294f30faced84d3e6fd6d5e61e1111bf287a37
diff --git a/mcu/tools/IQ_Analyzer/src/IQ_Signals.py b/mcu/tools/IQ_Analyzer/src/IQ_Signals.py
new file mode 100644
index 0000000..2c24674
--- /dev/null
+++ b/mcu/tools/IQ_Analyzer/src/IQ_Signals.py
@@ -0,0 +1,191 @@
+import math
+import numpy as np
+
+class IqSignals:
+ def __init__(self, params, NidCell, is_TDD):
+ pi = math.pi
+
+ ## ------------------ PSS INIT (B) ------------------
+ print "\n"
+ print "Generating Primary Synchronization Signal....",
+
+ #Compute physical layer identity Nid2 in range [0:2]
+ Nid2 = NidCell % 3
+
+ #Identify root index from Nid2
+ if(Nid2 == 0):
+ u = 25
+ elif(Nid2 == 1):
+ u = 29
+ elif(Nid2 == 2):
+ u = 34
+
+ self.PSS_TD_complex = [0] * 62
+
+ # The PSS is a sequence of complex symbols, 62 symbols long
+ for n in xrange(0, 62):
+
+ if n <= 30:
+ phase_coeff = -pi*u*(n+1)*n/63.0
+ else:
+ phase_coeff = -pi*u*(n+1)*(n+2)/63.0
+
+ self.PSS_TD_complex[n] = np.vectorize(complex)(math.cos(phase_coeff),math.sin(phase_coeff))
+
+ self.PSS_TD_complex_pad = [0] * 72
+ self.PSS_TD_complex_pad[5:67] = self.PSS_TD_complex
+ self.PSS_TD_complex_pad_fftSize_wShift = [0] * params.PSS_FFT_size
+ self.PSS_TD_complex_pad_fftSize_wShift[1:37] = self.PSS_TD_complex_pad[36:]
+ self.PSS_TD_complex_pad_fftSize_wShift[params.PSS_FFT_size-36:] = self.PSS_TD_complex_pad[:36]
+ self.PSS_TD_complex_pad_fftSize_wShift_ifft = np.fft.ifft(self.PSS_TD_complex_pad_fftSize_wShift)
+
+ #Define indices location of PSS in half-frame resource grid (TODO!)
+
+ print "Done."
+ ## ------------------ PSS INIT (B) ------------------
+
+ ## See http://www.sharetechnote.com/html/Handbook_LTE_SSS.html < Matlab code for SSS Generation >
+ ## ------------------ SSS INIT (B) ------------------
+ #Compute physical layer cell-identity group Nid1 ( range LTE:[0:167], NR:[0:335])
+ print "Generating Secondary Synchronization Signal....",
+
+ #Compute physical layer cell-identity group Nid1 ( range [0:167] )
+ Nid1 = math.floor(NidCell/3.0)
+
+ # Define indices m0 and m1
+ q_prime = math.floor(Nid1/30.0)
+ q_ = math.floor( (Nid1 + 0.5*q_prime*(q_prime+1.0)) / 30.0 )
+ m_prime = Nid1 + q_*(q_+1)/2
+ m0 = int(m_prime % 31)
+ m1 = int((m0 + math.floor(m_prime/31.0) + 1.0) % 31)
+
+ #print ['q_prime',q_prime,'q_',q_,'m_prime',m_prime,'m0',m0,'m1',m1]
+
+
+ # **** Generate sequences s0^(m0)[n] and s1^(m1)[n] ****
+ # Compute m-sequence s_tilde
+ x_s = [0] * 31
+ x_s[4] = 1
+ for i_ in xrange(0,26):
+ x_s[i_+5] = (x_s[i_+2] + x_s[i_]) % 2
+
+ # Matlab: s_tilde = 1 - 2*x_s
+ s_tilde = [1-2*x for x in x_s]
+
+ # Compute s0_m0 and s1_m1 from s_tilde with different cyclic shifts
+ self.s0_ = [0] * 31
+ self.s1_ = [0] * 31
+ for i_ in xrange(0,31):
+ self.s0_[i_] = s_tilde[(i_ + m0) % 31]
+ self.s1_[i_] = s_tilde[(i_ + m1) % 31]
+
+
+ # **** Generate scrambling sequences c0[n] and c1[n] ****
+ # Compute m-sequence c_tilde
+ x_c = [0] * 31
+ x_c[4] = 1
+ for i_ in xrange(0,26):
+ x_c[i_+5] = (x_c[i_+3] + x_c[i_]) % 2
+
+ # Matlab: c_tilde = 1 - 2*x_c
+ c_tilde = [1-2*x for x in x_c]
+
+ # Compute c0_ and c1_ from c_tilde with different cyclic shifts
+ self.c0_ = [0] * 31
+ self.c1_ = [0] * 31
+ for i_ in xrange(0,31):
+ self.c0_[i_] = c_tilde[(i_ + Nid2) % 31]
+ self.c1_[i_] = c_tilde[(i_ + Nid2 + 3) % 31]
+
+
+ # **** Generate scrambling sequences z1^(m0)[n] and z1^(m1)[n] ****
+ # Compute m-sequence z_tilde
+ x_z = [0] * 31
+ x_z[4] = 1
+ for i_ in xrange(0,26):
+ x_z[i_+5] = (x_z[i_+4] + x_z[i_+2] + x_z[i_+1] + x_z[i_]) % 2
+
+ # Matlab: z_tilde = 1 - 2*x_z
+ z_tilde = [1-2*x for x in x_z]
+
+ # Compute z1_m0 and z1_m1 from z_tilde with different cyclic shifts
+ self.z1_m0 = [0] * 31
+ self.z1_m1 = [0] * 31
+ for i_ in xrange(0,31):
+ self.z1_m0[i_] = z_tilde[(i_ + (m0%8)) % 31]
+ self.z1_m1[i_] = z_tilde[(i_ + (m1%8)) % 31]
+
+
+ #Define indices location of SSS in half-frame resource grid
+ self.SSS_k_index_start = 0 -31 + 12*params.numRB/2
+ self.SSS_k_index_end = 61 -31 + 12*params.numRB/2
+
+ if (is_TDD == 1):
+ self.SSS_l_column = 13
+ else:
+ self.SSS_l_column = 5
+
+ print "Done."
+ ## ------------------ SSS INIT (E) ------------------
+
+ ########################################################################
+ # ------------------ SYNCHRONIZATION SIGNALS INIT (E) -----------------#
+ ########################################################################
+
+
+
+ ################################################################################
+ # ------------------ CELL-SPECIFIC REFERENCE SIGNALS INIT (B) -----------------#
+ ################################################################################
+ print "Generating Cell-Specific Reference Signals....",
+
+ N_c = 1600
+ NmaxRB = 110
+ seqLength = 4*NmaxRB
+ real_vec = np.zeros((2*NmaxRB,20*(params.Ncp_type+6)))
+ imag_vec = np.zeros((2*NmaxRB,20*(params.Ncp_type+6)))
+ self.CSRS_mat = np.vectorize(complex)(real_vec,imag_vec)
+
+ for kk in xrange(0, 20):
+
+ for ii in xrange(0,(params.Ncp_type+6)):
+
+ c_init = 1024 * ( 7 * ( kk + 1 ) + 1 + ii ) * (2*NidCell+1) + 2*NidCell + params.Ncp_type
+
+ #print c_init
+
+ # x_1 initialization
+ x_1 = [0] * (seqLength + N_c + 31)
+ x_1[0] = 1
+ x_2 = [0] * (seqLength + N_c + 31)
+
+ # # Initializes x_2 using c_init (converts to binary form)
+ # i = 0;
+ # while (c_init >= 1):
+ # x_2[i] = c_init % 2
+ # c_init = math.floor(c_init / 2)
+ # i = i +1
+
+ # Initializes x_2 using c_init (converts to binary form)
+ i = 30;
+ while (c_init >= 1):
+ x2_val = math.floor(c_init/math.pow(2,i))
+ x_2[i] = x2_val
+ c_init = c_init - x2_val*math.pow(2,i)
+ i = i - 1
+
+ # Generation of x_1[n] and x_2[n]
+ for n in xrange(0,seqLength + N_c):
+ x_1[n+31] = (x_1[n+3] + x_1[n]) % 2
+ x_2[n+31] = (x_2[n+3] + x_2[n+2] + x_2[n+1] + x_2[n]) % 2
+
+ # Generation of Gold PN sequence: c_seq[n] = (x_1[n+Nc] + x_2[n+Nc])mod2
+ c_seq = np.zeros((seqLength,1))
+ for nn in xrange(0,seqLength):
+ c_seq[nn] = (x_1[nn+N_c] + x_2[nn + N_c]) % 2
+
+ # Generation of QPSK-based CSRS
+ ref_sig_seq = np.sqrt(0.5) * np.vectorize(complex)(1-2*c_seq[0:4*NmaxRB:2],1-2*c_seq[1:4*NmaxRB:2])
+ self.CSRS_mat[:,kk*(6+params.Ncp_type)+ii] = ref_sig_seq[:,0]
+ self.NmaxRB = NmaxRB
+ print "Done."