blob: 2c2467427014eda83eb4de5ae287c6480d46aad6 [file] [log] [blame]
import math
import numpy as np
class IqSignals:
def __init__(self, params, NidCell, is_TDD):
pi = math.pi
## ------------------ PSS INIT (B) ------------------
print "\n"
print "Generating Primary Synchronization Signal....",
#Compute physical layer identity Nid2 in range [0:2]
Nid2 = NidCell % 3
#Identify root index from Nid2
if(Nid2 == 0):
u = 25
elif(Nid2 == 1):
u = 29
elif(Nid2 == 2):
u = 34
self.PSS_TD_complex = [0] * 62
# The PSS is a sequence of complex symbols, 62 symbols long
for n in xrange(0, 62):
if n <= 30:
phase_coeff = -pi*u*(n+1)*n/63.0
else:
phase_coeff = -pi*u*(n+1)*(n+2)/63.0
self.PSS_TD_complex[n] = np.vectorize(complex)(math.cos(phase_coeff),math.sin(phase_coeff))
self.PSS_TD_complex_pad = [0] * 72
self.PSS_TD_complex_pad[5:67] = self.PSS_TD_complex
self.PSS_TD_complex_pad_fftSize_wShift = [0] * params.PSS_FFT_size
self.PSS_TD_complex_pad_fftSize_wShift[1:37] = self.PSS_TD_complex_pad[36:]
self.PSS_TD_complex_pad_fftSize_wShift[params.PSS_FFT_size-36:] = self.PSS_TD_complex_pad[:36]
self.PSS_TD_complex_pad_fftSize_wShift_ifft = np.fft.ifft(self.PSS_TD_complex_pad_fftSize_wShift)
#Define indices location of PSS in half-frame resource grid (TODO!)
print "Done."
## ------------------ PSS INIT (B) ------------------
## See http://www.sharetechnote.com/html/Handbook_LTE_SSS.html < Matlab code for SSS Generation >
## ------------------ SSS INIT (B) ------------------
#Compute physical layer cell-identity group Nid1 ( range LTE:[0:167], NR:[0:335])
print "Generating Secondary Synchronization Signal....",
#Compute physical layer cell-identity group Nid1 ( range [0:167] )
Nid1 = math.floor(NidCell/3.0)
# Define indices m0 and m1
q_prime = math.floor(Nid1/30.0)
q_ = math.floor( (Nid1 + 0.5*q_prime*(q_prime+1.0)) / 30.0 )
m_prime = Nid1 + q_*(q_+1)/2
m0 = int(m_prime % 31)
m1 = int((m0 + math.floor(m_prime/31.0) + 1.0) % 31)
#print ['q_prime',q_prime,'q_',q_,'m_prime',m_prime,'m0',m0,'m1',m1]
# **** Generate sequences s0^(m0)[n] and s1^(m1)[n] ****
# Compute m-sequence s_tilde
x_s = [0] * 31
x_s[4] = 1
for i_ in xrange(0,26):
x_s[i_+5] = (x_s[i_+2] + x_s[i_]) % 2
# Matlab: s_tilde = 1 - 2*x_s
s_tilde = [1-2*x for x in x_s]
# Compute s0_m0 and s1_m1 from s_tilde with different cyclic shifts
self.s0_ = [0] * 31
self.s1_ = [0] * 31
for i_ in xrange(0,31):
self.s0_[i_] = s_tilde[(i_ + m0) % 31]
self.s1_[i_] = s_tilde[(i_ + m1) % 31]
# **** Generate scrambling sequences c0[n] and c1[n] ****
# Compute m-sequence c_tilde
x_c = [0] * 31
x_c[4] = 1
for i_ in xrange(0,26):
x_c[i_+5] = (x_c[i_+3] + x_c[i_]) % 2
# Matlab: c_tilde = 1 - 2*x_c
c_tilde = [1-2*x for x in x_c]
# Compute c0_ and c1_ from c_tilde with different cyclic shifts
self.c0_ = [0] * 31
self.c1_ = [0] * 31
for i_ in xrange(0,31):
self.c0_[i_] = c_tilde[(i_ + Nid2) % 31]
self.c1_[i_] = c_tilde[(i_ + Nid2 + 3) % 31]
# **** Generate scrambling sequences z1^(m0)[n] and z1^(m1)[n] ****
# Compute m-sequence z_tilde
x_z = [0] * 31
x_z[4] = 1
for i_ in xrange(0,26):
x_z[i_+5] = (x_z[i_+4] + x_z[i_+2] + x_z[i_+1] + x_z[i_]) % 2
# Matlab: z_tilde = 1 - 2*x_z
z_tilde = [1-2*x for x in x_z]
# Compute z1_m0 and z1_m1 from z_tilde with different cyclic shifts
self.z1_m0 = [0] * 31
self.z1_m1 = [0] * 31
for i_ in xrange(0,31):
self.z1_m0[i_] = z_tilde[(i_ + (m0%8)) % 31]
self.z1_m1[i_] = z_tilde[(i_ + (m1%8)) % 31]
#Define indices location of SSS in half-frame resource grid
self.SSS_k_index_start = 0 -31 + 12*params.numRB/2
self.SSS_k_index_end = 61 -31 + 12*params.numRB/2
if (is_TDD == 1):
self.SSS_l_column = 13
else:
self.SSS_l_column = 5
print "Done."
## ------------------ SSS INIT (E) ------------------
########################################################################
# ------------------ SYNCHRONIZATION SIGNALS INIT (E) -----------------#
########################################################################
################################################################################
# ------------------ CELL-SPECIFIC REFERENCE SIGNALS INIT (B) -----------------#
################################################################################
print "Generating Cell-Specific Reference Signals....",
N_c = 1600
NmaxRB = 110
seqLength = 4*NmaxRB
real_vec = np.zeros((2*NmaxRB,20*(params.Ncp_type+6)))
imag_vec = np.zeros((2*NmaxRB,20*(params.Ncp_type+6)))
self.CSRS_mat = np.vectorize(complex)(real_vec,imag_vec)
for kk in xrange(0, 20):
for ii in xrange(0,(params.Ncp_type+6)):
c_init = 1024 * ( 7 * ( kk + 1 ) + 1 + ii ) * (2*NidCell+1) + 2*NidCell + params.Ncp_type
#print c_init
# x_1 initialization
x_1 = [0] * (seqLength + N_c + 31)
x_1[0] = 1
x_2 = [0] * (seqLength + N_c + 31)
# # Initializes x_2 using c_init (converts to binary form)
# i = 0;
# while (c_init >= 1):
# x_2[i] = c_init % 2
# c_init = math.floor(c_init / 2)
# i = i +1
# Initializes x_2 using c_init (converts to binary form)
i = 30;
while (c_init >= 1):
x2_val = math.floor(c_init/math.pow(2,i))
x_2[i] = x2_val
c_init = c_init - x2_val*math.pow(2,i)
i = i - 1
# Generation of x_1[n] and x_2[n]
for n in xrange(0,seqLength + N_c):
x_1[n+31] = (x_1[n+3] + x_1[n]) % 2
x_2[n+31] = (x_2[n+3] + x_2[n+2] + x_2[n+1] + x_2[n]) % 2
# Generation of Gold PN sequence: c_seq[n] = (x_1[n+Nc] + x_2[n+Nc])mod2
c_seq = np.zeros((seqLength,1))
for nn in xrange(0,seqLength):
c_seq[nn] = (x_1[nn+N_c] + x_2[nn + N_c]) % 2
# Generation of QPSK-based CSRS
ref_sig_seq = np.sqrt(0.5) * np.vectorize(complex)(1-2*c_seq[0:4*NmaxRB:2],1-2*c_seq[1:4*NmaxRB:2])
self.CSRS_mat[:,kk*(6+params.Ncp_type)+ii] = ref_sig_seq[:,0]
self.NmaxRB = NmaxRB
print "Done."