blob: 3afd99e4901e687ffe02854e2c4488bbe25b6c5d [file] [log] [blame]
from get_3GPP_N import get_3GPP_N
from get_3GPP_crc_interleaver_pattern import get_3GPP_crc_interleaver_pattern
from get_3GPP_rate_matching_pattern import get_3GPP_rate_matching_pattern
from get_3GPP_sequence_pattern import get_3GPP_sequence_pattern
from get_3GPP_info_bit_pattern import get_3GPP_info_bit_pattern
from DCKA_polar_decoder import DCKA_polar_decoder
from Scrambler import Scrambler
import IQ_Utils
class MIB_Parser:
#####################################################
# 38.331. 6.2.2
# MIB ::= SEQUENCE {
# systemFrameNumber BIT STRING (SIZE (6)), 6 bit
# subCarrierSpacingCommon ENUMERATED {scs15or60, scs30or120}, 1 bit
# ssb_SubcarrierOffset INTEGER (0..15), 4 bit
# dmrs_TypeA_position ENUMERATED {pos2, pos3}, 1 bit
# pdcchConfigSIB1 PDCCH-ConfigSIB1, 8 bit
# cellBarred ENUMERATED {barred, notBarred}, 1 bit
# intraFreqReselection ENUMERATED {allowed, notAllowed}, 1 bit
# spare BIT STRING (SIZE (1)) 1 bit
#
#
#pdcchConfigSIB1 ::= SEQUENCE {
# controlResourceSetZero ControlResourceSetZero,
# searchSpaceZero SearchSpaceZero
#}
#####################################################
def __init__(self, a_hat, Lmax):
############# MIB fields parsing for frequency range 1 #############
mibbits = a_hat
mibbits = ''.join(map(str, mibbits))
mibbits = mibbits[::-1] #reverse
self.reservedBits = IQ_Utils.bi2de(mibbits[0:2])
self.k_ssb = mibbits[2]
self.HRF = mibbits[3]
sfnCombinePHYRRC = mibbits[25:31] + mibbits[4:8]
self.systemFrameNumber = IQ_Utils.bi2de(sfnCombinePHYRRC)
if Lmax == 64:
commonSCSs = [60, 120]
else:
commonSCSs = [15, 30]
self.RAN2_sparedBit = mibbits[8]
self.intraFreqSelection = mibbits[9]
self.cellBarred = mibbits[10]
self.pdcchConfigSIB1 = IQ_Utils.bi2de(mibbits[11:19])
self.dmrs_TypeA_position = 2 + int(mibbits[19])
self.ssb_SubcarrierOffset = IQ_Utils.bi2de(mibbits[20:24])
self.subCarrierSpacingCommon = commonSCSs[int(mibbits[24])]
self.msgIndicator = mibbits[31]
print "NFrame: ", self.systemFrameNumber
print "SubcarrierSpacingCommon: ", self.subCarrierSpacingCommon
print "ssb-SubcarrierOffset: ", self.ssb_SubcarrierOffset
print "DL-DMRS_typeA_pos: ", self.dmrs_TypeA_position
print "PDCCHConfigSIB1: ", self.pdcchConfigSIB1
print "CellBarred: ", self.cellBarred
print "IntraFreqSelection: ", self.intraFreqSelection
print "Spare: ", self.RAN2_sparedBit
print "k_ssb", self.k_ssb
print "HRF: ", self.HRF
print "reservedBits:", self.reservedBits
##############################################################################
# NR PBCH payload interleaving
# NOTE: N/A
# input:
# payload (32-bit)
# output:
# interleaved payload (32-bit)
##############################################################################
def get_3GPP_PBCH_payload_intlv(payload_bit):
mib_intlv_pattern = [1,16,23,18,17,8,30,4,9,11,12,13,14,15,19,20,21,22,25,
26,27,28,29,31,10,6,24,7,0,5,3,2]
intlv_out = [0]*32
for idx in xrange(31,-1,-1):
intlv_out[idx] = payload_bit[mib_intlv_pattern[idx]]
return intlv_out
#####################################################################################################################################
# PBCH_DECODER Polar decoder for the Public Broadcast Channel (PBCH) of 3GPP New Radio, as defined in Section 7.1 of TS38.212.
# Implements the Cyclic Redudancy Check (CRC) attachment of Section 7.1.3, the channel coding of Section 7.1.4 and the rate
# matching of Section 7.1.5.
# NOTE: This code does not implement the payload generation of Section 7.1.1 or the scrambling of Section 7.1.2. Function decodes
# the encoded LLR sequence f_tilde, in order to obtain the recovered information bit sequence a_hat.
# input:
# f_tilde should be a real row vector comprising 864 Logarithmic Likelihood Ratios (LLRS), each having a value obtained
# as LLR = ln(P(bit=0)/P(bit=1)). The first LLR corresponds to f_0 from Section 7.1.5 of TS38.212, while the last LLR
# corresponds to f_E-1.
# A should be 32. It specifies the number of bits in the information bit sequence.
# L should be a scalar integer. It specifies the list size to use during Successive Cancellation List (SCL) decoding.
# min_sum shoular be a scalar logical. If it is true, then the SCL decoding process will be completed using the min-sum
# approximation. Otherwise, the log-sum-product will be used. The log-sum-product gives better error correction capability
# than the min-sum, but it has higher complexity.
# Lmax is number of SSB candidates in a burst.
# output:
# a_hat will be a binary row vector comprising 32 bits, each having the value 0 or 1. The first output bit corresponds
# to a'_0 from Section 7.1.3 of TS38.212, while the last output bit corresponds to a'_A-1.
#####################################################################################################################################
def PBCH_decoder(f_tilde, A, list_size, min_sum, NidCell, Lmax, ibar_SSB):
E = len(f_tilde)
# A is always 32 in PBCH
if A != 32:
raise Exception('polar_3gpp_matlab:UnsupportedBlockLength, A should be 32.')
# E is always 864 in PBCH
if E != 864:
raise Exception('polar_3gpp_matlab:UnsupportedBlockLength, E should be 864.')
# The CRC polynomial used in 3GPP PBCH and PDCCH channel is
# D^24 + D^23 + D^21 + D^20 + D^17 + D^15 + D^13 + D^12 + D^8 + D^4 + D^2 + D + 1
crc_polynomial_pattern = [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,0,0,0,1,0,1,1,1]
# The CRC has P bits. P-min(P2,log2(L)) of these are used for error
# detection, where L is the list size. Meanwhile, min(P2,log2(L)) of
# them are used to improve error correction. So the CRC needs to be
# min(P2,log2(L)) number of bits longer than CRCs used in other codes,
# in order to achieve the same error detection capability.
P = len(crc_polynomial_pattern) - 1
P2 = 3
# Determine the number of information and CRC bits.
K = A + P
# Determine the number of bits used at the input and output of the polar
# encoder kernal.
N = get_3GPP_N(K, E, 9)
# Get the 3GPP CRC interleaver pattern.
crc_interleaver_pattern = get_3GPP_crc_interleaver_pattern(K)
# Get the 3GPP rate matching pattern.
rate_matching_pattern,mode = get_3GPP_rate_matching_pattern(K, N, E)
# Get the 3GPP sequence pattern.
Q_N = get_3GPP_sequence_pattern(N)
# Get the 3GPP information bit pattern.
info_bit_pattern = get_3GPP_info_bit_pattern(K, Q_N, rate_matching_pattern, mode)
# Initialize scrambler
scrambler = Scrambler(NidCell, Lmax)
f_tilde_scrambled = scrambler.get_3GPP_2nd_scramble_s_seq(f_tilde, ibar_SSB) # scramble 864 LLRs
# Perform Distributed-CRC-and-Known-bit-Aided polar decoding.
a_hat = DCKA_polar_decoder(f_tilde_scrambled, crc_polynomial_pattern, crc_interleaver_pattern, info_bit_pattern, rate_matching_pattern, mode, list_size, min_sum, P2)
if (a_hat == 0):
print "no MIB"
else:
cellSfn = 1 # System frame number for cell
scrambled = scrambler.get_3GPP_1st_scramble_s_seq(cellSfn, a_hat) # Get scrambled hard coded bits
out = get_3GPP_PBCH_payload_intlv(scrambled) # Get interleaved payload
MIB_Parser(out, Lmax) # Parse MIB field messages from bit sequence