blob: 3016adc3b64925bb85b984f2b103d9b368ea0023 [file] [log] [blame]
/*****************************************************************************
* Copyright Statement:
* --------------------
* This software is protected by Copyright and the information contained
* herein is confidential. The software may not be copied and the information
* contained herein may not be used or disclosed except with the written
* permission of MediaTek Inc. (C) 2012
*
* BY OPENING THIS FILE, BUYER HEREBY UNEQUIVOCALLY ACKNOWLEDGES AND AGREES
* THAT THE SOFTWARE/FIRMWARE AND ITS DOCUMENTATIONS ("MEDIATEK SOFTWARE")
* RECEIVED FROM MEDIATEK AND/OR ITS REPRESENTATIVES ARE PROVIDED TO BUYER ON
* AN "AS-IS" BASIS ONLY. MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT.
* NEITHER DOES MEDIATEK PROVIDE ANY WARRANTY WHATSOEVER WITH RESPECT TO THE
* SOFTWARE OF ANY THIRD PARTY WHICH MAY BE USED BY, INCORPORATED IN, OR
* SUPPLIED WITH THE MEDIATEK SOFTWARE, AND BUYER AGREES TO LOOK ONLY TO SUCH
* THIRD PARTY FOR ANY WARRANTY CLAIM RELATING THERETO. MEDIATEK SHALL ALSO
* NOT BE RESPONSIBLE FOR ANY MEDIATEK SOFTWARE RELEASES MADE TO BUYER'S
* SPECIFICATION OR TO CONFORM TO A PARTICULAR STANDARD OR OPEN FORUM.
*
* BUYER'S SOLE AND EXCLUSIVE REMEDY AND MEDIATEK'S ENTIRE AND CUMULATIVE
* LIABILITY WITH RESPECT TO THE MEDIATEK SOFTWARE RELEASED HEREUNDER WILL BE,
* AT MEDIATEK'S OPTION, TO REVISE OR REPLACE THE MEDIATEK SOFTWARE AT ISSUE,
* OR REFUND ANY SOFTWARE LICENSE FEES OR SERVICE CHARGE PAID BY BUYER TO
* MEDIATEK FOR SUCH MEDIATEK SOFTWARE AT ISSUE.
*
* THE TRANSACTION CONTEMPLATED HEREUNDER SHALL BE CONSTRUED IN ACCORDANCE
* WITH THE LAWS OF THE STATE OF CALIFORNIA, USA, EXCLUDING ITS CONFLICT OF
* LAWS PRINCIPLES. ANY DISPUTES, CONTROVERSIES OR CLAIMS ARISING THEREOF AND
* RELATED THERETO SHALL BE SETTLED BY ARBITRATION IN SAN FRANCISCO, CA, UNDER
* THE RULES OF THE INTERNATIONAL CHAMBER OF COMMERCE (ICC).
*
*****************************************************************************/
/*******************************************************************************
* Filename:
* ---------
* drv_rstctl.c
*
* Project:
* --------
* TATAKA
*
* Description:
* ------------
*
*
* Author:
* Barry Hong
*
*
* ==========================================================================
* $Log$
*
* 09 03 2019 yuke.ren
* [MOLY00435227] Update MDRGU DrvTest Code
* update MDRGU drvtest code for RGU IT
*
* 08 26 2019 yao.xue
* [MOLY00434900] [VMOLY][PETRUS]sync Petrus Patch to APOLLO SQC branch:disable WDT in PETRUS ENG load
* sync Petrus Patch to APOLLO SQC branch:disable WDT in PETRUS ENG load
*
* 08 19 2019 yao.xue
* [MOLY00432830] [VMOLY.APOLLO.SQC]add the reboot timeout interval to 60s in case of SAP not reset MD within 4s.
* add the automatic reboot timeout interval to 60s in case of SAP not reset MD within 4s.
*
* 01 09 2019 yao.xue
* [MOLY00378064] Requirment ENG load Enable WDT
* ENG load open WDT
*
* 10 09 2018 yuke.ren
* [MOLY00357526] [MT6297] Rstctl driver porting
* .
*
* 04 10 2018 yuke.ren
* [MOLY00318371] Update RGU IT framework
* 1. Fix AP software reset MD
* 2. Unify reset delay unit to 512 1T 32K (15.6ms)
*
* 04 09 2018 da.li
* [MOLY00315163] [UMOLYE]Reset control driver porting for EIGER
* Fix driver warning for GCC6.
*
* 04 04 2018 yuke.ren
* [MOLY00318371] Update RGU IT framework
* Don't use low 8-bits to save rgu test accumulator
*
* 12 29 2017 da.li
* [MOLY00298401] [UMOLYA][TRUNK] WDT operation MACRO for MD INIT flow
* WDT operation MACRO for MD INIT flow.
*
* 12 29 2017 da.li
* [MOLY00298401] [UMOLYA][TRUNK] WDT operation MACRO for MD INIT flow
* WDT operation MACRO for MD INIT flow.
*
* 12 29 2017 da.li
* [MOLY00298401] [UMOLYA][TRUNK] WDT operation MACRO for MD INIT flow
* WDT operation MACRO for MD INIT flow.
*
* 12 29 2017 da.li
* [MOLY00298401] [UMOLYA][TRUNK] WDT operation MACRO for MD INIT flow
* WDT operation MACRO for MD INIT flow.
*
* 12 29 2017 da.li
* [MOLY00298401] [UMOLYA][TRUNK] WDT operation MACRO for MD INIT flow
* WDT operation MACRO for MD INIT flow.
*
* 12 29 2017 da.li
* [MOLY00298401] [UMOLYA][TRUNK] WDT operation MACRO for MD INIT flow
* WDT operation MACRO for MD INIT flow.
*
* 11 23 2017 da.li
* [MOLY00275013] [LR12] Enable WDT on ENG load
* WDT disabled on MD debug load.
*
* 10 25 2017 da.li
* [MOLY00281544] [PVT must resolve] [ASSERT] file:mcu/common/driver/devdrv/rstctl/src/drv_rstctl.c line:1119
* Update reset driver for RGU IT on FPGA.
*
* 10 19 2017 da.li
* [MOLY00281544] [PVT must resolve] [ASSERT] file:mcu/common/driver/devdrv/rstctl/src/drv_rstctl.c line:1119
* Re-send WDT IRQ to AP while AP wants to reset MD but without recieving WDT IRQ.
*
* 08 31 2017 da.li
* [MOLY00275013] [LR12] Enable WDT on ENG load
* Enable WDT1(only) on ENG load
*
* 05 23 2017 da.li
* [MOLY00248360] [BIANCO] Change IRQ mask API to HRT domain
* Build warning fix.
*
* 05 12 2017 da.li
* [MOLY00248360] [BIANCO] Change IRQ mask API to HRT domain
* change HRT API to disable interrupt.
*
* 04 06 2017 da.li
* [MOLY00233063] [BIANCO] rstctl driver update for RGU IT
* Remove warning.
*
* 03 03 2017 da.li
* [MOLY00233063] [BIANCO] rstctl driver update for RGU IT
* for BIANCO RGU IT.
*
* 02 16 2017 da.li
* [MOLY00211939] [Bianco] Reset control driver porting
* Remove redundant project macros.
*
* 11 17 2016 da.li
* [MOLY00211939] [Bianco] Reset control driver porting
* Update for RGU IT test.
* Add workaround to make reset environment more stable.
*
* 11 08 2016 da.li
* [MOLY00211939] [Bianco] Reset control driver porting
* Reset control driver porting from LR12
*
* 03 30 2016 owen.ho
* [MOLY00171832] [UMOLYA]
* Add compile option for GEN93 project
*
* 03 03 2016 owen.ho
* [MOLY00141883] [ELBRUS][FPGA]
* remove including file for MSBB violation
*
* 01 19 2016 owen.ho
* [MOLY00070771] [6291][FPGA]solve build error
* Update software reset enum
*
* 11 26 2015 owen.ho
* [MOLY00141883] [ELBRUS][FPGA] Add RGU IT framework for elbrus
*
* 10 13 2015 owen.ho
* [MOLY00141883] [ELBRUS][FPGA]
* Solve build error for irq name changed
*
* 09 25 2015 owen.ho
* [MOLY00141883] [ELBRUS][FPGA]
* Solve build error
*
* 09 25 2015 owen.ho
* [MOLY00141883] [ELBRUS][FPGA]
* Driver porting for Elbrus
*
* 08 17 2015 owen.ho
* [MOLY00070771] [6291][FPGA]solve build error
* Solve build error for build ELBRUS
*
* 07 24 2015 owen.ho
* [MOLY00070771] [6291][FPGA]solve build error
* Modify RGU IT framework for reset with delay cycle case
*
* 07 24 2015 owen.ho
* [MOLY00070771] [6291][FPGA]solve build error
* Fix IT framework for drvtest environment
*
* 07 03 2015 owen.ho
* [MOLY00070771] [6291][FPGA]solve build error Modify RGU drvtest & devdrv for JADE
*
* 06 11 2015 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Add compile option flag to restrict WDT enable without __PRODUCTION_RELEASE__ in abnrset api.
* Add BB_Register dump.
* Add EMMWriteDebugInfo for track caller info in share memory.
*
* 04 28 2015 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Add silent reboot in exception flow and trigger fatal error upon receving L1WDT IRQ.
*
* 04 27 2015 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Klocwork correction.
*
* 04 09 2015 owen.ho
* [MOLY00070771] [6291][FPGA]solve build error Update RGU IT framework
* .
*
* 03 30 2015 owen.ho
* [MOLY00070771] [6291][FPGA]solve build error:Update RGU IT framework
*
* 01 29 2015 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Correct g_ABNORMAL_RST_REG and g_ABNORMAL_RST_VAL.
*
* 01 28 2015 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Solve trunk's build error.
*
* 01 06 2015 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Chnage L1 boot slave address for L2copro's requirement that needs more memory space (256MB).
* Cooperate with HVT dummy load built by "make mcore_6291_drvtest_nand_booting".
*
* 12 26 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Include system_coverage into ungate_l1core.
*
* 12 26 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Disable WDTRR in UMOLY while in DRVTEST mode.
* Add system_coverage in _rst_set_system_ready_sts for different 3G/4G FPGA configuration.
*
* 12 22 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Patch drv_rstctl.c for the condition that target system is not included in the system coverage.
*
* 12 16 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Provide interface for USB WDT test.
*
* 12 15 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Message layout adjustment.
*
* 12 15 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Patch incorrect ARM7WDT WDTRR KEY setting.
*
* 12 09 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Add ATEST_ENABLE to solve UMOLY build error.
*
* 12 09 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Add ATEST_ENABLE to solve UMOLY build error.
*
* 12 09 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* RGU IT Framework
*
* 10 23 2014 vmick.lin
* [MOLY00062072] [MT6291][RGU] Implement
* Change IRQ name from MD_IRQID_MD_WDT to IRQ_MD_WDT_CODE
*
* 10 22 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Modification software reset mechanis of RST_NFI and RST_NFI_AO.
* They need to be reset at the same time.
*
* 10 15 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* Add RST_SOE and RST_BUS_RECORD in drv_rstctl_sw_reset.
*
* 09 25 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* synchronization of definitions
*
* 08 27 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error.
* drv_rstctl.h add reset enumerators for APSYS IPs
* rstctl_reg.h 1.add definitions of APRGU control registers
* 2.add definitions of software reset for APSYS IPs
* drv_rstctl.c 1. enhance_RESET_ITEM_REGs to support APSYS/MDSYS IPs
* 2. enhacne _rst_resetIP to supoort APSYS/MDSYS IPs
* 3. enlarge the reset scope of drv_rstctl_sw_reset (including APSYS IPs. )
*
* 07 17 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* .Add drv_rstctl_sw_reset function for UMOLY IP functional test.
*
* 07 02 2014 dennis.chueh
* [MOLY00070771] [6291][FPGA]solve build error
* .
*
* 05 27 2014 vmick.lin
* [MOLY00062072] [TK6291][RGU] Implement
* .
* Disable Arm7/L1core bypass irq configuration while init
*
* 05 20 2014 vmick.lin
* [MOLY00062072] [TK6291][RGU] Implement
* .
*
* 05 20 2014 vmick.lin
* [MOLY00062072] [TK6291][RGU] Implement
* Because WDTIR default is 0x20000, so need to SW workaround
*
* 05 20 2014 vmick.lin
* [MOLY00062072] [TK6291][RGU] Implement
* .
*
* 04 14 2014 vmick.lin
* [MOLY00062072] [TK6291][RGU] Implement
* Resolve build error
*
* 04 10 2014 vmick.lin
* [MOLY00062072] [TK6291][RGU] Implement
* Fix build error
*
* 04 08 2014 vmick.lin
* [MOLY00062072] [TK6291][RGU] Implement: Fix build error temporarily
*
* 02 17 2014 vmick.lin
* [MOLY00056239] [6595] RGU integration test
* Stop call while system calling wdt reset
*
* 02 10 2014 vmick.lin
* [MOLY00055629] [MT6290][CPE_DONGLE_TYPE]CR4 watchdog reset in dormant mode
* clear wdt status while init
*
* 01 13 2014 vend_mick.lin
* [MOLY00051688] [MT6595 Bring-Up] Verify RGU driver
* Add accessing Top RGU retention data API for test
*
* 01 13 2014 vend_mick.lin
* [MOLY00051688] Verify RGU driver in ROME EVB
* Add whole system reset function to PSD1
*
* 12 27 2013 vend_mick.lin
* [MOLY00051688] Verify RGU driver in ROME EVB
* Change enum type RST_LTEL2 to original RST_L2COP
*
* 12 18 2013 vend_mick.lin
* [MOLY00050015] Add CLDMA sw reset in RGU driver
* Modify get_duration macro
*
* 12 12 2013 vend_mick.lin
* [MOLY00050015] Add CLDMA sw reset in RGU driver
* .
*
* 12 06 2013 vend_mick.lin
* [MOLY00049273] Add MT6595 RGU driver
* [MT6595] RGU code merge
*
* 10 30 2013 vend_mick.lin
* [MOLY00043729] Change watchdog timeout period for product release
* Change Watch dog timer to 4 sec and enable IRQ mode in phone type
*
* 10 04 2013 vend_mick.lin
* [MOLY00040268] SDIO transfer speed is very low after MOLY boot-up about 10 seconds
* ext_rst_b set low active as phone type request
*
* 09 25 2013 vend_mick.lin
* [MOLY00038948] Add infinite loop in sw watch dog reset function if irq_en not set
*
* 09 17 2013 vend_mick.lin
* [MOLY00038329] Ext_rst setting affects SDIO transmission speed
* change ext_rst polarity as high active as workaround solution
*
* 08 30 2013 vend_mick.lin
* [MOLY00035988] Change polarity of ext_rst signal to low active
* For phone type request
*
* 08 29 2013 vend_mick.lin
* [MOLY00035823] Delete warning message while build code of rstctrl part
* Delete waring message
*
* 08 15 2013 vend_mick.lin
* Fix CR: MOLY00033807 ; Dont reset APCLK after WDT
*
* 08 02 2013 barry.hong
* [MOLY00021294] [MT6290 Bring-up]6290 WDT driver update
* Fraom wei-de phone project request. set EXT_RST default to high active
*
* 07 17 2013 barry.hong
* [MOLY00021294] [MT6290 Bring-up]6290 WDT driver update
* .remove APCLK reset when USB call WD reset
*
* 05 30 2013 barry.hong
* [MOLY00013643] [MT6290 Bring-up]Modify Sleep mode driver
* .*: update for USB suspend IT test
*
* 05 29 2013 barry.hong
* [MOLY00021294] [MT6290 Bring-up]6290 WDT driver update
* .update 6290 WDT driver
*
* 05 09 2013 barry.hong
* [MOLY00021294] [MT6290 Bring-up]6290 WDT driver update
* .*:
* 1.Add drv_rstctl_wd_clrCnt API to clear WD CNT
* 2.Modify drv_rstctl_wd_rst_set_bitmap for U2 suspend wakeup not reset APCLK request
*
* 05 02 2013 barry.hong
* [MOLY00021294] [MT6290 Bring-up]6290 WDT driver update
* .change g_ABNORMAL_RST_VAL define to WDT_RSTINTERVAL_VALUE
*
* 03 08 2013 barry.hong
* [MOLY00011608] MT6290 MOLY fake API remove
* .remove fakeAPI
*
* 02 04 2013 barry.hong
* [MOLY00009902] MT7208 rename
* MT7208 rename to MT6290.
*
* 11 20 2012 barry.hong
* [MOLY00006416] Update Driver for MT6290 FPGA 20121105_MD_a4_b12_cx
* .merge TATAKA driver to MOLY
****************************************************************************/
#include "drv_features_wdt.h"
#include "drv_comm.h"
#include "rstctl_reg.h"
#include "drv_rstctl.h"
#include "intrCtrl.h"
#include "us_timer.h"
#include "dcl.h"
#include "kal_general_types.h"
#include "kal_public_api.h"
#include "kal_hrt_api.h"
#include "ex_public.h" /*Include this header file for register BBreg dump*/
#include "kal_internal_api.h"
#if defined(ATEST_ENABLE)
#include "drvtest_sm.h"
#endif
#if !defined(DRV_RSTCTL_OFF)
extern kal_uint32 *WDT_SET_KICKBIT_BASE;
extern kal_uint32 *WDT_SET_CHECKBIT_BASE;
extern kal_uint32 *WDT_CLR_CHECKBIT_BASE;
//extern void MIPSGIC_LOCAL_IRQMask(LOCAL_IRQ_T irq);
/*Global vaialbe for BBreg dump*/
#if defined(__MTK_TARGET__)
EX_BBREG_DUMP Pcore_RGU_dump;
const kal_uint32 Pcore_RGU_dump_regions[] = {
BASE_ADDR_MDRSTCTL, 0x0360, 4,
};
#endif
#define UT_DELAY_LOOP(n) \
do{ \
volatile register kal_uint32 _delay_loop; \
for(_delay_loop = 0; _delay_loop < n; _delay_loop++) { ; } \
}while(0)
#define _RESET_ITEM_REGs(reg, item_r, waitLoopCnt) do { \
{\
DRV_WriteReg32(reg, (item_r));\
DRV_WriteReg32(REG_MDRSTCTL_SRCMR, RSTCTL_SRCMR_KEY_SWRST);\
UT_DELAY_LOOP(waitLoopCnt);\
DRV_WriteReg32(reg, 0);\
DRV_WriteReg32(REG_MDRSTCTL_SRCMR, RSTCTL_SRCMR_KEY_SWRST);\
}\
} while(0)
/*****************************************************************************
* Global/External Variable *
*****************************************************************************/
const kal_uint32 g_WATCHDOG_RESTART_REG = REG_MDRSTCTL_WDTRR; //Externally referenced somewhere
const kal_uint32 g_WATCHDOG_CTL_REG = REG_MDRSTCTL_WDTCR;
#if defined (ATEST_ENABLE)
const kal_uint32 g_WATCHDOG_RESTART_VALUE = (RSTCTL_WDTRR_WDT_RESTART); //Disable Restart function for DRVTEST.
#else
const kal_uint32 g_WATCHDOG_RESTART_VALUE = (RSTCTL_WDTRR_KEY | RSTCTL_WDTRR_WDT_RESTART); //Externally referenced somewhere
#endif
const kal_uint32 g_ABNORMAL_RST_REG = REG_MDRSTCTL_WDTIR;
const kal_uint32 g_ABNORMAL_RST_REG_AUX = REG_MDRSTCTL_WDTIR_AUX;
const kal_uint32 g_ABNORMAL_RST_VAL = WDT_RSTINTERVAL_VALUE;
const kal_uint32 g_ABNORMAL_RST_VAL_AUX = WDT_RSTINTERVAL_VALUE2;
void _rst_clrSwRstStatus(kal_uint32 reg, kal_uint32 statusMaskToClear)
{
/* If status Mask == 0 -> clear ALL */
statusMaskToClear = (statusMaskToClear)?statusMaskToClear:0xffffffff;
DRV_WriteReg32(reg, statusMaskToClear);
}
void _rst_resetIP(kal_uint32 reg, kal_uint32 item_r, kal_uint32 waitLoopCnt)
{
kal_uint32 rstStatus;
kal_uint32 timeout_cnt=0;
kal_uint32 sta_reg=0;
/* Reset IP */
_RESET_ITEM_REGs(reg, item_r,waitLoopCnt);
/* Check the status and clear it */
switch (reg)
{
case REG_MDRSTCTL_SRBER_MDSYS:
sta_reg = (REG_MDRSTCTL_SRSTR_MDSYS);
break;
//For Yts's reset CLDMA
case REG_APRSTCTL_SRBER_APINFRA:
sta_reg = (REG_APRSTCTL_SRSTR_APINFRA);
break;
case REG_APRSTCTL_SRBER_APPERI:
sta_reg = (REG_APRSTCTL_SRSTR_APPERI);
break;
default:
ASSERT(0); /*To prevent undefined status register address returned by default case.*/
break;
}
rstStatus = (DRV_Reg32(sta_reg)&item_r);
while((item_r != rstStatus) && timeout_cnt<10000)
{
rstStatus = DRV_Reg32(sta_reg);
timeout_cnt++;
};
ASSERT(timeout_cnt<10000);
ASSERT(item_r == rstStatus);
_rst_clrSwRstStatus(sta_reg, item_r);
}
/**
* @brief Procedure for software triggered reset process
* This procedure triggers software watchdog reset and wait for its completeness
* Note: It needs less than 1T(32k) (eaxtly 1T-2*bus clock period) to do reset after WDTSR changes
*/
static void _rst_swWdReset(void)
{
DRV_WriteReg32(REG_MDRSTCTL_WDTER_MDSYS, 0xBFFFFFFF);
/* Always clear indication bits before reset */
DRV_WriteReg32(REG_MDRSTCTL_WDTSR,(RSTCTL_WDTSR_KEY)|(RSTCTL_WDTSR_STATUS_MASK << RSTCTL_WDTSR_STATUS_OFFSET));
/* Trigger watchdog reset immediately : We use software reset */
DRV_WriteReg32(REG_MDRSTCTL_SRCMR_SWDT, RSTCTL_SRCMR_KEY_SWDT);
DRV_Reg32(REG_MDRSTCTL_SRCMR_SWDT); /* Read the value of RSTCTL_SRCMR back to make sure the previous write operation is done */
while ((DRV_Reg32(REG_MDRSTCTL_WDTSR) & (RSTCTL_WDTSR_STATUS_MASK<<RSTCTL_WDTSR_STATUS_OFFSET)) == 0);
/*If irq_en not set, just while(1) to wait reset happen */
if(!(DRV_Reg32(REG_MDRSTCTL_WDTCR) & RSTCTL_WDTCR_WDT_IRQEN))
{
#if defined(ATEST_ENABLE)
dbg_print("[%s]Emulation of WHILE(1) for IRQEN not set.\r\n", __FUNCTION__);
#else
while(1);
#endif
}
}
static void _rst_swWdReset_aux(void)
{
DRV_WriteReg32(REG_MDRSTCTL_WDTER_MDSYS, 0xBFFFFFFF);
/* Always clear indication bits before reset */
DRV_WriteReg32(REG_MDRSTCTL_WDTSR,(RSTCTL_WDTSR_KEY)|(RSTCTL_WDTSR_AUX_STATUS_MASK<<RSTCTL_WDTSR_AUX_STS_CLR_OFFSET));
/* Trigger watchdog reset immediately : We use software reset */
DRV_WriteReg32(REG_MDRSTCTL_SRCMR_SWDT, RSTCTL_AUX_SRCMR_KEY_SWDT);
DRV_Reg32(REG_MDRSTCTL_SRCMR_SWDT); /* Read the value of RSTCTL_SRCMR back to make sure the previous write operation is done */
while ((DRV_Reg32(REG_MDRSTCTL_WDTSR) & (RSTCTL_WDTSR_AUX_STATUS_MASK<<RSTCTL_WDTSR_AUX_STATUS_OFFSET)) == 0);
if(!(DRV_Reg32(REG_MDRSTCTL_WDTCR) & RSTCTL_WDTCR_AUX_WDT_IRQEN))
{
#if defined(ATEST_ENABLE)
dbg_print("[%s]Do nothing if IRQEN is not set.\r\n", __FUNCTION__);
#endif
}
}
#if !defined(DRV_WDT_SWRST)
static void _rst_restartWDT(void)
{
/* Simply reload watchdog counter */
DRV_WriteReg32(REG_MDRSTCTL_WDTRR, RSTCTL_WDTRR_KEY | RSTCTL_WDTRR_WDT_RESTART);
}
#endif
void _rst_enableWdt(kal_uint32 wdtEnable, kal_uint32 wdtInterval)
{
if (wdtEnable)
{
/* Set watchdog interval */
DRV_WriteReg32(REG_MDRSTCTL_WDTIR,
((RSTCTL_WDTIR_KEY)|
((wdtInterval & RSTCTL_WDTIR_INTERVAL_MASK) << RSTCTL_WDTIR_INTERVAL_OFFSET)));
/* Enable/disable watchdog */
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) |((DRV_Reg32(REG_MDRSTCTL_WDTCR))|RSTCTL_WDTCR_WDT_EN));
DRV_WriteReg32(REG_MDRSTCTL_WDTRR,((RSTCTL_WDTRR_KEY)|0x1));
}
else
{
/* Just simply set WDTCR for WDT disabling operation */
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) |((DRV_Reg32(REG_MDRSTCTL_WDTCR))&(~RSTCTL_WDTCR_WDT_EN)));
}
}
void _rst_enableWdt_aux(kal_uint32 wdtEnable, kal_uint32 wdtInterval)
{
if (wdtEnable)
{
/* Set watchdog interval */
DRV_WriteReg32(REG_MDRSTCTL_WDTIR_AUX,
((RSTCTL_WDTIR_AUX_KEY)|
((wdtInterval & RSTCTL_WDTIR_INTERVAL_MASK) << RSTCTL_WDTIR_INTERVAL_OFFSET)));
/* Enable/disable watchdog */
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) |((DRV_Reg32(REG_MDRSTCTL_WDTCR))|RSTCTL_WDTCR_AUX_WDT_EN));
DRV_WriteReg32(REG_MDRSTCTL_WDTRR,((RSTCTL_WDTRR_KEY)|0x1));
}
else
{
/* Just simply set WDTCR for WDT disabling operation */
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) |((DRV_Reg32(REG_MDRSTCTL_WDTCR))&(~RSTCTL_WDTCR_AUX_WDT_EN)));
}
}
/*************************************************************************
* FUNCTION
* Get_WATCHDOG_BASE
*
* DESCRIPTION
* This function is to get restart wd timer base address
*
* PARAMETERS
* none
*
* RETURN VALUES
* wd timer kick base address
*
*************************************************************************/
kal_uint32 Get_WATCHDOG_BASE()
{
return (REG_MDRSTCTL_KICK_BIT_SET);
}
/*************************************************************************
* FUNCTION
* Get_WATCHDOG_RESTART_CMD
*
* DESCRIPTION
* This function is to get restart wd timer key
*
* PARAMETERS
* none
*
* RETURN VALUES
* wd timer kick command key
*
*************************************************************************/
kal_uint32 Get_WATCHDOG_RESTART_CMD()
{
kal_uint32 vpe_id;
vpe_id = (kal_uint32) kal_get_current_vpe_id();
#if defined (ATEST_ENABLE)
return (0x1 << vpe_id); //For drvtest, do not return WDTRR Key to prevent the test.
#else
return (((RSTCTL_MD_CHECK_AND_KICK_KEY + vpe_id) << RSTCTL_MD_CHECK_AND_KICK_KEY_OFFSET) | (0x1 << vpe_id));
#endif
}
void drv_rstctl_wd_disable(void)
{
/* Just simply set WDTCR for WDT disabling operation */
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) |((DRV_Reg32(REG_MDRSTCTL_WDTCR))&(~RSTCTL_WDTCR_WDT_EN)));
}
void drv_rstctl_wd_disable_aux(void)
{
/* Just simply set WDTCR for WDT2 disabling operation */
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) |((DRV_Reg32(REG_MDRSTCTL_WDTCR))&(~RSTCTL_WDTCR_AUX_WDT_EN)));
}
kal_bool drv_rstctl_disable_all_WDTs(void)
{
drv_rstctl_wd_disable();
drv_rstctl_wd_disable_aux();
kal_uint32 timeout_count = 0;
while((((DRV_Reg32(REG_MDRSTCTL_WDTCR) & RSTCTL_WDTCR_AUX_WDT_EN)!=0) || ((DRV_Reg32(REG_MDRSTCTL_WDTCR) & RSTCTL_WDTCR_WDT_EN)!=0)) && (timeout_count < 10000))
timeout_count++;
if (timeout_count == 10000)
{
#if defined(ATEST_ENABLE)
dbg_print("ASSERT (RGU): <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__); //This case should not happen.
#endif
return KAL_FALSE;
}
else
return KAL_TRUE;
}
/*************************************************************************
* FUNCTION
* drv_rstctl_wdt_enable
*
* DESCRIPTION
* This function is used to on/off wd timer
*
* PARAMETERS
* none
*
* RETURN VALUES
* none
*
* NOTE
* Need to restart wdt timer to apply this value
*************************************************************************/
void drv_rstctl_wdt_enable(kal_bool en)
{
if (en == KAL_TRUE)
{
#if !defined(__WDT_DISABLE_BY_MD_DBG__)
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) |((DRV_Reg32(REG_MDRSTCTL_WDTCR))|RSTCTL_WDTCR_WDT_EN));
/*Reload wdt interval*/
DRV_WriteReg32(REG_MDRSTCTL_WDTRR, RSTCTL_WDTRR_KEY | RSTCTL_WDTRR_WDT_RESTART);
#endif
}
else
{
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) |((DRV_Reg32(REG_MDRSTCTL_WDTCR))&(~RSTCTL_WDTCR_WDT_EN)));
}
}
void drv_rstctl_wdt_enable_aux(kal_bool en)
{
if (en == KAL_TRUE)
{
#if defined(MT6297) ||defined(MERCURY)//apollo ENG/USER LOAD enable WDT
#if !defined(__WDT_DISABLE_BY_MD_DBG__)
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) |((DRV_Reg32(REG_MDRSTCTL_WDTCR))|RSTCTL_WDTCR_AUX_WDT_EN));
/*Reload wdt interval*/
DRV_WriteReg32(REG_MDRSTCTL_WDTRR, RSTCTL_WDTRR_KEY | RSTCTL_WDTRR_WDT_RESTART);
#endif
#else//PETRUS ENG load not enable WDT
#if defined(__PRODUCTION_RELEASE__) && !defined(__WDT_DISABLE_BY_MD_DBG__)
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) |((DRV_Reg32(REG_MDRSTCTL_WDTCR))|RSTCTL_WDTCR_AUX_WDT_EN));
/*Reload wdt interval*/
DRV_WriteReg32(REG_MDRSTCTL_WDTRR, RSTCTL_WDTRR_KEY | RSTCTL_WDTRR_WDT_RESTART);
#endif
#endif
}
else
{
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) |((DRV_Reg32(REG_MDRSTCTL_WDTCR))&(~RSTCTL_WDTCR_AUX_WDT_EN)));
}
}
/*************************************************************************
* FUNCTION
* drv_rstctl_wdt_enableInterrupt
*
* DESCRIPTION
* This function is used to on/off irq mode
* reset or trigger interrupt while watchdog timout happening
*
* PARAMETERS
* none
*
* RETURN VALUES
* none
*
*************************************************************************/
void drv_rstctl_wdt_enableInterrupt(kal_bool enable)
{
if (enable == KAL_TRUE)
{
DRV_WriteReg32(REG_MDRSTCTL_WDTCR,(RSTCTL_WDTCR_KEY)|((DRV_Reg32(REG_MDRSTCTL_WDTCR)) | RSTCTL_WDTCR_WDT_IRQEN));
}
else
{
DRV_WriteReg32(REG_MDRSTCTL_WDTCR,(RSTCTL_WDTCR_KEY)|((DRV_Reg32(REG_MDRSTCTL_WDTCR)) & (~RSTCTL_WDTCR_WDT_IRQEN)));
}
}
void drv_rstctl_wdt_enableInterrupt_aux(kal_bool enable)
{
if (enable == KAL_TRUE)
{
DRV_WriteReg32(REG_MDRSTCTL_WDTCR,(RSTCTL_WDTCR_KEY)|((DRV_Reg32(REG_MDRSTCTL_WDTCR)) | RSTCTL_WDTCR_AUX_WDT_IRQEN));
}
else
{
DRV_WriteReg32(REG_MDRSTCTL_WDTCR,(RSTCTL_WDTCR_KEY)|((DRV_Reg32(REG_MDRSTCTL_WDTCR)) & (~RSTCTL_WDTCR_AUX_WDT_IRQEN)));
}
}
/*************************************************************************
* FUNCTION
* drv_rstctl_wdt_setInterval
*
* DESCRIPTION
* This function is used to set wd tiemr
*
* PARAMETERS
* none
*
* RETURN VALUES
* none
*
* NOTE
* Need to restart wdt timer to apply this value
*************************************************************************/
void drv_rstctl_wdt_setInterval(kal_uint32 wdtInterval)
{
/* Set watchdog interval */
DRV_WriteReg32(REG_MDRSTCTL_WDTIR,
((RSTCTL_WDTIR_KEY)|
((wdtInterval & RSTCTL_WDTIR_INTERVAL_MASK) << RSTCTL_WDTIR_INTERVAL_OFFSET)));
}
void drv_rstctl_wdt_setInterval_aux(kal_uint32 wdtInterval)
{
/* Set watchdog interval */
DRV_WriteReg32(REG_MDRSTCTL_WDTIR_AUX,
((RSTCTL_WDTIR_AUX_KEY)|
((wdtInterval & RSTCTL_WDTIR_INTERVAL_MASK) << RSTCTL_WDTIR_INTERVAL_OFFSET)));
}
/*************************************************************************
* FUNCTION
* drv_rstctl_wd_getInterval
*
* DESCRIPTION
* This function is used to get wd timer interval(uint:T(32k))
*
* PARAMETERS
* none
*
* RETURN VALUES
* none
*************************************************************************/
kal_uint32 drv_rstctl_wd_getInterval(void)
{
return (kal_uint32)(RSTCTL_WDTIR_INTERVAL_MASK & DRV_Reg32(REG_MDRSTCTL_WDTIR));
}
kal_uint32 drv_rstctl_wd_getInterval_aux(void)
{
return (kal_uint32)(RSTCTL_WDTIR_INTERVAL_MASK & DRV_Reg32(REG_MDRSTCTL_WDTIR_AUX));
}
/*************************************************************************
* FUNCTION
* drv_rstctl_wd_clrSta
*
* DESCRIPTION
* This function is used to clear wdt status
*
* PARAMETERS
* none
*
* RETURN VALUES
* none
*************************************************************************/
void drv_rstctl_wd_clrSta(void)
{
DRV_WriteReg32(REG_MDRSTCTL_WDTSR,(RSTCTL_WDTSR_KEY)|(RSTCTL_WDTSR_STATUS_MASK<<RSTCTL_WDTSR_STS_CLR_OFFSET));
}
void drv_rstctl_wd_clrSta_aux(void)
{
DRV_WriteReg32(REG_MDRSTCTL_WDTSR,(RSTCTL_WDTSR_KEY)|(RSTCTL_WDTSR_AUX_STATUS_MASK<<RSTCTL_WDTSR_AUX_STS_CLR_OFFSET));
}
/*************************************************************************
* FUNCTION
* drv_rstctl_wd_getSta
*
* DESCRIPTION
* This function is used to get wdt status
*
* PARAMETERS
* none
*
* RETURN VALUES
* bit[7]:MD WDT2 SWDT indicator
* bit[6]:MD WDT2 HWDT indicator
* bit[2]:MD OST timer timout is triggered
* bit[1]:MD sw WD reset indicator
* bit[0]:MD hw WD reset indicator
*************************************************************************/
kal_uint32 drv_rstctl_wd_getSta(void)
{
kal_uint32 wdt_sta;
wdt_sta = DRV_Reg32(REG_MDRSTCTL_WDTSR);
return wdt_sta;
}
/*************************************************************************
* FUNCTION
* drv_rstctl_wd_kick
*
* DESCRIPTION
* This function is used to retart wd tiemr
*
* PARAMETERS
* none
*
* RETURN VALUES
* none
*************************************************************************/
void drv_rstctl_restartWDT(void)
{
#if !defined (ATEST_ENABLE)
/* Simply reload watchdog counter */
DRV_WriteReg32(REG_MDRSTCTL_WDTRR, RSTCTL_WDTRR_KEY | RSTCTL_WDTRR_WDT_RESTART);
#endif
}
void drv_rstctl_wd_rst_set_bitmap(kal_uint8 type)
{
//if (cp15_get_cpu_id() == CPU_CORTEX_R4_ID)
//originally difference
// type == 0
// do not reset ssusb
// type == 1
// do not reset usb
// But for TK6291, all these bit are out of Pcore control.
// Therefore, there is no difference for these two types.
if ((type == 0)|| (type == 1))
{
DRV_WriteReg32(REG_MDRSTCTL_WDTER_MDSYS, 0xBFFFFFFF);
}
else
{
#if defined(ATEST_ENABLE)
dbg_print("[%s]Wrong type....\r\n", __FUNCTION__);
#endif
ASSERT(0);
}
}
/*************************************************************************
* FUNCTION
* drv_rstctl_wdt_init
*
* DESCRIPTION
* This function is to initialize the WDT module
*
*
* PARAMETERS
* none
*
* RETURN VALUES
* none
*
*************************************************************************/
void drv_rstctl_wdt_init(void)
{
/*TODO: Read status bit and PC monitor for debug before clear status*/
#if !defined(ATEST_ENABLE)
drv_rstctl_wd_clrSta();
#endif
drv_rstctl_wdt_setInterval(WDT_RSTINTERVAL_VALUE);
#if defined(DRV_WDT_IRQ_MODE)
drv_rstctl_wdt_enableInterrupt(KAL_TRUE); //IRQ to MDMCU
/*TODO register IRQ and handle ISR*/
//IRQSensitivity(IRQ_MD_WDT_CODE, KAL_TRUE);
//IRQUnmask(IRQ_MD_WDT_CODE);
#endif
}
void drv_rstctl_wdt_init_aux(void)
{
/*TODO: Read status bit and PC monitor for debug before clear status*/
#if !defined(ATEST_ENABLE)
drv_rstctl_wd_clrSta_aux();
#endif
drv_rstctl_wdt_setInterval_aux(WDT_RSTINTERVAL_VALUE2);
#if defined(DRV_WDT_IRQ_MODE)
drv_rstctl_wdt_enableInterrupt_aux(KAL_TRUE); //IRQ to APMCU
#endif
}
void drv_rstctl_wd_reset(wdt_irq_e irq_en, rst_target_e wdTarget, kal_uint32 wdtInterval)
{
/* Disable WD and clear indicators*/
drv_rstctl_wd_clrSta();
if (wdTarget == RST_MDALL)
{
DRV_WriteReg32(REG_MDRSTCTL_WDTER_MDSYS, 0xBFFFFFFF);
}
else
{
//_rst_setWdTarget(wdTarget);
}
/**< Step 2 : configure WDT register to start counting */
drv_rstctl_wdt_enableInterrupt(irq_en);
if (0 != wdtInterval)
{
_rst_enableWdt(1, wdtInterval); /* Maximum interval to watchdog timeout */
//_rst_restartWDT(); /* Kick watchdog to prevent from timeout */ //already done in _rst_enableWdt
}
else
{
_rst_swWdReset(); /* To trigger software watchdog reset */
}
}
void drv_rstctl_wd_reset_aux(wdt_irq_e irq_en, rst_target_e wdTarget, kal_uint32 wdtInterval)
{
/* Disable WD and clear indicators*/
drv_rstctl_wd_clrSta_aux();
if (wdTarget == RST_MDALL)
{
DRV_WriteReg32(REG_MDRSTCTL_WDTER_MDSYS, 0xBFFFFFFF);
}
else
{
//_rst_setWdTarget(wdTarget);
}
/**< Step 2 : configure WDT register to start counting */
drv_rstctl_wdt_enableInterrupt_aux(irq_en);
if (0 != wdtInterval)
{
_rst_enableWdt_aux(1, wdtInterval); /* Maximum interval to watchdog timeout */
//_rst_restartWDT(); /* Kick watchdog to prevent from timeout */ //already done in _rst_enableWdt
}
else
{
_rst_swWdReset_aux(); /* To trigger software watchdog reset */
}
}
/*************************************************************************
* FUNCTION
* drv_rstctl_sw_reset
*
* DESCRIPTION
* This function is used to do SW reset
*
* PARAMETERS
* targetIP: sw module defined in RGU
*
* RETURN VALUES
* none
*************************************************************************/
kal_bool drv_rstctl_sw_reset(rst_target_e targetIP)
{
switch (targetIP)
{
#if defined(__MD93__) // removed from gen95 & gen97
case RST_IA_LOGGER:
{_rst_resetIP(REG_MDRSTCTL_SRBER_MDSYS, RSTCTL_MDSRBER_IA_LOGGER_RST, _RST_DURATION_LOOP_DEFAULT_VALUE);break;}
case RST_USIM1:
{_rst_resetIP(REG_MDRSTCTL_SRBER_MDSYS, RSTCTL_MDSRBER_USIM1_RST, _RST_DURATION_LOOP_DEFAULT_VALUE);break;}
case RST_USIM2:
{_rst_resetIP(REG_MDRSTCTL_SRBER_MDSYS, RSTCTL_MDSRBER_USIM2_RST, _RST_DURATION_LOOP_DEFAULT_VALUE);break;}
case RST_L1SYS:
{_rst_resetIP(REG_MDRSTCTL_SRBER_MDSYS, RSTCTL_MDSRBER_L1SYS_RST, _RST_DURATION_LOOP_DEFAULT_VALUE);break;}
case RST_MML2:
{_rst_resetIP(REG_MDRSTCTL_SRBER_MDSYS, RSTCTL_MDSRBER_MML2_RST, _RST_DURATION_LOOP_DEFAULT_VALUE);break;}
case RST_MDTOPSM:
{_rst_resetIP(REG_MDRSTCTL_SRBER_MDSYS, RSTCTL_MDSRBER_MDTOPSM_RST, _RST_DURATION_LOOP_DEFAULT_VALUE);break;}
case RST_MDOST:
{_rst_resetIP(REG_MDRSTCTL_SRBER_MDSYS, RSTCTL_MDSRBER_MDOST_RST, _RST_DURATION_LOOP_DEFAULT_VALUE);break;}
#endif
case RST_MDUART0:
{_rst_resetIP(REG_MDRSTCTL_SRBER_MDSYS, RSTCTL_MDSRBER_MDUART0_RST, _RST_DURATION_LOOP_DEFAULT_VALUE);break;}
case RST_MDUART1:
{_rst_resetIP(REG_MDRSTCTL_SRBER_MDSYS, RSTCTL_MDSRBER_MDUART1_RST, _RST_DURATION_LOOP_DEFAULT_VALUE);break;}
case RST_TRACE:
{_rst_resetIP(REG_MDRSTCTL_SRBER_MDSYS, RSTCTL_MDSRBER_TRACE_RST, _RST_DURATION_LOOP_DEFAULT_VALUE);break;}
case RST_SOE:
{_rst_resetIP(REG_MDRSTCTL_SRBER_MDSYS, RSTCTL_MDSRBER_SOE_RST, _RST_DURATION_LOOP_DEFAULT_VALUE);break;}
case RST_GPT:
{_rst_resetIP(REG_MDRSTCTL_SRBER_MDSYS, RSTCTL_MDSRBER_MDGPTM_RST, _RST_DURATION_LOOP_DEFAULT_VALUE);break;}
default:
return KAL_FALSE;
break;
}
return KAL_TRUE;
}
/*************************************************************************
* FUNCTION
* drv_rstctl_wdt_reset
*
* DESCRIPTION
* This function is to do wdt reset
*
* PARAMETERS
* none
*
* RETURN VALUES
* none
*
*************************************************************************/
void drv_rstctl_wdt_reset(void)
{
#if defined(DRV_WDT_RESET_PKEY_RELEASE)
kal_uint16 powerkey_status;
#ifdef PMIC_PRESENT
if (BMT.PWRon != CHRPWRON)
{
switch(Pwrkey_Position)
{
case low_key:
powerkey_status= DRV_Reg32(KP_LOW_KEY);
break;
#if 0
/* under construction !*/
/* under construction !*/
/* under construction !*/
#endif
case high_key:
powerkey_status= DRV_Reg32(KP_HI_KEY);
break;
default:
ASSERT(0);
break;
}
if(WdtPowerKey_Pressed())
{
TargetReset = 1;
}
else
{
/*lint -e(534)*/SaveAndSetIRQMask();
drv_rstctl_wdt_setInterval(1);
_rst_restartWDT();
drv_rstctl_wdt_enable(KAL_TRUE);
while(1);
}
}
else
{
/*lint -e(534)*/SaveAndSetIRQMask();
drv_rstctl_wdt_setInterval_aux(1);
_rst_restartWDT();
drv_rstctl_wdt_enable_aux(KAL_TRUE);
while(1);
}
#else /*PMIC_PRESENT*/
/*lint -e(534)*/SaveAndSetIRQMask();
drv_rstctl_wdt_setInterval_aux(1);
_rst_restartWDT();
drv_rstctl_wdt_enable_aux(KAL_TRUE);
while(1);
#endif /*PMIC_PRESENT*/
#else /*!DRV_WDT_RESET_PKEY_RELEASE*/
kal_uint16 index;
volatile kal_uint32 trigger_time;
kal_uint32 retry_count = 0;
#if defined(DRV_RTC_REG_COMM)
DCL_HANDLE rtc_handler;
RTC_CTRL_CONFIG_PDN_BIT_T rtc_cmd_data8;
#endif /*DRV_RTC_REG_COMM*/
/*lint -e(534)*/kal_hrt_SaveAndSetIRQMask();
for(index=0;index<1000;index++);
#if defined(DRV_RTC_REG_COMM)
//RTC_Set_PDN_bits(rtc_pdn2 ,DRV_COMM_REG2_NORMAL_RESET);
rtc_handler = DclRTC_Open(DCL_RTC,FLAGS_NONE);
rtc_cmd_data8.PDNIndex = DCL_RTC_PDN2;
rtc_cmd_data8.fgConfigBit = DRV_COMM_REG2_NORMAL_RESET;
DclRTC_Control(rtc_handler, RTC_CMD_SET_PDN_BITS, (DCL_CTRL_DATA_T *)&rtc_cmd_data8); // New API with CMD & DATA
#endif /*DRV_RTC_REG_COMM*/
#if !defined(DRV_WDT_SWRST)
drv_rstctl_wdt_setInterval_aux(1);
_rst_restartWDT();
drv_rstctl_wdt_enable_aux(KAL_TRUE);
while(1);
#else
_rst_swWdReset_aux(); /* To trigger software watchdog reset */
trigger_time = ust_get_current_time();
do
{
if ((ust_get_current_time() - trigger_time) > 4000000) {
if (retry_count >= 3)
ASSERT(0);
trigger_time = ust_get_current_time();
retry_count++;
_rst_swWdReset_aux();
}
}
while(1);
#endif
#endif /*!DRV_WDT_RESET_PKEY_RELEASE*/
}
/*************************************************************************
* FUNCTION
* drv_rstctl_wdt_abnReset
*
* DESCRIPTION
* This function is used to do abnormal reset
*
* PARAMETERS
* none
*
* RETURN VALUES
* none
*
*************************************************************************/
void drv_rstctl_wdt_abnReset(void)
{
kal_uint32 trigger_time;
/*TODO: Need to check using sw wdt trigger instead of using hw wdt timeout*/
#if !defined(ATEST_ENABLE)
kal_hrt_SaveAndSetIRQMask();
#endif
_rst_swWdReset_aux();
trigger_time = ust_get_current_time();
do
{
ASSERT((ust_get_current_time() - trigger_time) < 60000000); //Check AP reset MD exceed 4s
}
while(1);
}
/*************************************************************************
* FUNCTION
* drv_rstctl_wdt_enableDebugMode
*
* DESCRIPTION
* This function is used to on/off debug mode
*
* PARAMETERS
* enable
* 0: disable
* 1: enable
*
* RETURN VALUES
* none
*************************************************************************/
void drv_rstctl_wdt_enableDebugMode(kal_bool enable)
{
if (enable==KAL_TRUE)
{
IRQUnmask(IRQ_MDWDT_CODE);
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) | ((DRV_Reg32(REG_MDRSTCTL_WDTCR))| (RSTCTL_WDTCR_WDT_EN | RSTCTL_WDTCR_WDT_IRQEN)));
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) | ((DRV_Reg32(REG_MDRSTCTL_WDTCR))| (RSTCTL_WDTCR_AUX_WDT_EN | RSTCTL_WDTCR_AUX_WDT_IRQEN)));
}
else
{
IRQMask(IRQ_MDWDT_CODE);
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) | ((DRV_Reg32(REG_MDRSTCTL_WDTCR)) & ~(RSTCTL_WDTCR_WDT_EN | RSTCTL_WDTCR_WDT_IRQEN)));
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, (RSTCTL_WDTCR_KEY) | ((DRV_Reg32(REG_MDRSTCTL_WDTCR)) & ~(RSTCTL_WDTCR_AUX_WDT_EN | RSTCTL_WDTCR_AUX_WDT_IRQEN)));
}
}
void drv_rstctl_set_check_bit(vpeid_e vpe)
{
DRV_WriteReg32(REG_MDRSTCTL_CHECK_BIT_SET, ((RSTCTL_MD_CHECK_AND_KICK_KEY + vpe) << RSTCTL_MD_CHECK_AND_KICK_KEY_OFFSET) | (0x1 << vpe));
}
void drv_rstctl_clr_check_bit(vpeid_e vpe)
{
DRV_WriteReg32(REG_MDRSTCTL_CHECK_BIT_CLR, ((RSTCTL_MD_CHECK_AND_KICK_KEY + vpe) << RSTCTL_MD_CHECK_AND_KICK_KEY_OFFSET) | (0x1 << vpe));
}
void drv_rstctl_set_kick_bit(vpeid_e vpe)
{
DRV_WriteReg32(REG_MDRSTCTL_KICK_BIT_SET, ((RSTCTL_MD_CHECK_AND_KICK_KEY + vpe) << RSTCTL_MD_CHECK_AND_KICK_KEY_OFFSET) | (0x1 << vpe));
}
void drv_rstctl_clr_kick_bit(vpeid_e vpe)
{
DRV_WriteReg32(REG_MDRSTCTL_KICK_BIT_CLR, ((RSTCTL_MD_CHECK_AND_KICK_KEY + vpe) << RSTCTL_MD_CHECK_AND_KICK_KEY_OFFSET) | (0x1 << vpe));
}
kal_uint32 drv_rstctl_get_check_sts(void)
{
return DRV_Reg32(REG_MDRSTCTL_CHECK_BIT_STS);
}
kal_uint32 drv_rstctl_get_kick_sts(void)
{
return DRV_Reg32(REG_MDRSTCTL_KICK_BIT_STS);
}
/*************************************************************************
* FUNCTION
* WDT_init
*
* DESCRIPTION
* This function is to initialize the WDT module
*
* PARAMETERS
* none
*
* RETURN VALUES
* none
*
*************************************************************************/
void WDT_init(void)
{
static DCL_HANDLE wdt_handle;
WDT_SET_KICKBIT_BASE = (kal_uint32*)REG_MDRSTCTL_KICK_BIT_SET;
WDT_SET_CHECKBIT_BASE = (kal_uint32*)REG_MDRSTCTL_CHECK_BIT_SET;
WDT_CLR_CHECKBIT_BASE = (kal_uint32*)REG_MDRSTCTL_CHECK_BIT_CLR;
drv_rstctl_wdt_init();
drv_rstctl_wdt_init_aux();
//set check bit for all vpes
vpeid_e vpe_id;
for(vpe_id=0 ; vpe_id<VPE_NUM; vpe_id++)
drv_rstctl_set_check_bit(vpe_id);
drv_rstctl_restartWDT();
wdt_handle = DclWDT_Open(DCL_WDT, 0);
if(STATUS_OK !=DclWDT_RegisterCallback(wdt_handle,EVENT_WDT_TIMEOUT, NULL))
{
ASSERT(0);
}
if (STATUS_OK != DclWDT_Close(wdt_handle))
{
ASSERT(0);
}
#if defined(__MTK_TARGET__)
/*Begin : Register BB_Reg DUMP*/
Pcore_RGU_dump.regions = (kal_uint32*)Pcore_RGU_dump_regions;
Pcore_RGU_dump.num = sizeof(Pcore_RGU_dump_regions) / (sizeof(kal_uint32) * 3);
Pcore_RGU_dump.bbreg_dump_callback = NULL;
EX_REGISTER_BBREG_DUMP(&Pcore_RGU_dump);
/*End : Register BB_Reg DUMP*/
#endif
}
/*************************************************************************
* FUNCTION
* Is_WDT_Init
*
* DESCRIPTION
* Check WD timer is set to system default value already or not
*
* PARAMETERS
* none
*
* RETURN VALUES
* TRUE: already set
* FALSE: not yet
*
*************************************************************************/
kal_bool Is_WDT_Init()// for ex_item.c
{
//**Actually, this function is used to check if abnormal reset happened in reset mode
//WDT_interval is at WDT reset field in Elbrus, so we ckeck WDTSR
if((DRV_Reg32(REG_MDRSTCTL_WDTSR) != 0) || (drv_rstctl_wd_getInterval() == WDT_RSTINTERVAL_VALUE))
return KAL_TRUE;
else
return KAL_FALSE;
}
void wdt_enable(kal_bool en)
{
drv_rstctl_wdt_enable(en);
drv_rstctl_wdt_enable_aux(en);
}
void mips_isr_mdwdt_handler(void)
{
kal_uint32 check_sts = drv_rstctl_get_check_sts();
kal_uint32 kick_sts = drv_rstctl_get_kick_sts();
kal_uint32 error_code2 = (check_sts ^ kick_sts) & check_sts;
#if defined(ATEST_ENABLE)
dbg_print("[%s] handling mdwdt irq\r\n", __FUNCTION__);
dbg_print("[%s] Issuing fatale error(KAL_ERROR_L1CORE_HW_WDT_TIMEOUT_EXCP, code2=%x). \r\n", __FUNCTION__, error_code2);
#endif
kal_fatal_error_handler(KAL_ERROR_L1CORE_HW_WDT_TIMEOUT_EXCP, error_code2);
}
void invalidate_WDTBASE(void)
{
WDT_SET_KICKBIT_BASE = (kal_uint32*)REG_MDRSTCTL_WDT_DUMMY;
}
#if defined(ATEST_ENABLE)
#define RGU_RESET_UT_RESULT_OFFSET (31) //UT result is used to determine if next iteration should proceed.
#define RGU_RESET_UT_RESULT_MASK (0x80000000)
#define RGU_RESET_SCOPE_OFFSET (29)
#define RGU_RESET_SCOPE_MASK (0x60000000)
#define RGU_FRMWRK_PARAMETER_OFFSET (27) //Parameter let the counter-part know what the triger source is.
#define RGU_FRMWRK_PARAMETER_MASK (0x18000000)
#define RGU_SCOPE_TO_CLEAR_STATE_OFFSET (25)
#define RGU_SCOPE_TO_CLEAR_STATE_MASK (0x06000000) //For IPs that could not software reset during testing, reset the system to clear corresponding state.
#define RGU_API_CALL_ACCUMULATOR_OFFSET (8)
#define RGU_API_CALL_ACCUMULATOR_MASK (0x01ffff00)
#define RSTCTL_APWDTCR_WDT_IRQEN (1 << 3)
#define RSTCTL_APWDTCR_WDT_SPD_UP (1 << 15)
#define RSTCTL_APWDTCR_KEY (0x55 << 24)
#define RSTCTL_APWDTRR_KEY ((0x7208 << 16)| 1)
#define RSTCTL_APWDTCR_WDT_EN (1 << 0)
#define RSTCTL_APWDTIR_KEY (0x67 << 24)
#define RSTCTL_APWDTIR_INTERVAL_MASK (0x3Fffff)
#define RSTCTL_APWDTSR_STATUS_MASK 0x07
#define RSTCTL_APWDTSR_STS_CLR_MASK 0X07 // CLR_AP_OSTT_STS(bit5), CLR_AP_SWDT_STS(bit4), CLR_AP_HWDT_STS(bit3)
#define RSTCTL_APWDTSR_STS_CLR_OFFSET 3
#define RSTCTL_APWDTSR_CNT_CLR_MASK 0x03 // CLR_AP_SW_WDT_CNT (bit7), CLR_AP_HW_WDT_CNT (bit6)
#define RSTCTL_APWDTSR_CNT_CLR_OFFSET 6
#define RSTCTL_APWDTSR_SW_WDT_CNT_MASK 0XFF
#define RSTCTL_APWDTSR_SW_WDT_CNT_OFFSET 16
#define RSTCTL_APWDTSR_HW_WDT_CNT_MASK 0XFF
#define RSTCTL_APWDTSR_HW_WDT_CNT_OFFSET 8
#define RSTCTL_APWDTSR_KEY (0x76 << 24)
#define RSTCTL_APWDTSR_HWDT_STS (1 << 0)
#define RSTCTL_APWDTSR_SWDT_STS (1 << 1)
#define RSTCTL_APWDTSR_OSTT_STS (1 << 2)
#define RSTCTL_APWDTSR_MD1_STATUS_MASK (0x01) /* MD1_WDT_STS(bit0): WDT_IRQ fired && ! AP_AUTO_RST */
#define RSTCTL_APWDTSR_MD1_STATUS_OFFSET (0)
#define RSTCTL_APWDTSR_MD1_KEY (0x7663 << 16)
#define RSTCTL_APWDTSR_MD1_STS_CLR_MASK (0X01) /* CLR_MD1_WDT_STS(bit1) */
#define RSTCTL_APWDTSR_MD1_STS_CLR_OFFSET (1)
#define RSTCTL_APMDWDTCFG_MD1_KEY (0X2555 << 16)
#define RSTCTL_APMDWDTCFG_MD1_WDT_LV_EN_MD1 (1 << 0)
typedef enum
{
SOFTWARE_RESET = 0, //Software reset target IP
WHOLE_SYSTEM_RESET, //Trigger source: APRGU
AP_SOFTWARE_RESET_MD, //Trigger source: MDRGU
RGU_RESET_SCOPE_END //The last used to distinguish the end of framewor.
}RGU_reset_scope_e;
extern kal_bool UART_CheckTxAllSentOut(UART_PORT port);
kal_uint32 wdt_lisr_vpe_flag = 0;
void _rst_wdt_lisr(){
kal_uint32 count = 0;
if(kal_get_current_vpe_id()%2)
kal_hrt_SaveAndSetIRQMask();
else
SaveAndSetIRQMask();
if (kal_get_current_vpe_id() == 0) {
/* Wait other VPEs */
//while(kal_atomic_read(&wdt_lisr_vpe_flag) < 3);
/* Trigger SWDT to AP */
DRV_WriteReg32(REG_MDRSTCTL_SRCMR_SWDT,RSTCTL_AUX_SRCMR_KEY_SWDT);
do {
count++;
if (count%50000 == 0)
/* Trigger SWDT to AP again */
DRV_WriteReg32(REG_MDRSTCTL_SRCMR_SWDT,RSTCTL_AUX_SRCMR_KEY_SWDT);
} while(1);
} else {
kal_atomic_inc(&wdt_lisr_vpe_flag);
while(1);
}
}
void _rst_register_lisr(){
IRQ_Register_LISR(IRQ_MDWDT_CODE, _rst_wdt_lisr, "DCL WDT LISR");
IRQSensitivity(IRQ_MDWDT_CODE,KAL_TRUE);
IRQUnmask(IRQ_MDWDT_CODE);
}
#if !defined(RSTCTL_FPGA_PLAT)
#if !defined(BASE_MADDR_TOP_RGU)
#define BASE_MADDR_TOP_RGU (0xC0007000)
#endif
#define REG_TOPRGU_MODE (BASE_MADDR_TOP_RGU+0x0)
#define REG_TOPRGU_SWRST (BASE_MADDR_TOP_RGU+0x14)
#define REG_TOPRGU_RETAIN (BASE_MADDR_TOP_RGU+0x20)
#define REG_TOPRGU_DUMMY (BASE_MADDR_TOP_RGU + 0x20)
#define REG_TOPRGU_LENGTH (BASE_MADDR_TOP_RGU + 0x04)
#define REG_TOPRGU_RESTART (BASE_MADDR_TOP_RGU+0x08)
#if 1
void _rst_set_system_ready_sts(kal_uint32 system, kal_uint32 system_coverage)
{
kal_uint32 current_val;
if ((system & system_coverage)== 0)
{
dbg_print("%s: system out of system coverage\n\r", __FUNCTION__);
ASSERT(0);
}
//Add switch case to prevent race condition
switch (system)
{
case APSYS: //is the first one to enable ready status.
//no need to wait.
dbg_print("Setting MDRGU WDT DUMMY ....\r\n");
break;
case MD1SYS: //is the second one to enable ready status.
dbg_print("Wait for (APSYS) APRGU WDT DUMMY write ready...\r\n");
while((DRV_Reg32(REG_MDRSTCTL_WDT_DUMMY) & (APSYS))!= (APSYS & system_coverage));
break;
}
current_val = DRV_Reg32(REG_MDRSTCTL_WDT_DUMMY) | system;
DRV_WriteReg32(REG_MDRSTCTL_WDT_DUMMY, current_val);
dbg_print("After writing ready status, REG_APRSTCTL_WDT_DUMMY = 0x%x\r\n", DRV_Reg32(REG_APRSTCTL_WDT_DUMMY));
}
void _rst_clr_system_ready_sts(kal_uint32 system)
{
kal_uint32 current_val;
if ((system & (APSYS | MD1SYS))== 0)
{
dbg_print("%s: system out of coverage\n\r", __FUNCTION__);
ASSERT(0);
}
current_val = DRV_Reg32(REG_MDRSTCTL_WDT_DUMMY) & ~(system);
DRV_WriteReg32(REG_MDRSTCTL_WDT_DUMMY, current_val);
}
kal_uint32 _rst_get_system_ready_sts(void)
{
return (DRV_Reg32(REG_MDRSTCTL_WDT_DUMMY));
}
#endif
kal_uint32 _rst_get_this_reset_scope(void)
{
kal_uint32 this_reset_scope;
this_reset_scope = (DRV_Reg32(REG_TOPRGU_RETAIN) & RGU_RESET_SCOPE_MASK) >> RGU_RESET_SCOPE_OFFSET;
return this_reset_scope;
}
void _rst_set_next_reset_scope(kal_uint32 next_reset_scope)
{
kal_uint32 dummy_content;
dummy_content = (DRV_Reg32(REG_TOPRGU_RETAIN) & (~RGU_RESET_SCOPE_MASK)) | (next_reset_scope << RGU_RESET_SCOPE_OFFSET);
DRV_WriteReg32(REG_TOPRGU_RETAIN, dummy_content);
}
void _rst_set_rgu_frmwrk_parameter(kal_uint32 content)
{
kal_uint32 current_val;
current_val = DRV_Reg32(REG_TOPRGU_RETAIN) & (~RGU_FRMWRK_PARAMETER_MASK);
if (((content << RGU_FRMWRK_PARAMETER_OFFSET) & (~RGU_FRMWRK_PARAMETER_MASK)) > 0) //exceed the parameter range.
ASSERT(0);
else
{
current_val |= ((content << RGU_FRMWRK_PARAMETER_OFFSET) & RGU_FRMWRK_PARAMETER_MASK);
DRV_WriteReg32(REG_TOPRGU_RETAIN, current_val);
}
}
kal_uint32 _rst_get_rgu_frmwrk_parameter(void)
{
return (DRV_Reg32(REG_TOPRGU_RETAIN) & RGU_FRMWRK_PARAMETER_MASK) >> RGU_FRMWRK_PARAMETER_OFFSET;
}
void _rst_set_rgu_ut_result(kal_uint32 ut_result) //ut_result = UT_REPORT_PASS (0) or UT_REPORT_FAIL(-1).
{
kal_uint32 current_val;
current_val = DRV_Reg32(REG_TOPRGU_RETAIN) & (~RGU_RESET_UT_RESULT_MASK);
current_val |= (ut_result & RGU_RESET_UT_RESULT_MASK >> RGU_RESET_UT_RESULT_OFFSET)<<RGU_RESET_UT_RESULT_OFFSET;
DRV_WriteReg32(REG_TOPRGU_RETAIN, current_val);
}
kal_uint32 _rst_get_rgu_ut_result(void)
{
kal_uint32 current_val;
current_val = (DRV_Reg32(REG_TOPRGU_RETAIN) & RGU_RESET_UT_RESULT_MASK) >> RGU_RESET_UT_RESULT_OFFSET;
if (UT_REPORT_PASS == current_val)
return UT_REPORT_PASS;
else
return UT_REPORT_FAIL;
}
void _rst_set_rgu_scope_to_clear_state(kal_uint32 clear_scope)
{
kal_uint32 current_val;
current_val = DRV_Reg32(REG_TOPRGU_RETAIN) & (~RGU_SCOPE_TO_CLEAR_STATE_MASK) ;
current_val |= (clear_scope & (RGU_SCOPE_TO_CLEAR_STATE_MASK >> RGU_SCOPE_TO_CLEAR_STATE_OFFSET)) << RGU_SCOPE_TO_CLEAR_STATE_OFFSET;
DRV_WriteReg32(REG_TOPRGU_RETAIN, current_val);
}
kal_uint32 _rst_get_rgu_scope_to_clear_state(void)
{
return ((DRV_Reg32(REG_TOPRGU_RETAIN) & RGU_SCOPE_TO_CLEAR_STATE_MASK) >> RGU_SCOPE_TO_CLEAR_STATE_OFFSET);
}
void _rst_inc_rgu_api_call_accumulator(void)
{
kal_uint32 current_val;
current_val = (DRV_Reg32(REG_TOPRGU_RETAIN) & (~RGU_API_CALL_ACCUMULATOR_MASK));
current_val |= (((DRV_Reg32(REG_TOPRGU_RETAIN) & RGU_API_CALL_ACCUMULATOR_MASK) + (1<<RGU_API_CALL_ACCUMULATOR_OFFSET))&RGU_API_CALL_ACCUMULATOR_MASK);
DRV_WriteReg32(REG_TOPRGU_RETAIN, current_val);
}
kal_uint32 _rst_get_rgu_api_call_accumulator(void)
{
return ((DRV_Reg32(REG_TOPRGU_RETAIN) & RGU_API_CALL_ACCUMULATOR_MASK)>>RGU_API_CALL_ACCUMULATOR_OFFSET);
}
kal_bool _rst_is_system_within_converage(subsystem_e target_system, subsystem_e system_converage)
{
if ((target_system & system_converage) == target_system)
return KAL_TRUE;
else
return KAL_FALSE;
}
subsystem_e _rst_return_dominate_system(subsystem_e target_system)
{
if (APSYS == (target_system & APSYS))
return APSYS;
if (MD1SYS == (target_system & MD1SYS))
return MD1SYS;
ASSERT(0);
return 0;
}
kal_bool _rst_setup_whole_system_reset_trigger_path(void)
{
kal_bool ret_status = KAL_TRUE;
//actually, for whole system reset, it does not need to setup the trigger path.
//Set APRGU in reset mode. --> APRGU IRQ disable.
DRV_WriteReg32(REG_TOPRGU_MODE,0x22000005);
_rst_set_rgu_frmwrk_parameter(WHOLE_SYSTEM_RESET);
//make MDRSTCTL_DUMMY dirty
DRV_WriteReg32(REG_MDRSTCTL_DUMMY,0x22222222);
return ret_status;
}
kal_bool _rst_trigger_whole_system_reset(kal_uint32 delay_cycles)
{
kal_bool ret_status = KAL_TRUE;
_rst_setup_whole_system_reset_trigger_path(); //Set APRGU in reset mode.
//for this case, we need to trigger reset in APRGU.
if (0 < delay_cycles)
{
//set toprgu timeout interval
DRV_WriteReg32(REG_TOPRGU_LENGTH,0x8|(delay_cycles << 5)); //one delay cycle equals to 15.6ms
DRV_WriteReg32(REG_TOPRGU_RESTART,0x1971);
}
else //trigger software WDT
{
//swwdt will not work if not restart
DRV_WriteReg32(REG_TOPRGU_RESTART,0x1971);
UT_DELAY_LOOP(_RST_DURATION_LOOP_DEFAULT_VALUE);
//trigger TOPRGU SWDT reset
DRV_WriteReg32(REG_TOPRGU_SWRST,0x00001209);
}
return ret_status;
}
kal_bool _rst_is_whole_system_reset_triggered()
{
if ((WHOLE_SYSTEM_RESET == _rst_get_rgu_frmwrk_parameter()) && (0 == DRV_Reg32(REG_MDRSTCTL_DUMMY)))
{
dbg_print("Whole system reset is triggered\r\n");
return KAL_TRUE;
}
else
return KAL_FALSE;
}
kal_bool _rst_clear_whole_system_reset_status(void)
{
DRV_WriteReg32(REG_TOPRGU_MODE,0x22000000);
_rst_set_rgu_frmwrk_parameter(0);
return KAL_FALSE;
}
kal_bool md_rst_trigger_flag = KAL_FALSE;
kal_bool _rst_setup_ap_software_reset_trigger_path(void)
{
kal_bool ret_status = KAL_TRUE;
kal_uint32 current_val;
md_rst_trigger_flag = KAL_TRUE;
_rst_set_rgu_frmwrk_parameter(AP_SOFTWARE_RESET_MD);
//Set the path from MDRGU to APRGU. (MDRGU IRQ enable)
current_val = DRV_Reg32(REG_MDRSTCTL_WDTCR);
current_val &= ~(RSTCTL_WDTCR_WDT_SPD_UP);
current_val |= (RSTCTL_WDTCR_AUX_WDT_IRQEN);
DRV_WriteReg32(REG_MDRSTCTL_WDTCR,RSTCTL_WDTCR_KEY | current_val); //1. disable speedup. 2. Enable IRQ_EN to AP
DRV_WriteReg32(REG_MDRSTCTL_WDTER_MDSYS, 0xBFFFFFFF);
return ret_status;
}
kal_bool _rst_trigger_ap_software_reset(kal_uint32 delay_cycles)
{
kal_bool ret_status = KAL_TRUE;
kal_uint32 current_val;
_rst_setup_ap_software_reset_trigger_path(); //Set up the path to allow trigger CA7 ISR. (MDRGU: enable IRQ, APRGU: enable level )
if (0 < delay_cycles)
{
#if 0
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
#else
DRV_WriteReg32(REG_MDRSTCTL_WDTIR_AUX, RSTCTL_WDTIR_AUX_KEY | ((delay_cycles<<9) & RSTCTL_WDTIR_INTERVAL_MASK));
current_val = DRV_Reg32(REG_MDRSTCTL_WDTCR);
current_val |= RSTCTL_WDTCR_AUX_WDT_EN;
DRV_WriteReg32(REG_MDRSTCTL_WDTCR,RSTCTL_WDTCR_KEY | current_val);
DRV_WriteReg32(REG_MDRSTCTL_WDTRR, RSTCTL_WDTRR_KEY|RSTCTL_WDTRR_WDT_RESTART); //we only needs to wait for MDRGU WDT to down count the delay cycles.
#endif
}
else
{
#if 0
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
#else
DRV_WriteReg32(REG_MDRSTCTL_SRCMR_SWDT,RSTCTL_AUX_SRCMR_KEY_SWDT);
#endif
}
return ret_status;
}
kal_bool _rst_is_ap_software_reset_triggered()
{
//CHECK WDTSR (MD1_WDT_STS)
if ((AP_SOFTWARE_RESET_MD == _rst_get_rgu_frmwrk_parameter() && (!md_rst_trigger_flag)))//&&(DRV_Reg32(REG_MDRSTCTL_WDTSR) != 0))
{
dbg_print("AP software reset MD triggered by MDRGU \r\n");
return KAL_TRUE;
}
else
return KAL_FALSE;
}
kal_bool _rst_clear_ap_software_reset_status(void)
{
kal_uint32 current_val;
//Note: remember to disable WDT make sure system under control.
current_val = DRV_Reg32(REG_MDRSTCTL_WDTCR);
current_val &= ~RSTCTL_WDTCR_AUX_WDT_EN;
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, RSTCTL_WDTCR_KEY | current_val);
//clear status
DRV_WriteReg32(REG_MDRSTCTL_WDTSR,(RSTCTL_WDTSR_KEY)|(RSTCTL_WDTSR_STATUS_MASK<<RSTCTL_WDTSR_STS_CLR_OFFSET));
DRV_WriteReg32(REG_MDRSTCTL_WDTSR,(RSTCTL_WDTSR_KEY)|(RSTCTL_WDTSR_AUX_STATUS_MASK<<RSTCTL_WDTSR_AUX_STS_CLR_OFFSET));
//Clear the parameter as well.
_rst_set_rgu_frmwrk_parameter(0);
return KAL_TRUE;
}
UT_REPORT_STATUS _rst_check_ip_reset(ut_testcase_struct *testcase_ptr, kal_uint32 test_items) //Only check if reset correctly.
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
if (0 < test_items) //test_items must equals 1 at least. (test case is mandatorily located at 1st entry. )
{
dbg_print("\nCheck IP initial value: %s\n\r", (testcase_ptr)[0].description);
ut_ret_status = (testcase_ptr)[0]._main_fn(testcase_ptr[0].flags, testcase_ptr[0].para); // check initial after reset
}
else
{
dbg_print("ASSERT (RGU): <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__); //This case should not happen.
ut_ret_status = UT_REPORT_FAIL;
}
if (UT_REPORT_PASS == ut_ret_status)
dbg_print("\n\n IP initial value check: PASS \n\r");
else
dbg_print("\n\n IP initial value check: FAIL \n\r");
return ut_ret_status;
}
UT_REPORT_STATUS _rst_run_ip_ut(ut_testcase_struct *testcase_ptr, kal_uint32 test_items)
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
kal_uint32 func_idx;
if (1 < test_items)
{
for(func_idx = 1; func_idx < test_items; func_idx ++)
{
dbg_print("\nIP unit test: %s\n\r", (testcase_ptr)[func_idx].description);
ut_ret_status = (testcase_ptr)[func_idx]._main_fn(testcase_ptr[func_idx].flags, testcase_ptr[func_idx].para); // Other UTs exclude initial value check.
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
}
}
else //1. no test case. 2. check IP's initial value only (no other UTs)
{
dbg_print("ASSERT (RGU): <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__); //This case should not happen.
ut_ret_status = UT_REPORT_FAIL;
}
if (UT_REPORT_PASS == ut_ret_status)
dbg_print("\n\n IP unit test: PASS \n\r");
else
dbg_print("\n\n IP unit test: FAIL \n\r");
return ut_ret_status;
}
void _rst_prepare_for_next_rgu_it_call(subsystem_e system_coverage, UT_REPORT_STATUS ut_ret_status)
{
_rst_set_rgu_scope_to_clear_state(RGU_RESET_SCOPE_END); //For the next iteration, it is necessary to offer a clear dependent state. To distinguish framework or new iteration reset, we burry RGU_RESET_SCOPE_END.
_rst_set_next_reset_scope(SOFTWARE_RESET); //Upon all the reset scopes are tested, set the reset scope condition back to SOFTWARE_RESET.
_rst_inc_rgu_api_call_accumulator(); //Increase RGU_API_CALL accumulator to prevent executing allready tested RGU_API.
_rst_set_rgu_ut_result(ut_ret_status); //Store the ut_ret_status. If the status is UT_REPORT_FAIL, all the reset RGU_APIs will be ignored.
UT_DELAY_LOOP(_RST_DURATION_LOOP_DEFAULT_VALUE); //Wait for effective register write.
if (APSYS == (system_coverage & APSYS))
{
dbg_print("Trigger AP reset MD for next framework interation....\n\r");
_rst_trigger_ap_software_reset(0); //At the end of this API call, trigger whole systemr reset to make system ready for next API call.
while(1);
}
else //Without AP, system coverage only includes MD1SYS, L1SYS, and/or ARM7SYS.
{
dbg_print("Without AP to boot up Pcore, you need to reload code through CMM again. \n\r");
while(1);
}
}
UT_REPORT_STATUS _rst_examine_ip_through_software_reset(rst_target_e targetIP, ut_testcase_struct *testcase_ptr, kal_uint32 test_items)
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
dbg_print("\n\n\nINFO (RGU) Software reset stage: \r\n");
if (RST_NULL == targetIP) {
dbg_print("IGNORED (RGU) UT check[software reset] @ %s \r\n\n\n", __FUNCTION__);
dbg_print("****************************************\r\n");
dbg_print("^^ Software reset stage test :: IGNORED::&&\r\n");
dbg_print("****************************************\r\n");
return UT_REPORT_PASS; //Some IPs (like MEMSYS) do not tolerate software reset.
}
ut_ret_status = _rst_check_ip_reset(testcase_ptr, test_items); //Only check if power on reset correctly.
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
ut_ret_status = _rst_run_ip_ut(testcase_ptr, test_items);
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
dbg_print("PASS (RGU) UT check after bootup @ %s \r\n", __FUNCTION__);
//The softwre reset function
dbg_print("INFO (RGU) Software reset IP @ %s \r\n", __FUNCTION__);
if (KAL_FALSE == drv_rstctl_sw_reset(targetIP)) {
dbg_print("Target IP do NOT support SW reset function\r\n");
goto end;
}
ut_ret_status = _rst_check_ip_reset(testcase_ptr, test_items); //Only check if reset correctly.
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
ut_ret_status = _rst_run_ip_ut(testcase_ptr, test_items);
end:
if (UT_REPORT_FAIL == ut_ret_status)
{
dbg_print("FAIL (RGU) UT check[software reset] @ %s \r\n\n\n", __FUNCTION__);
dbg_print("****************************************\r\n");
dbg_print("^^ Software reset stage test ::FAIL::&&\r\n");
dbg_print("****************************************\r\n");
}
else
{
dbg_print("PASS (RGU) UT check[software reset] @ %s \r\n", __FUNCTION__);
dbg_print("****************************************\r\n");
dbg_print("^^ Software reset stage test ::PASS::&&\r\n");
dbg_print("****************************************\r\n");
}
return ut_ret_status;
}
UT_REPORT_STATUS _rst_examine_ip_through_whole_system_reset(subsystem_e system_converage,ut_testcase_struct *testcase_ptr, kal_uint32 test_items, kal_uint32 delay_cycles)
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
dbg_print("\n\n\nINFO (RGU) Whole system reset stage: \r\n");
if (KAL_TRUE ==_rst_is_system_within_converage(APSYS, system_converage))
{
//(1) --> UT --> (2) --> (3) --> reboot --> UT -->(4)
//1 (1)
if ((0 < delay_cycles)&&(!_rst_is_whole_system_reset_triggered()))
{
dbg_print("INFO (RGU) whole system reseting with delay cycles:%d... @ %s \r\n", delay_cycles, __FUNCTION__);
while(!UART_CheckTxAllSentOut(uart_port1)){}
_rst_trigger_whole_system_reset(delay_cycles);
}
ut_ret_status = _rst_check_ip_reset(testcase_ptr, test_items); //Only check if reset correctly.
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
ut_ret_status = _rst_run_ip_ut(testcase_ptr, test_items);
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
dbg_print("PASS (RGU) UT check after bootup @ %s \r\n", __FUNCTION__);
if ((0 < delay_cycles)&&(!_rst_is_whole_system_reset_triggered())) //reset should be triggered before UT finished
{
dbg_print("Delay cycle exceeds the UT runtime @ %s \r\n", __FUNCTION__);
while(1);
}
//1 (2)
if ((0 == delay_cycles)&&(!_rst_is_whole_system_reset_triggered()))
{
dbg_print("INFO (RGU) whole system reseting ... @ %s \r\n", __FUNCTION__);
while(!UART_CheckTxAllSentOut(uart_port1)){}
_rst_trigger_whole_system_reset(0); //whole system reset.
while(1);
}
else
dbg_print("INFO (RGU) whole system reset has been triggered @ %s \r\n", __FUNCTION__);
//1 (3)
//while(!_rst_is_whole_system_reset_triggered());
//1 (4)
_rst_clear_whole_system_reset_status();
}
else //Igrnore whole system reset.
{
dbg_print("INFO(RGU) APSYS is 'not' included in system converage. Whole system reset test is ignored. \r\n");
return UT_REPORT_PASS;
}
if (UT_REPORT_FAIL == ut_ret_status)
{
dbg_print("********************************************\r\n");
dbg_print("^^ Whole system reset stage test ::FAIL::&&\r\n");
dbg_print("********************************************\r\n");
}
else
{
dbg_print("********************************************\r\n");
dbg_print("^^ Whole system reset stage test ::PASS::&&\r\n");
dbg_print("********************************************\r\n");
}
return ut_ret_status;
}
kal_bool g_ip_sup_sw_rst = KAL_TRUE;
UT_REPORT_STATUS _rst_examine_ip_through_ap_software_reset(subsystem_e system_converage, ut_testcase_struct *testcase_ptr, kal_uint32 test_items, kal_uint32 delay_cycles, kal_bool is_core_rebooted)
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
dbg_print("\n\n\nINFO (RGU) AP software reset stage: \r\n");
//AP software reset MD requires cooperation between APSYS and MD1SYS.
if (KAL_TRUE ==_rst_is_system_within_converage(MD1SYS | APSYS, system_converage))
{
//(1) --> UT --> (2) --> (3) --> reboot --> (4) [is_core_rebooted == KAL_TRUE]
//(1) --> UT --> (2) --> (3) --> (4) --> (5) UT [is_core_rebooted == KAL_FALSE] --> Check this IP is effected by resetting other subsystem.
//1 (1)
if ((0 < delay_cycles)&&(!_rst_is_ap_software_reset_triggered()))
{
dbg_print("INFO (RGU) ap software reseting with delay cycles:%d... @ %s \r\n", delay_cycles, __FUNCTION__);
while(!UART_CheckTxAllSentOut(uart_port1)){}
_rst_trigger_ap_software_reset(delay_cycles);
}
if (_rst_is_ap_software_reset_triggered() || g_ip_sup_sw_rst)
ut_ret_status = _rst_check_ip_reset(testcase_ptr, test_items); //Only check if reset correctly.
if (UT_REPORT_FAIL == ut_ret_status) return ut_ret_status;
ut_ret_status = _rst_run_ip_ut(testcase_ptr, test_items);
if (UT_REPORT_FAIL == ut_ret_status) return ut_ret_status;
dbg_print("PASS (RGU) UT check after bootup @ %s \r\n", __FUNCTION__);
if ((0 < delay_cycles)&&(!_rst_is_ap_software_reset_triggered())) //reset should be triggered before UT finished
{
dbg_print("Delay cycle exceeds the UT runtime @ %s \r\n", __FUNCTION__);
//_rst_clear_ap_software_reset_status();
while(1);
}
//1 (2)
if ((0 == delay_cycles)&&(!_rst_is_ap_software_reset_triggered()))
{
dbg_print("INFO (RGU) ap software reseting ... @ %s \r\n", __FUNCTION__);
while(!UART_CheckTxAllSentOut(uart_port1)){}
_rst_trigger_ap_software_reset(0); //only md1sys got reboot. AP is not effected, therefore APSYS IP UT is necessary.
while(1);
}
else
dbg_print("INFO (RGU) ap software reset has been triggered @ %s \r\n", __FUNCTION__);
//dbg_print(".%s----%d\r\n", __FUNCTION__, i);
//1 (4)
_rst_clear_ap_software_reset_status();
if (KAL_FALSE == is_core_rebooted)
{
//1 (5)
ut_ret_status = _rst_run_ip_ut(testcase_ptr, test_items);
}
}
else
{
dbg_print("INFO(RGU) APSYS or MD1SYS is 'not' included in system converage. AP software reset test is ignored. \r\n");
return UT_REPORT_PASS;
}
if (UT_REPORT_FAIL == ut_ret_status)
{
dbg_print("********************************************\r\n");
dbg_print("^^ AP software reset stage test ::FAIL::&&\r\n");
dbg_print("********************************************\r\n");
}
else
{
dbg_print("********************************************\r\n");
dbg_print("^^ AP software reset stage test ::PASS::&&\r\n");
dbg_print("********************************************\r\n");
}
return ut_ret_status;
}
UT_REPORT_STATUS _rst_md1sys_dominate_reset_scope(kal_bool control_load, rst_target_e targetIP,subsystem_e system_coverage, ut_testcase_struct *testcase_ptr, kal_uint32 test_items, kal_uint32 delay_cycles)
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
kal_uint32 reset_scope_idx;
dbg_print("Dominate RGU scope (%s) @ MIPS\r\n", __FUNCTION__);
if (AP_SOFTWARE_RESET_MD == _rst_get_rgu_scope_to_clear_state())
{
_rst_clear_ap_software_reset_status();
_rst_set_rgu_scope_to_clear_state(0);
}
reset_scope_idx = _rst_get_this_reset_scope();
while (reset_scope_idx < RGU_RESET_SCOPE_END)
{
dbg_print("INFO (RGU) Waiting for all cores in the system coverage ready...\n\r");
//TODO: wait system all ready
dbg_print("INFO (RGU) All cores in the system coverage are ready. \r\n");
switch (reset_scope_idx)
{
case SOFTWARE_RESET:
ut_ret_status = _rst_examine_ip_through_software_reset(targetIP, testcase_ptr, test_items);
break;
case WHOLE_SYSTEM_RESET:
ut_ret_status = _rst_examine_ip_through_whole_system_reset(system_coverage, testcase_ptr, test_items, delay_cycles);
ut_ret_status = UT_REPORT_PASS;
break;
case AP_SOFTWARE_RESET_MD:
ut_ret_status = _rst_examine_ip_through_ap_software_reset(system_coverage, testcase_ptr, test_items, delay_cycles, KAL_TRUE);
break;
default:
dbg_print("ASSERT (Dennis): <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__);
ut_ret_status = UT_REPORT_FAIL;
}
if (UT_REPORT_PASS == ut_ret_status)
{
_rst_set_next_reset_scope(reset_scope_idx + 1);
reset_scope_idx = _rst_get_this_reset_scope();
//To prevent some uncareful UT design that forgets to restore initial valu, this framework software reset the target IP before new scope test. .
dbg_print("INFO (RGU) Restore IP's original value @ %s \r\n", __FUNCTION__);
if (RST_NULL != targetIP)
g_ip_sup_sw_rst = drv_rstctl_sw_reset(targetIP);
else //Since the IP could not be reset, we need to clear the state for the next reset scope.
{
//Add AP software reset md here to create a clear state for the next reset scope.
//Add the system state clear flag for distinguishment from reset for UT test.
dbg_print("For RST_NULL, we use AP reset MD to restore IP's original value. \n\r");
while(!UART_CheckTxAllSentOut(uart_port1)){}
_rst_set_rgu_scope_to_clear_state(AP_SOFTWARE_RESET_MD);
_rst_trigger_ap_software_reset(0);
while(1);
}
}
else
{
dbg_print("ASSERT (RGU): IP UT check fail. <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__);
return ut_ret_status;
}
}
return ut_ret_status;
}
kal_uint32 g_RGU_IT_API_CALL_ACCUMULATOR = 0;
UT_REPORT_STATUS drv_UT_within_RGU_framework(rst_target_e targetIP, subsystem_e target_system, subsystem_e system_coverage,
ut_testcase_struct *testcase_ptr, kal_uint32 test_items, kal_uint32 delay_cycles)
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
_rst_register_lisr();
if(drv_rstctl_disable_all_WDTs() == KAL_FALSE)
{
dbg_print("ASSERT (RGU): Disable WDT FAIL <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__); //This case should not happen.
return UT_REPORT_FAIL;
}
g_RGU_IT_API_CALL_ACCUMULATOR ++; //Global variable used to count the number of iterations that APIs are called.
if (_rst_get_rgu_ut_result() != UT_REPORT_PASS) //The UT result of the previous iteration. If UT fails in earlier iteration, this iteration is ignored.
{ //Note: For the 1st iteration, the default value is 0. And UT_REPORT_PASS is 0 as well.
dbg_print("Checking (api_call_acc,api_passed_acc) = (%d, %d): %d\r\n", g_RGU_IT_API_CALL_ACCUMULATOR,_rst_get_rgu_api_call_accumulator(), _rst_get_rgu_ut_result());
if (g_RGU_IT_API_CALL_ACCUMULATOR == _rst_get_rgu_api_call_accumulator())
dbg_print("INFO (RGU) RGU_IT UT fail! @ drv_UT_within_RGU_framework (%d)\r\n", g_RGU_IT_API_CALL_ACCUMULATOR);
return UT_REPORT_FAIL; //If some UT fails one of early RGU_IT_API call, the reset RGU_IT_APIs are ignored.
}
dbg_print("INFO ACCUMU1:%d ; ACCUMU2:%d \r\n", g_RGU_IT_API_CALL_ACCUMULATOR, _rst_get_rgu_api_call_accumulator());
if (g_RGU_IT_API_CALL_ACCUMULATOR <= _rst_get_rgu_api_call_accumulator())
return UT_REPORT_PASS;
dbg_print("\r\n\n\n\nINFO (RGU) API call accumulator: %d; Delay cycles: %d\n\n\r", g_RGU_IT_API_CALL_ACCUMULATOR, delay_cycles);
if (KAL_FALSE == _rst_is_system_within_converage(target_system, system_coverage))
{
dbg_print("ASSERT (RGU): Target system is not included in the system coverage <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__);
return UT_REPORT_FAIL;
}
if (RGU_RESET_SCOPE_END == _rst_get_rgu_scope_to_clear_state()) //If the last whole system reset is triggered for a new iternation, the status must be cleared.
{
_rst_clear_ap_software_reset_status(); //Clear the whole system reset status.
_rst_set_rgu_scope_to_clear_state(0); //Clear the ditinguishable flag that was marked as RGU_RESET_SCOPE_END.
}
dbg_print("%s @ MIPS-iterAptiv\n\r", __FUNCTION__);
ut_ret_status = _rst_md1sys_dominate_reset_scope(KAL_TRUE, targetIP, system_coverage, testcase_ptr, test_items, delay_cycles); //Dominate the reset scope and tests the UTs.
_rst_prepare_for_next_rgu_it_call(system_coverage, ut_ret_status); //reset the system to for the next API (drv_UT_within_RGU_framework) call.
return ut_ret_status;
}
#else /* !defined(RSTCTL_FPGA_PLAT) */
void _rst_set_system_ready_sts(kal_uint32 system, kal_uint32 system_coverage)
{
kal_uint32 current_val;
if ((system & system_coverage)== 0)
{
dbg_print("%s: system out of system coverage\n\r", __FUNCTION__);
ASSERT(0);
}
//Add switch case to prevent race condition
switch (system)
{
case APSYS: //is the first one to enable ready status.
//no need to wait.
dbg_print("Setting MDRGU WDT DUMMY ....\r\n");
break;
case MD1SYS: //is the second one to enable ready status.
dbg_print("Wait for (APSYS) APRGU WDT DUMMY write ready...\r\n");
while((DRV_Reg32(REG_APRSTCTL_WDT_DUMMY) & (APSYS))!= (APSYS & system_coverage));
break;
}
current_val = DRV_Reg32(REG_APRSTCTL_WDT_DUMMY) | system;
DRV_WriteReg32(REG_APRSTCTL_WDT_DUMMY, current_val);
dbg_print("After writing ready status, REG_APRSTCTL_WDT_DUMMY = 0x%x\r\n", DRV_Reg32(REG_APRSTCTL_WDT_DUMMY));
}
void _rst_clr_system_ready_sts(kal_uint32 system)
{
kal_uint32 current_val;
if ((system & (APSYS | MD1SYS))== 0)
{
dbg_print("%s: system out of coverage\n\r", __FUNCTION__);
ASSERT(0);
}
current_val = DRV_Reg32(REG_APRSTCTL_WDT_DUMMY) & ~(system);
DRV_WriteReg32(REG_APRSTCTL_WDT_DUMMY, current_val);
}
kal_uint32 _rst_get_system_ready_sts(void)
{
return (DRV_Reg32(REG_APRSTCTL_WDT_DUMMY));
}
kal_uint32 _rst_get_this_reset_scope(void)
{
kal_uint32 this_reset_scope;
this_reset_scope = (DRV_Reg32(REG_APRSTCTL_DUMMY) & RGU_RESET_SCOPE_MASK) >> RGU_RESET_SCOPE_OFFSET;
return this_reset_scope;
}
void _rst_set_next_reset_scope(kal_uint32 next_reset_scope)
{
kal_uint32 dummy_content;
dummy_content = (DRV_Reg32(REG_APRSTCTL_DUMMY) & (~RGU_RESET_SCOPE_MASK)) | (next_reset_scope << RGU_RESET_SCOPE_OFFSET);
DRV_WriteReg32(REG_APRSTCTL_DUMMY, dummy_content);
}
void _rst_set_rgu_frmwrk_parameter(kal_uint32 content)
{
kal_uint32 current_val;
current_val = DRV_Reg32(REG_APRSTCTL_DUMMY) & (~RGU_FRMWRK_PARAMETER_MASK);
if ((content & (~RGU_FRMWRK_PARAMETER_MASK)) > 0) //exceed the parameter range.
ASSERT(0);
else
{
current_val |= ((content << RGU_FRMWRK_PARAMETER_OFFSET) & RGU_FRMWRK_PARAMETER_MASK);
DRV_WriteReg32(REG_APRSTCTL_DUMMY, current_val);
}
}
kal_uint32 _rst_get_rgu_frmwrk_parameter(void)
{
return (DRV_Reg32(REG_APRSTCTL_DUMMY) & RGU_FRMWRK_PARAMETER_MASK) >> RGU_FRMWRK_PARAMETER_OFFSET;
}
void _rst_set_rgu_ut_result(kal_uint32 ut_result) //ut_result = UT_REPORT_PASS (0) or UT_REPORT_FAIL(-1).
{
kal_uint32 current_val;
current_val = DRV_Reg32(REG_APRSTCTL_DUMMY) & (~RGU_RESET_UT_RESULT_MASK);
current_val |= (ut_result & RGU_RESET_UT_RESULT_MASK >> RGU_RESET_UT_RESULT_OFFSET)<<RGU_RESET_UT_RESULT_OFFSET;
DRV_WriteReg32(REG_APRSTCTL_DUMMY, current_val);
}
kal_uint32 _rst_get_rgu_ut_result(void)
{
kal_uint32 current_val;
current_val = (DRV_Reg32(REG_APRSTCTL_DUMMY) & RGU_RESET_UT_RESULT_MASK) >> RGU_RESET_UT_RESULT_OFFSET;
if (UT_REPORT_PASS == current_val)
return UT_REPORT_PASS;
else
return UT_REPORT_FAIL;
}
void _rst_set_rgu_scope_to_clear_state(kal_uint32 clear_scope)
{
kal_uint32 current_val;
current_val = DRV_Reg32(REG_APRSTCTL_DUMMY) & (~RGU_SCOPE_TO_CLEAR_STATE_MASK) ;
current_val |= (clear_scope & (RGU_SCOPE_TO_CLEAR_STATE_MASK >> RGU_SCOPE_TO_CLEAR_STATE_OFFSET)) << RGU_SCOPE_TO_CLEAR_STATE_OFFSET;
DRV_WriteReg32(REG_APRSTCTL_DUMMY, current_val);
}
kal_uint32 _rst_get_rgu_scope_to_clear_state(void)
{
return ((DRV_Reg32(REG_APRSTCTL_DUMMY) & RGU_SCOPE_TO_CLEAR_STATE_MASK) >> RGU_SCOPE_TO_CLEAR_STATE_OFFSET);
}
void _rst_inc_rgu_api_call_accumulator(void)
{
kal_uint32 current_val;
current_val = (DRV_Reg32(REG_APRSTCTL_DUMMY) & (~RGU_API_CALL_ACCUMULATOR_MASK));
current_val |= (((DRV_Reg32(REG_APRSTCTL_DUMMY) & RGU_API_CALL_ACCUMULATOR_MASK) + (1<<RGU_API_CALL_ACCUMULATOR_OFFSET))&RGU_API_CALL_ACCUMULATOR_MASK);
DRV_WriteReg32(REG_APRSTCTL_DUMMY, current_val);
}
kal_uint32 _rst_get_rgu_api_call_accumulator(void)
{
return ((DRV_Reg32(REG_APRSTCTL_DUMMY) & RGU_API_CALL_ACCUMULATOR_MASK)>>RGU_API_CALL_ACCUMULATOR_OFFSET);
}
kal_bool _rst_is_system_within_converage(subsystem_e target_system, subsystem_e system_converage)
{
if ((target_system & system_converage) == target_system)
return KAL_TRUE;
else
return KAL_FALSE;
}
subsystem_e _rst_return_dominate_system(subsystem_e target_system)
{
if (APSYS == (target_system & APSYS))
return APSYS;
if (MD1SYS == (target_system & MD1SYS))
return MD1SYS;
ASSERT(0);
return 0;
}
kal_bool _rst_setup_whole_system_reset_trigger_path(void)
{
kal_bool ret_status = KAL_TRUE;
kal_uint32 current_val;
//actually, for whole system reset, it does not need to setup the trigger path.
//Set APRGU in reset mode. --> APRGU IRQ disable.
current_val = DRV_Reg32(REG_APRSTCTL_WDTCR) & ~(RSTCTL_APWDTCR_WDT_IRQEN);
current_val &= ~(RSTCTL_APWDTCR_WDT_SPD_UP);
DRV_WriteReg32(REG_APRSTCTL_WDTCR,RSTCTL_APWDTCR_KEY | current_val);
return ret_status;
}
kal_bool _rst_trigger_whole_system_reset(kal_uint32 delay_cycles)
{
kal_bool ret_status = KAL_TRUE;
_rst_setup_whole_system_reset_trigger_path(); //Set APRGU in reset mode.
//for this case, we need to trigger reset in APRGU.
if (0 < delay_cycles)
{
kal_uint32 current_val;
DRV_WriteReg32(REG_APRSTCTL_WDTIR, RSTCTL_APWDTIR_KEY | (delay_cycles & RSTCTL_APWDTIR_INTERVAL_MASK));
current_val = DRV_Reg32(REG_APRSTCTL_WDTCR);
current_val |= RSTCTL_APWDTCR_WDT_EN;
DRV_WriteReg32(REG_APRSTCTL_WDTCR,RSTCTL_APWDTCR_KEY | current_val);
DRV_WriteReg32(REG_APRSTCTL_WDTRR, RSTCTL_APWDTRR_KEY);
}
else //trigger software WDT
DRV_WriteReg32(REG_APRSTCTL_SRCMR_SWDT,RSTCTL_SRCMR_KEY_SWDT);
return ret_status;
}
kal_bool _rst_is_whole_system_reset_triggered()
{
kal_uint32 current_val;
//Check WDTSR.
current_val = DRV_Reg32(REG_APRSTCTL_WDTSR);
switch(current_val & RSTCTL_APWDTSR_STATUS_MASK)
{
case RSTCTL_APWDTSR_HWDT_STS:
dbg_print("Hardware WDT (%d times)\r\n", (current_val>>RSTCTL_APWDTSR_HW_WDT_CNT_OFFSET) & RSTCTL_APWDTSR_HW_WDT_CNT_MASK);
return KAL_TRUE;
case RSTCTL_APWDTSR_SWDT_STS:
dbg_print("Software WDT (%d times)\r\n", (current_val>>RSTCTL_APWDTSR_SW_WDT_CNT_OFFSET) & RSTCTL_APWDTSR_SW_WDT_CNT_MASK);
return KAL_TRUE;
case 0:
dbg_print("INFO (RGU) Whole system reset is not triggered\r\n");
return KAL_FALSE;
default:
dbg_print("Assert(RGU): Unexpected status case 0X%08X <%d line in %s>\r\n",(current_val & RSTCTL_APWDTSR_STATUS_MASK), __LINE__, __FUNCTION__ );
return KAL_FALSE;
}
}
kal_bool _rst_clear_whole_system_reset_status(void)
{
kal_uint32 current_val;
//Note: remember to disable WDT make sure system under control.
//Disable the trigger path
current_val = DRV_Reg32(REG_APRSTCTL_WDTCR);
current_val &= ~RSTCTL_APWDTCR_WDT_EN;
DRV_WriteReg32(REG_APRSTCTL_WDTCR, RSTCTL_APWDTCR_KEY | current_val);
//Clear the status caused by APRGU reset.
//Status register: WDTSR (swdt counter, hwdt counter, status)
DRV_WriteReg32(REG_APRSTCTL_WDTSR, RSTCTL_APWDTSR_KEY
| RSTCTL_APWDTSR_CNT_CLR_MASK << RSTCTL_APWDTSR_CNT_CLR_OFFSET
| RSTCTL_APWDTSR_STS_CLR_MASK << RSTCTL_APWDTSR_STS_CLR_OFFSET);
return KAL_FALSE;
}
kal_bool _rst_setup_ap_software_reset_trigger_path(void)
{
kal_bool ret_status = KAL_TRUE;
kal_uint32 current_val;
//Set the path from MDRGU to APRGU. (MDRGU IRQ enable)
current_val = DRV_Reg32(REG_MDRSTCTL_WDTCR);
current_val &= ~(RSTCTL_WDTCR_WDT_SPD_UP);
current_val |= (RSTCTL_WDTCR_AUX_WDT_IRQEN);
DRV_WriteReg32(REG_MDRSTCTL_WDTCR,RSTCTL_WDTCR_KEY | current_val); //1. disable speedup. 2. Enable IRQ_EN to AP
//Set up the path to trigger CA7 ISR.
DRV_WriteReg32(REG_APRSTCTL_MDWDTCFG_MD1,RSTCTL_APMDWDTCFG_MD1_KEY | RSTCTL_APMDWDTCFG_MD1_WDT_LV_EN_MD1);
DRV_WriteReg32(REG_MDRSTCTL_WDTER_MDSYS, 0xBFFFFFFF);
return ret_status;
}
kal_bool _rst_trigger_ap_software_reset(kal_uint32 delay_cycles)
{
kal_bool ret_status = KAL_TRUE;
kal_uint32 current_val;
_rst_setup_ap_software_reset_trigger_path(); //Set up the path to allow trigger CA7 ISR. (MDRGU: enable IRQ, APRGU: enable level )
if (0 < delay_cycles)
{
#if 0
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
/* under construction !*/
#endif
DRV_WriteReg32(REG_MDRSTCTL_WDTIR_AUX, RSTCTL_WDTIR_AUX_KEY | (delay_cycles & RSTCTL_WDTIR_INTERVAL_MASK));
current_val = DRV_Reg32(REG_MDRSTCTL_WDTCR);
current_val |= RSTCTL_WDTCR_AUX_WDT_EN;
DRV_WriteReg32(REG_MDRSTCTL_WDTCR,RSTCTL_WDTCR_KEY | current_val);
DRV_WriteReg32(REG_MDRSTCTL_WDTRR, RSTCTL_WDTRR_KEY|RSTCTL_WDTRR_WDT_RESTART);
}
else
{
/* Also trigger WDT1, the time interval should be 1 */
DRV_WriteReg32(REG_MDRSTCTL_WDTIR, RSTCTL_WDTIR_KEY | (1 & RSTCTL_WDTIR_INTERVAL_MASK));
current_val = DRV_Reg32(REG_MDRSTCTL_WDTCR);
current_val |= RSTCTL_WDTCR_WDT_EN;
DRV_WriteReg32(REG_MDRSTCTL_WDTCR,RSTCTL_WDTCR_KEY | current_val);
DRV_WriteReg32(REG_MDRSTCTL_WDTRR, RSTCTL_WDTRR_KEY|RSTCTL_WDTRR_WDT_RESTART); //we only needs to wait for MDRGU WDT to down count the delay cycles.
}
return ret_status;
}
kal_bool _rst_is_ap_software_reset_triggered()
{
//CHECK WDTSR (MD1_WDT_STS)
kal_uint32 current_val;
current_val = (DRV_Reg32(REG_APRSTCTL_WDTSR_MD1)>>RSTCTL_APWDTSR_MD1_STATUS_OFFSET)& RSTCTL_APWDTSR_MD1_STATUS_MASK;
if ((current_val > 0)&& (AP_SOFTWARE_RESET_MD == _rst_get_rgu_frmwrk_parameter()))
{
dbg_print("AP software reset MD triggered by MDRGU \r\n");
return KAL_TRUE;
}
else
return KAL_FALSE;
}
kal_bool _rst_clear_ap_software_reset_status(void)
{
kal_uint32 current_val;
//Note: remember to disable WDT make sure system under control.
current_val = DRV_Reg32(REG_MDRSTCTL_WDTCR);
current_val &= ~RSTCTL_WDTCR_AUX_WDT_EN;
DRV_WriteReg32(REG_MDRSTCTL_WDTCR, RSTCTL_WDTCR_KEY | current_val);
//Disable the trigger path
current_val = DRV_Reg32(REG_APRSTCTL_MDWDTCFG_MD1) & ~RSTCTL_APMDWDTCFG_MD1_WDT_LV_EN_MD1;
DRV_WriteReg32(REG_APRSTCTL_MDWDTCFG_MD1, RSTCTL_APMDWDTCFG_MD1_KEY | current_val);
//Clear the status caused by MDRGU IRQ
DRV_WriteReg32(REG_APRSTCTL_WDTSR_MD1, RSTCTL_APWDTSR_MD1_KEY | RSTCTL_APWDTSR_MD1_STS_CLR_MASK << RSTCTL_APWDTSR_MD1_STS_CLR_OFFSET);
//Clear the parameter as well.
_rst_set_rgu_frmwrk_parameter(0);
return KAL_TRUE;
}
UT_REPORT_STATUS _rst_check_ip_reset(ut_testcase_struct *testcase_ptr, kal_uint32 test_items) //Only check if reset correctly.
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
if (0 < test_items) //test_items must equals 1 at least. (test case is mandatorily located at 1st entry. )
{
dbg_print("\nCheck IP initial value: %s\n\r", (testcase_ptr)[0].description);
ut_ret_status = (testcase_ptr)[0]._main_fn(testcase_ptr[0].flags, testcase_ptr[0].para); // check initial after reset
}
else
{
dbg_print("ASSERT (RGU): <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__); //This case should not happen.
ut_ret_status = UT_REPORT_FAIL;
}
if (UT_REPORT_PASS == ut_ret_status)
dbg_print("\n\n IP initial value check: PASS \n\r");
else
dbg_print("\n\n IP initial value check: FAIL \n\r");
return ut_ret_status;
}
UT_REPORT_STATUS _rst_run_ip_ut(ut_testcase_struct *testcase_ptr, kal_uint32 test_items)
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
kal_uint32 func_idx;
if (1 < test_items)
{
for(func_idx = 1; func_idx < test_items; func_idx ++)
{
dbg_print("\nIP unit test: %s\n\r", (testcase_ptr)[func_idx].description);
ut_ret_status = (testcase_ptr)[func_idx]._main_fn(testcase_ptr[func_idx].flags, testcase_ptr[func_idx].para); // Other UTs exclude initial value check.
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
}
}
else //1. no test case. 2. check IP's initial value only (no other UTs)
{
dbg_print("ASSERT (RGU): <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__); //This case should not happen.
ut_ret_status = UT_REPORT_FAIL;
}
if (UT_REPORT_PASS == ut_ret_status)
dbg_print("\n\n IP unit test: PASS \n\r");
else
dbg_print("\n\n IP unit test: FAIL \n\r");
return ut_ret_status;
}
void _rst_prepare_for_next_rgu_it_call(subsystem_e system_coverage, UT_REPORT_STATUS ut_ret_status)
{
_rst_inc_rgu_api_call_accumulator(); //Increase RGU_API_CALL accumulator to prevent executing allready tested RGU_API.
_rst_set_rgu_ut_result(ut_ret_status); //Store the ut_ret_status. If the status is UT_REPORT_FAIL, all the reset RGU_APIs will be ignored.
UT_DELAY_LOOP(_RST_DURATION_LOOP_DEFAULT_VALUE); //Wait for effective register write.
if (APSYS == (system_coverage & APSYS))
{
dbg_print("Trigger AP reset MD for next framework interation....\n\r");
dbg_print("Reseting MDSYS through AP reset MD....\n\r\n\r\n\r");
_rst_clr_system_ready_sts(MD1SYS);
_rst_set_rgu_scope_to_clear_state(AP_SOFTWARE_RESET_MD);
_rst_trigger_ap_software_reset(0); //At the end of this API call, trigger whole systemr reset to make system ready for next API call.
while(1);
}
else //Without AP, system coverage only includes MD1SYS, L1SYS, and/or ARM7SYS.
{
dbg_print("Without AP to boot up Pcore, you need to reload code through CMM again. \n\r");
while(1);
}
}
UT_REPORT_STATUS _rst_examine_ip_through_software_reset(rst_target_e targetIP, ut_testcase_struct *testcase_ptr, kal_uint32 test_items)
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
if (RST_NULL == targetIP) return UT_REPORT_PASS; //Some IPs (like MEMSYS) do not tolerate software reset.
dbg_print("\n\n\nINFO (RGU) Software reset stage: \r\n");
ut_ret_status = _rst_check_ip_reset(testcase_ptr, test_items); //Only check if power on reset correctly.
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
ut_ret_status = _rst_run_ip_ut(testcase_ptr, test_items);
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
dbg_print("PASS (RGU) UT check after bootup @ %s \r\n", __FUNCTION__);
//The softwre reset function
dbg_print("INFO (RGU) Software reset IP @ %s \r\n", __FUNCTION__);
if (KAL_FALSE == drv_rstctl_sw_reset(targetIP)) {
dbg_print("Target IP do NOT support SW reset function\r\n");
goto end;
}
ut_ret_status = _rst_check_ip_reset(testcase_ptr, test_items); //Only check if reset correctly.
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
ut_ret_status = _rst_run_ip_ut(testcase_ptr, test_items);
end:
if (UT_REPORT_FAIL == ut_ret_status)
{
dbg_print("FAIL (RGU) UT check[software reset] @ %s \r\n\n\n", __FUNCTION__);
dbg_print("****************************************\r\n");
dbg_print("^^ Software reset stage test ::FAIL::&&\r\n");
dbg_print("****************************************\r\n");
}
else
{
dbg_print("PASS (RGU) UT check[software reset] @ %s \r\n", __FUNCTION__);
dbg_print("****************************************\r\n");
dbg_print("^^ Software reset stage test ::PASS::&&\r\n");
dbg_print("****************************************\r\n");
}
return ut_ret_status;
}
UT_REPORT_STATUS _rst_examine_ip_through_whole_system_reset(subsystem_e system_converage,ut_testcase_struct *testcase_ptr, kal_uint32 test_items, kal_uint32 delay_cycles)
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
dbg_print("\n\n\nINFO (RGU) Whole system reset stage: \r\n");
if (KAL_TRUE ==_rst_is_system_within_converage(APSYS, system_converage))
{
//(1) --> UT --> (2) --> (3) --> reboot --> UT -->(4)
//1 (1)
if ((0 < delay_cycles)&&(!_rst_is_whole_system_reset_triggered()))
{
_rst_clr_system_ready_sts(APSYS | MD1SYS);
_rst_trigger_whole_system_reset(delay_cycles);
}
ut_ret_status = _rst_check_ip_reset(testcase_ptr, test_items); //Only check if reset correctly.
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
ut_ret_status = _rst_run_ip_ut(testcase_ptr, test_items);
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
dbg_print("PASS (RGU) UT check after bootup @ %s \r\n", __FUNCTION__);
if ((0 < delay_cycles)&&(!_rst_is_whole_system_reset_triggered())) //reset should be triggered before UT finished
{
dbg_print("Delay cycle exceeds the UT runtime @ %s \r\n", __FUNCTION__);
_rst_clear_whole_system_reset_status();
ASSERT(0);
}
//1 (2)
if ((0 == delay_cycles)&&(!_rst_is_whole_system_reset_triggered()))
{
dbg_print("INFO (RGU) whole system reseting ... @ %s \r\n", __FUNCTION__);
_rst_clr_system_ready_sts(APSYS | MD1SYS);
_rst_trigger_whole_system_reset(0); //whole system reset.
while(1);
}
else
dbg_print("INFO (RGU) whole system reset has been triggered @ %s \r\n", __FUNCTION__);
//1 (3)
//while(!_rst_is_whole_system_reset_triggered());
//1 (4)
_rst_clear_whole_system_reset_status();
}
else //Igrnore whole system reset.
{
dbg_print("INFO(RGU) APSYS is 'not' included in system converage. Whole system reset test is ignored. \r\n");
return UT_REPORT_PASS;
}
if (UT_REPORT_FAIL == ut_ret_status)
{
dbg_print("********************************************\r\n");
dbg_print("^^ Whole system reset stage test ::FAIL::&&\r\n");
dbg_print("********************************************\r\n");
}
else
{
dbg_print("********************************************\r\n");
dbg_print("^^ Whole system reset stage test ::PASS::&&\r\n");
dbg_print("********************************************\r\n");
}
return ut_ret_status;
}
kal_bool g_ip_sup_sw_rst = KAL_FALSE;
UT_REPORT_STATUS _rst_examine_ip_through_ap_software_reset(subsystem_e system_converage, ut_testcase_struct *testcase_ptr, kal_uint32 test_items, kal_uint32 delay_cycles, kal_bool is_core_rebooted)
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
dbg_print("\n\n\nINFO (RGU) AP software reset stage: \r\n");
//AP software reset MD requires cooperation between APSYS and MD1SYS.
if (KAL_TRUE ==_rst_is_system_within_converage(MD1SYS | APSYS, system_converage))
{
//(1) --> UT --> (2) --> (3) --> reboot --> (4) [is_core_rebooted == KAL_TRUE]
//(1) --> UT --> (2) --> (3) --> (4) --> (5) UT [is_core_rebooted == KAL_FALSE] --> Check this IP is effected by resetting other subsystem.
//1 (1)
if ((0 < delay_cycles)&&(!_rst_is_ap_software_reset_triggered()))
{
dbg_print("INFO (RGU) ap software reseting with delay cycles:%d... @ %s \r\n", delay_cycles, __FUNCTION__);
_rst_clr_system_ready_sts(MD1SYS);
_rst_trigger_ap_software_reset(delay_cycles);
}
if (_rst_is_ap_software_reset_triggered() || g_ip_sup_sw_rst)
ut_ret_status = _rst_check_ip_reset(testcase_ptr, test_items); //Only check if reset correctly.
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
ut_ret_status = _rst_run_ip_ut(testcase_ptr, test_items);
if (UT_REPORT_FAIL == ut_ret_status)
return ut_ret_status;
dbg_print("PASS (RGU) UT check after bootup @ %s \r\n", __FUNCTION__);
if ((0 < delay_cycles)&&(!_rst_is_ap_software_reset_triggered())) //reset should be triggered before UT finished
{
dbg_print("Delay cycle exceeds the UT runtime @ %s \r\n", __FUNCTION__);
//_rst_clear_ap_software_reset_status();
//ASSERT(0);
while(1);
}
//1 (2)
if ((0 == delay_cycles)&&(!_rst_is_ap_software_reset_triggered()))
{
dbg_print("INFO (RGU) ap software reseting ... @ %s \r\n", __FUNCTION__);
_rst_clr_system_ready_sts(MD1SYS);
_rst_trigger_ap_software_reset(0); //only md1sys got reboot. AP is not effected, therefore APSYS IP UT is necessary.
while(1);
}
else
dbg_print("INFO (RGU) ap software reset has been triggered @ %s \r\n", __FUNCTION__);
//1 (4)
_rst_clear_ap_software_reset_status();
if (KAL_FALSE == is_core_rebooted)
{
//1 (5)
ut_ret_status = _rst_run_ip_ut(testcase_ptr, test_items);
}
}
else
{
dbg_print("INFO(RGU) APSYS or MD1SYS is 'not' included in system converage. AP software reset test is ignored. \r\n");
return UT_REPORT_PASS;
}
if (UT_REPORT_FAIL == ut_ret_status)
{
dbg_print("********************************************\r\n");
dbg_print("^^ AP software reset stage test ::FAIL::&&\r\n");
dbg_print("********************************************\r\n");
}
else
{
dbg_print("********************************************\r\n");
dbg_print("^^ AP software reset stage test ::PASS::&&\r\n");
dbg_print("********************************************\r\n");
}
return ut_ret_status;
}
UT_REPORT_STATUS _rst_md1sys_dominate_reset_scope(kal_bool control_load, rst_target_e targetIP,subsystem_e system_coverage, ut_testcase_struct *testcase_ptr, kal_uint32 test_items, kal_uint32 delay_cycles)
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
kal_uint32 reset_scope_idx;
_rst_set_system_ready_sts(MD1SYS, system_coverage); //Notify the reset cores that MD1SYS is ready.
if (0== test_items)
{
dbg_print("Waiting for wall cores are ready....\r\n");
while(system_coverage != (_rst_get_system_ready_sts()& system_coverage));
dbg_print("INFO (RGU) All cores in the system coverage are ready. \r\n");
dbg_print("Dummy load to react RGU req (%s) @ MIPS\r\n", __FUNCTION__);
while(1); //Just act as a dummy-load
}
else //Control load or support load
{
if (KAL_TRUE != control_load) //Support load
{
dbg_print("Waiting for wall cores are ready....\r\n");
while(system_coverage != (_rst_get_system_ready_sts()& system_coverage));
dbg_print("INFO (RGU) All cores in the system coverage are ready. \r\n");
dbg_print("Support load to call the UT (%s) @ MIPS\n\r", __FUNCTION__);
while(UT_REPORT_PASS == ut_ret_status) // As long as the ut_ret_status is UT_REPORT_PASS, the support load could run the program infinitely.
{
ut_ret_status = _rst_check_ip_reset(testcase_ptr, test_items); //Only check if power on reset correctly.
if (UT_REPORT_PASS == ut_ret_status )
{
dbg_print("PASS (RGU) [Support load] Initial check pass @%s\r\n", __FUNCTION__);
ut_ret_status = _rst_run_ip_ut(testcase_ptr, test_items);
if (UT_REPORT_PASS == ut_ret_status )
dbg_print("PASS (RGU) [Support load] UT check pass @%s\r\n", __FUNCTION__);
else
dbg_print("FAIL (RGU) [Support load] UT check fail @%s\r\n", __FUNCTION__);
}
else
dbg_print("FAIL (RGU) [Support load] Initial check fail @%s\r\n", __FUNCTION__);
while(system_coverage != (_rst_get_system_ready_sts()& system_coverage));
}
while(1); //If one of the UT's ut_ret_statuses is UT_REPORT_FAIL, the support load will break the above cycle to act as a dummy load.
}
else //Control load
{
dbg_print("Dominate RGU scope (%s) @ MIPS\r\n", __FUNCTION__);
if (AP_SOFTWARE_RESET_MD == _rst_get_rgu_scope_to_clear_state())
{
_rst_clear_ap_software_reset_status();
_rst_set_rgu_scope_to_clear_state(0);
}
reset_scope_idx = _rst_get_this_reset_scope();
while (reset_scope_idx < RGU_RESET_SCOPE_END)
{
dbg_print("INFO (RGU) Waiting for all cores in the system coverage ready...\n\r");
//TODO: wait system all ready
dbg_print("INFO (RGU) All cores in the system coverage are ready. \r\n");
switch (reset_scope_idx)
{
case SOFTWARE_RESET:
ut_ret_status = _rst_examine_ip_through_software_reset(targetIP, testcase_ptr, test_items);
break;
case WHOLE_SYSTEM_RESET:
//ut_ret_status = _rst_examine_ip_through_whole_system_reset(system_coverage, testcase_ptr, test_items, delay_cycles);
ut_ret_status = UT_REPORT_PASS;
break;
case AP_SOFTWARE_RESET_MD:
ut_ret_status = _rst_examine_ip_through_ap_software_reset(system_coverage, testcase_ptr, test_items, delay_cycles, KAL_TRUE);
break;
default:
dbg_print("ASSERT (Dennis): <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__);
ut_ret_status = UT_REPORT_FAIL;
}
if (UT_REPORT_PASS == ut_ret_status)
{
_rst_set_next_reset_scope(reset_scope_idx + 1);
reset_scope_idx = _rst_get_this_reset_scope();
//To prevent some uncareful UT design that forgets to restore initial valu, this framework software reset the target IP before new scope test. .
dbg_print("INFO (RGU) Restore IP's original value @ %s \r\n", __FUNCTION__);
if (RST_NULL != targetIP)
g_ip_sup_sw_rst = drv_rstctl_sw_reset(targetIP);
else //Since the IP could not be reset, we need to clear the state for the next reset scope.
{
//Add AP software reset md here to create a clear state for the next reset scope.
//Add the system state clear flag for distinguishment from reset for UT test.
_rst_set_rgu_scope_to_clear_state(AP_SOFTWARE_RESET_MD);
_rst_clr_system_ready_sts(MD1SYS);
_rst_trigger_ap_software_reset(0);
dbg_print("For RST_NULL, we use AP reset MD to restore IP's original value. \n\r");
while(1);
}
}
else
{
dbg_print("ASSERT (RGU): IP UT check fail. <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__);
return ut_ret_status;
}
}
} //end ocntrol load
} //end item!=0
if (RGU_RESET_SCOPE_END == reset_scope_idx) //Considering multiple call of this API, we need to reset the scope idx as well..
_rst_set_next_reset_scope(SOFTWARE_RESET); //Upon all the reset scopes are tested, set the reset scope condition back to SOFTWARE_RESET.
return ut_ret_status;
}
kal_uint32 g_RGU_IT_API_CALL_ACCUMULATOR = 0;
UT_REPORT_STATUS drv_UT_within_RGU_framework(rst_target_e targetIP, subsystem_e target_system, subsystem_e system_coverage,
ut_testcase_struct *testcase_ptr, kal_uint32 test_items, kal_uint32 delay_cycles)
{
UT_REPORT_STATUS ut_ret_status = UT_REPORT_PASS;
_rst_register_lisr();
if(drv_rstctl_disable_all_WDTs() == KAL_FALSE)
{
dbg_print("ASSERT (RGU): Disable WDT FAIL <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__); //This case should not happen.
return UT_REPORT_FAIL;
}
g_RGU_IT_API_CALL_ACCUMULATOR ++; //Global variable used to count the number of iterations that APIs are called.
if (_rst_get_rgu_ut_result() != UT_REPORT_PASS) //The UT result of the previous iteration. If UT fails in earlier iteration, this iteration is ignored.
{ //Note: For the 1st iteration, the default value is 0. And UT_REPORT_PASS is 0 as well.
dbg_print("Checking (api_call_acc,api_passed_acc) = (%d, %d): %d\r\n", g_RGU_IT_API_CALL_ACCUMULATOR,_rst_get_rgu_api_call_accumulator(), _rst_get_rgu_ut_result());
if (g_RGU_IT_API_CALL_ACCUMULATOR == _rst_get_rgu_api_call_accumulator())
dbg_print("INFO (RGU) RGU_IT UT fail! @ drv_UT_within_RGU_framework (%d)\r\n", g_RGU_IT_API_CALL_ACCUMULATOR);
return UT_REPORT_FAIL; //If some UT fails one of early RGU_IT_API call, the reset RGU_IT_APIs are ignored.
}
dbg_print("INFO ACCUMU1:%d ; ACCUMU2:%d \r\n", g_RGU_IT_API_CALL_ACCUMULATOR, _rst_get_rgu_api_call_accumulator());
if (g_RGU_IT_API_CALL_ACCUMULATOR <= _rst_get_rgu_api_call_accumulator())
return UT_REPORT_PASS;
dbg_print("\r\n\nINFO (RGU) API call accumulator: %d; Delay cycles: %d\n\n\r", g_RGU_IT_API_CALL_ACCUMULATOR, delay_cycles);
if (KAL_FALSE == _rst_is_system_within_converage(target_system, system_coverage))
{
dbg_print("ASSERT (RGU): Target system is not included in the system coverage <line: %d in function: %s>\r\n", __LINE__, __FUNCTION__);
return UT_REPORT_FAIL;
}
if (RGU_RESET_SCOPE_END == _rst_get_rgu_scope_to_clear_state()) //If the last whole system reset is triggered for a new iternation, the status must be cleared.
{
_rst_clear_ap_software_reset_status(); //Clear the whole system reset status.
_rst_set_rgu_scope_to_clear_state(0); //Clear the ditinguishable flag that was marked as RGU_RESET_SCOPE_END.
}
dbg_print("%s @ MIPS-iterAptiv\n\r", __FUNCTION__);
if (MD1SYS == (target_system & MD1SYS))
{
dbg_print("target system = MD1SYS\n\r");
if (MD1SYS == _rst_return_dominate_system(target_system))
{
ut_ret_status = _rst_md1sys_dominate_reset_scope(KAL_TRUE, targetIP, system_coverage, testcase_ptr, test_items, delay_cycles); //Dominate the reset scope and tests the UTs.
_rst_set_rgu_scope_to_clear_state(RGU_RESET_SCOPE_END); //For the next iteration, it is necessary to offer a clear dependent state. To distinguish framework or new iteration reset, we burry RGU_RESET_SCOPE_END.
_rst_prepare_for_next_rgu_it_call(system_coverage, ut_ret_status); //reset the system to for the next API (drv_UT_within_RGU_framework) call.
}
else
_rst_md1sys_dominate_reset_scope(KAL_FALSE, targetIP, system_coverage, testcase_ptr, test_items, delay_cycles); //Call the UTs but controlled by other subsystem.
}
else
{
_rst_md1sys_dominate_reset_scope(KAL_FALSE, 0, system_coverage, NULL, 0, 0); //act as md1_dummy load.
}
return ut_ret_status;
}
#endif /*!defined(RSTCTL_FPGA_PLAT)*/
#endif /*defined(ATEST_ENABLE)*/
#else /*!defined(DRV_RSTCTL_OFF)*/
#endif /*!defined(DRV_RSTCTL_OFF)*/