rjw | 6c1fd8f | 2022-11-30 14:33:01 +0800 | [diff] [blame] | 1 | /***************************************************************************** |
| 2 | * Copyright Statement: |
| 3 | * -------------------- |
| 4 | * This software is protected by Copyright and the information contained |
| 5 | * herein is confidential. The software may not be copied and the information |
| 6 | * contained herein may not be used or disclosed except with the written |
| 7 | * permission of MediaTek Inc. (C) 2012 |
| 8 | * |
| 9 | * BY OPENING THIS FILE, BUYER HEREBY UNEQUIVOCALLY ACKNOWLEDGES AND AGREES |
| 10 | * THAT THE SOFTWARE/FIRMWARE AND ITS DOCUMENTATIONS ("MEDIATEK SOFTWARE") |
| 11 | * RECEIVED FROM MEDIATEK AND/OR ITS REPRESENTATIVES ARE PROVIDED TO BUYER ON |
| 12 | * AN "AS-IS" BASIS ONLY. MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES, |
| 13 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF |
| 14 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. |
| 15 | * NEITHER DOES MEDIATEK PROVIDE ANY WARRANTY WHATSOEVER WITH RESPECT TO THE |
| 16 | * SOFTWARE OF ANY THIRD PARTY WHICH MAY BE USED BY, INCORPORATED IN, OR |
| 17 | * SUPPLIED WITH THE MEDIATEK SOFTWARE, AND BUYER AGREES TO LOOK ONLY TO SUCH |
| 18 | * THIRD PARTY FOR ANY WARRANTY CLAIM RELATING THERETO. MEDIATEK SHALL ALSO |
| 19 | * NOT BE RESPONSIBLE FOR ANY MEDIATEK SOFTWARE RELEASES MADE TO BUYER'S |
| 20 | * SPECIFICATION OR TO CONFORM TO A PARTICULAR STANDARD OR OPEN FORUM. |
| 21 | * |
| 22 | * BUYER'S SOLE AND EXCLUSIVE REMEDY AND MEDIATEK'S ENTIRE AND CUMULATIVE |
| 23 | * LIABILITY WITH RESPECT TO THE MEDIATEK SOFTWARE RELEASED HEREUNDER WILL BE, |
| 24 | * AT MEDIATEK'S OPTION, TO REVISE OR REPLACE THE MEDIATEK SOFTWARE AT ISSUE, |
| 25 | * OR REFUND ANY SOFTWARE LICENSE FEES OR SERVICE CHARGE PAID BY BUYER TO |
| 26 | * MEDIATEK FOR SUCH MEDIATEK SOFTWARE AT ISSUE. |
| 27 | * |
| 28 | * THE TRANSACTION CONTEMPLATED HEREUNDER SHALL BE CONSTRUED IN ACCORDANCE |
| 29 | * WITH THE LAWS OF THE STATE OF CALIFORNIA, USA, EXCLUDING ITS CONFLICT OF |
| 30 | * LAWS PRINCIPLES. ANY DISPUTES, CONTROVERSIES OR CLAIMS ARISING THEREOF AND |
| 31 | * RELATED THERETO SHALL BE SETTLED BY ARBITRATION IN SAN FRANCISCO, CA, UNDER |
| 32 | * THE RULES OF THE INTERNATIONAL CHAMBER OF COMMERCE (ICC). |
| 33 | * |
| 34 | *****************************************************************************/ |
| 35 | |
| 36 | /******************************************************************************* |
| 37 | * Filename: |
| 38 | * --------- |
| 39 | * uart.c |
| 40 | * |
| 41 | * Project: |
| 42 | * -------- |
| 43 | * TATAKA |
| 44 | * |
| 45 | * Description: |
| 46 | * ------------ |
| 47 | * This Module defines the uart1 driver and the adaption layer |
| 48 | * between driver and TATAKA protocol. |
| 49 | * Author: |
| 50 | * ------- |
| 51 | * ------- |
| 52 | * ------- |
| 53 | * ------- |
| 54 | * |
| 55 | * ========================================================================== |
| 56 | * $Log$ |
| 57 | * |
| 58 | * 07 02 2019 yao.xue |
| 59 | * [MOLY00418070] ISR Centralization : remove UART & WDT & Logseq IRQSensitivity/IRQ_Register_LISR |
| 60 | * ISR Centralization : remove UART & WDT & Logseq IRQSensitivity/IRQ_Register_LISR |
| 61 | * |
| 62 | * 04 11 2019 yao.xue |
| 63 | * [MOLY00397471] [VMOLY]Use API ust_us_duration take place ust_get_duration |
| 64 | * modify API ust_us_duration takeplace ust_get_duration in uart/slt code |
| 65 | * |
| 66 | * 02 15 2019 panu.peisa |
| 67 | * [MOLY00384803] [Gen97][SystemService][Change Request] KAL Refactoring Phase-in |
| 68 | * |
| 69 | * Added changes to swrd part. |
| 70 | * |
| 71 | * 10 29 2018 yao.xue |
| 72 | * [MOLY00360949] [SWRD] DRVTEST maintain |
| 73 | * Fix DRVTEST build pass in SWRD |
| 74 | * |
| 75 | * 03 13 2018 shenghui.shi |
| 76 | * [MOLY00309657] UMOLYE driver warning fix |
| 77 | * update UART driver |
| 78 | * |
| 79 | * 11 21 2017 shenghui.shi |
| 80 | * [MOLY00290848] [UMOLYA] Usage of INT_SW_SecVersion |
| 81 | * removed no used API INT_SW_SecVersion |
| 82 | * |
| 83 | * 11 21 2017 shenghui.shi |
| 84 | * [MOLY00290848] [UMOLYA] Usage of INT_SW_SecVersion |
| 85 | * remove INT_SW_SecVersion API from UART driver. This API is not used in 93/95 |
| 86 | * |
| 87 | * |
| 88 | * 11 07 2017 shenghui.shi |
| 89 | * [MOLY00288093] update UART driver to remove no needed project option |
| 90 | * . |
| 91 | * |
| 92 | * 11 07 2017 shenghui.shi |
| 93 | * [MOLY00288093] update UART driver to remove no needed project option |
| 94 | * update uart driver to remove no needed files |
| 95 | * |
| 96 | * 11 03 2017 shenghui.shi |
| 97 | * [MOLY00287577] UMOLYA HISR coding change for UART part |
| 98 | * . |
| 99 | * |
| 100 | * 10 24 2017 yao.xue |
| 101 | * [MOLY00284920] [Cervino] UART driver porting for Cervino. |
| 102 | * |
| 103 | * 09 15 2017 da.li |
| 104 | * [MOLY00270315] [System Service][KIR] make ex robust before ex steplog work |
| 105 | * Replace INT_QueryExceptionStatus with #include <ex_public.h>. |
| 106 | * |
| 107 | * 09 08 2017 da.li |
| 108 | * [MOLY00274163] [Sylvia] Driver porting |
| 109 | * Build warning(error) fix. |
| 110 | * |
| 111 | * 09 07 2017 da.li |
| 112 | * [MOLY00274163] [Sylvia] Driver porting |
| 113 | * UART driver porting for Sylvia. |
| 114 | * |
| 115 | * 07 13 2017 shenghui.shi |
| 116 | * [MOLY00263518] Update UART driver test code |
| 117 | * fix build error |
| 118 | * |
| 119 | * 07 13 2017 shenghui.shi |
| 120 | * [MOLY00263518] Update UART driver test code |
| 121 | * update UART driver |
| 122 | * |
| 123 | * 06 12 2017 flamingo.wang |
| 124 | * [MOLY00244966] [ZION][IDC] add chip define of MT6739 in idc driver |
| 125 | * Add MT6739 define |
| 126 | * |
| 127 | * 06 12 2017 flamingo.wang |
| 128 | * [MOLY00254599] Normal mode UARTDriver���ܳ�Log |
| 129 | * norm uart mode print log fix |
| 130 | * |
| 131 | * 04 24 2017 shenghui.shi |
| 132 | * [MOLY00243727] update UART PDN feature |
| 133 | * update UART pdn feature,to void system could not entry DCM issue. |
| 134 | * |
| 135 | * 03 07 2017 shenghui.shi |
| 136 | * [MOLY00233604] UART print driver update for baudrate |
| 137 | * update UART driver for uart include. |
| 138 | * |
| 139 | * 02 07 2017 shenghui.shi |
| 140 | * [MOLY00228102] [Bianco Bring-up]UMOLYA uart driver update |
| 141 | * update UART dbgprint driver |
| 142 | * |
| 143 | * 09 22 2016 yuke.ren |
| 144 | * [MOLY00204183] Fix UART HDMA usage |
| 145 | * set RX SEL for RX channel |
| 146 | * |
| 147 | * |
| 148 | * 09 20 2016 yuke.ren |
| 149 | * [MOLY00204183] Fix UART HDMA usage |
| 150 | * . |
| 151 | * |
| 152 | * 07 15 2016 shenghui.shi |
| 153 | * [MOLY00171995] update uart driver for 93 |
| 154 | * update UART cloclk to 26MHz (after GEN93 Bitfile 2016071380) |
| 155 | * |
| 156 | * 05 19 2016 shenghui.shi |
| 157 | * [MOLY00175766] NVRAM update for UMOLYA |
| 158 | * modify UART 26MHz macro to 20.8MHz to match real clock freq. |
| 159 | * |
| 160 | * 03 30 2016 shenghui.shi |
| 161 | * [MOLY00171995] update uart driver for 93 |
| 162 | * update uart driver for 93. |
| 163 | * |
| 164 | * 01 27 2016 shenghui.shi |
| 165 | * [MOLY00081492] [UART] update uart driver |
| 166 | * use sst_get_exception_count() to replace INT_Exception_Enter. |
| 167 | * |
| 168 | * 01 22 2016 shenghui.shi |
| 169 | * [MOLY00162415] [Coverity inspect] driver coding issue fix |
| 170 | * [coverity inspect]driver coding issue fix |
| 171 | * |
| 172 | * 01 15 2016 shenghui.shi |
| 173 | * [MOLY00081492] [UART] update uart driver |
| 174 | * Merging |
| 175 | * |
| 176 | * update UART debug driver to use HMDA mode. |
| 177 | * |
| 178 | * 10 13 2015 shenghui.shi |
| 179 | * [MOLY00145129] fixed EWS build error which caused by UART IRQ naming exchange on ELBRUS |
| 180 | * . |
| 181 | * |
| 182 | * 10 13 2015 shenghui.shi |
| 183 | * [MOLY00145129] fixed EWS build error which caused by UART IRQ naming exchange on ELBRUS |
| 184 | * . |
| 185 | * |
| 186 | * 08 17 2015 shenghui.shi |
| 187 | * [MOLY00137551] [MOLY_LINUX_DOWNLOADBIN notify] ELBRUS_FPGA(BASIC) build error |
| 188 | * <saved by Perforce> |
| 189 | * |
| 190 | * 06 18 2015 da.li |
| 191 | * [MOLY00121478] [UMOLY][JADE]UART driver compile error fix |
| 192 | * Compile error fix on JADE(MT6755). |
| 193 | * |
| 194 | * 06 15 2015 da.li |
| 195 | * [MOLY00121478] [UMOLY][JADE]UART driver compile error fix |
| 196 | * UART driver compile error fix on MT6755(JADE). |
| 197 | * |
| 198 | * 05 11 2015 shenghui.shi |
| 199 | * [MOLY00081492] [UART] update uart driver |
| 200 | * pdn clear UART/GDMA clock before use UART driver |
| 201 | * |
| 202 | * 04 02 2015 tero.jarkko |
| 203 | * [MOLY00094214] [System Service][MOLY Kernel Internal Request]Modify driver HISR to individual HISR |
| 204 | * |
| 205 | * 03 25 2015 shenghui.shi |
| 206 | * [MOLY00104131] [UMOLY][Klocwork] Fix potential code defect in uart driver |
| 207 | * . |
| 208 | * |
| 209 | * 02 11 2015 shenghui.shi |
| 210 | * [MOLY00081492] [UART] update uart driver |
| 211 | * fix ews build error |
| 212 | * |
| 213 | * 02 11 2015 shenghui.shi |
| 214 | * [MOLY00081492] [UART] update uart driver |
| 215 | * 1. add sw escape feature to UMOLY |
| 216 | * 2. phase out VFIFO hw code in devdrv_common.c |
| 217 | * |
| 218 | * 12 18 2014 shenghui.shi |
| 219 | * [MOLY00081492] [UART] update uart driver |
| 220 | * . |
| 221 | * |
| 222 | * 11 17 2014 shenghui.shi |
| 223 | * [MOLY00084720] update UMOLY HDMA HISR |
| 224 | * move GDMA2 to DEVDRV share HISR |
| 225 | * |
| 226 | * 11 17 2014 shenghui.shi |
| 227 | * [MOLY00084720] update UMOLY HDMA HISR |
| 228 | * . |
| 229 | * |
| 230 | * 05 13 2014 shenghui.shi |
| 231 | * [MOLY00062001] TK6291 UART Fix EWS error |
| 232 | * . |
| 233 | * |
| 234 | * 05 13 2014 shenghui.shi |
| 235 | * [MOLY00065467] [TK6291] update UART driver for TK6291 |
| 236 | * update UART clock to 26MHZ for TK6291 |
| 237 | * |
| 238 | * 04 08 2014 shenghui.shi |
| 239 | * [MOLY00062001] TK6291 UART Fix EWS error |
| 240 | * . |
| 241 | * |
| 242 | * 04 08 2014 shenghui.shi |
| 243 | * [MOLY00062003] [MakeFile] [Modify Common Makefile] Disable __CUST_NEW__ |
| 244 | * update a patch for no __FPGA__ macro |
| 245 | * |
| 246 | * 04 08 2014 shenghui.shi |
| 247 | * [MOLY00062001] TK6291 UART Fix EWS error |
| 248 | * update uart driver to fix ews error |
| 249 | * |
| 250 | * 01 10 2014 shenghui.shi |
| 251 | * [MOLY00043671] [klocwork_95][LTE] in uart.c, line 428 |
| 252 | * . |
| 253 | * |
| 254 | * 01 10 2014 shenghui.shi |
| 255 | * [MOLY00043674] [klocwork_95][LTE] in uart.c, line 2247 |
| 256 | * update uart driver to fix uninitial risk. |
| 257 | * |
| 258 | * 01 09 2014 shenghui.shi |
| 259 | * [MOLY00052974] MT6595 UART driver merge to Trunk |
| 260 | * MT6595 uart driver merge to MOLY TRUNK |
| 261 | * |
| 262 | * 12 10 2013 shenghui.shi |
| 263 | * [MOLY00049628] MT6595 UART merge to Trunk |
| 264 | * . |
| 265 | * |
| 266 | * 10 29 2013 shenghui.shi |
| 267 | * [MOLY00044172] uart all memory dump |
| 268 | * . |
| 269 | * |
| 270 | * 10 02 2013 vend_brandon-hy.lin |
| 271 | * [MOLY00040071] [MT6290] SRCLKEN cannot be toggled when LTE sleep feature is enable |
| 272 | * Fix SRCLEN_OUT0 cannot be toggle when LTE sleep feature is enable. |
| 273 | * Solution: enlarge transmission time of dummy fdma patch. |
| 274 | * |
| 275 | * 09 13 2013 shenghui.shi |
| 276 | * [MOLY00035078] [MT6290][PDN] Enable GDMA & HDMA related module PDN support |
| 277 | * move uart pdn_clr from dcl_tty.c to uart.c |
| 278 | * |
| 279 | * 09 03 2013 shenghui.shi |
| 280 | * [MOLY00036272] open UART SlEEP_EN feature |
| 281 | * open uart SLEEP_EN feature when MTK_SLEEP_EN enable. |
| 282 | * |
| 283 | * 08 29 2013 shenghui.shi |
| 284 | * [MOLY00035659] [MOLY] [MT6290][SLT] SLT Tool Communication API for driver test |
| 285 | * . |
| 286 | * |
| 287 | * 08 29 2013 shenghui.shi |
| 288 | * [MOLY00035768] fix uart build warnning |
| 289 | * . |
| 290 | * |
| 291 | * 08 26 2013 shenghui.shi |
| 292 | * [MOLY00035078] [MT6290][PDN] Enable GDMA & HDMA related module PDN support |
| 293 | * add uart PDN feature |
| 294 | * |
| 295 | * 08 14 2013 shenghui.shi |
| 296 | * [MOLY00033671] update exception uart driver for void use qbm_dest_q |
| 297 | * . |
| 298 | * |
| 299 | * 08 12 2013 shenghui.shi |
| 300 | * [MOLY00033396] update dummy_fdma() patch |
| 301 | * . |
| 302 | * |
| 303 | * 08 02 2013 shenghui.shi |
| 304 | * [MOLY00032203] update dummy_fdma for GDMA sleep ack issue |
| 305 | * update dummy_fdma() for GDMA sleep ack issue |
| 306 | * 08/02/2013 shenghui.shi |
| 307 | * [MOLY00032203]update dummy_fdma() for GDMA sleep ack issue |
| 308 | * |
| 309 | * 07 29 2013 shenghui.shi |
| 310 | * [MOLY00030921] [MT6290]Low Power Feature patch back from CBr |
| 311 | * merge UART dummy_fdma() patch from Branch to Trunk. |
| 312 | * |
| 313 | * 04 24 2013 shenghui.shi |
| 314 | * [MOLY00020330] MT6290 UART driver update |
| 315 | * uart driver update: modify the uart_hdma_isr(). |
| 316 | * |
| 317 | * 04 03 2013 shenghui.shi |
| 318 | * [MOLY00012769] IOMUX driver |
| 319 | * update UART driver: add ASIC version for UART_CLOCK |
| 320 | * |
| 321 | * 02 04 2013 ansel.liao |
| 322 | * [MOLY00006575] Add UART/HDMA Driver |
| 323 | * rename: 7208 -> 6290 |
| 324 | * |
| 325 | * 01 29 2013 ansel.liao |
| 326 | * [MOLY00006575] Add UART/HDMA Driver |
| 327 | * Integration change. |
| 328 | * |
| 329 | * 01 22 2013 ansel.liao |
| 330 | * [MOLY00006575] USIM driver modification |
| 331 | * *: remove an en-Q situation which won't occur |
| 332 | * |
| 333 | * 01 15 2013 ansel.liao |
| 334 | * [MOLY00006575] Add UART/HDMA Driver |
| 335 | * *: recover U_GetUARTByte function, WCP3/SE7/SD9 Chuanbo need this function to verify MSDC driver (port from MT6280) |
| 336 | * |
| 337 | * 01 14 2013 ansel.liao |
| 338 | * [MOLY00006575] Add UART/HDMA Driver |
| 339 | * Integration change. |
| 340 | * |
| 341 | * 01 04 2013 ansel.liao |
| 342 | * [MOLY00006575] Add UART/HDMA Driver |
| 343 | * *: clear rx data timeout counter periodly to prevent XON/XOFF of sw flow control to destroy rx data timeout mechanism |
| 344 | * |
| 345 | * 01 02 2013 ansel.liao |
| 346 | * [MOLY00006575] Add UART/HDMA Driver |
| 347 | * *: does not destroy rx queue when head of queue is null |
| 348 | * |
| 349 | * 12 26 2012 ansel.liao |
| 350 | * [MOLY00006575] Add UART/HDMA Driver |
| 351 | * Integration change. |
| 352 | * |
| 353 | * 12 25 2012 ansel.liao |
| 354 | * [MOLY00006575] Add UART/HDMA Driver |
| 355 | * *: free all TGPD/RGPD when TTY_CMD_EXCEPTION_CLEAR_CHANNEL is get |
| 356 | * |
| 357 | * 12 19 2012 ansel.liao |
| 358 | * [MOLY00006575] Add UART/HDMA Driver |
| 359 | * Integration change. |
| 360 | * |
| 361 | * 12 06 2012 ansel.liao |
| 362 | * [MOLY00006575] Add UART/HDMA Driver |
| 363 | * Integration change. |
| 364 | * |
| 365 | * 11 30 2012 ansel.liao |
| 366 | * [MOLY00006575] Add UART/HDMA Driver |
| 367 | * add dbg_flush and corresponding drvtest |
| 368 | * |
| 369 | * 11 27 2012 ansel.liao |
| 370 | * [MOLY00006575] Add UART/HDMA Driver |
| 371 | * update stress test |
| 372 | * |
| 373 | * 11 25 2012 ansel.liao |
| 374 | * [MOLY00006575] Add UART/HDMA Driver |
| 375 | * update UART stress test |
| 376 | * |
| 377 | * 11 23 2012 ansel.liao |
| 378 | * [MOLY00006575] Add UART/HDMA Driver |
| 379 | * Add UART/HDMA driver |
| 380 | ****************************************************************************/ |
| 381 | #include "drv_features.h" |
| 382 | #include "kal_general_types.h" |
| 383 | #include "kal_public_api.h" |
| 384 | #ifdef KTEST_UART_TRACES |
| 385 | #include "kal_hrt_api.h" |
| 386 | #endif |
| 387 | #include "kal_public_defs.h" |
| 388 | #include "hisr_config.h" |
| 389 | #include "stack_msgs.h" |
| 390 | #include "stack_ltlcom.h" /* Task message communiction */ |
| 391 | #include "drv_comm.h" |
| 392 | #include "reg_base.h" |
| 393 | #include "uart_hw.h" |
| 394 | #include "bmd.h" |
| 395 | #include "intrCtrl.h" |
| 396 | #include "drvpdn.h" |
| 397 | #include "stack_config.h" /*MOD_UART1_HISR,MOD_UART2_HISR*/ |
| 398 | #include "uart_sw.h" |
| 399 | #include "uart_internal.h" |
| 400 | #include "dcl.h" |
| 401 | #include "uart_gpd.h" |
| 402 | #include "drv_msgid.h" |
| 403 | #include "devdrv_ls.h" |
| 404 | #include "pll.h" |
| 405 | #include "drv_gdma.h" |
| 406 | // for HDMA |
| 407 | #include "qmu_bm.h" |
| 408 | #include "qmu_bm_size.h" |
| 409 | #include "qmu_bm_util.h" |
| 410 | #include "init.h" |
| 411 | #include "cpu.h" |
| 412 | #include "cache_sw.h" |
| 413 | #include <ex_item.h> |
| 414 | #include <ex_public.h> |
| 415 | #if defined(__HMU_ENABLE__) |
| 416 | #include "hmu.h" |
| 417 | #include "hmu_conf_data.h" |
| 418 | #endif |
| 419 | #include "us_timer.h" |
| 420 | |
| 421 | #if !defined(DRV_UART_OFF) |
| 422 | |
| 423 | #define UART_CLOCK (26*1000000) |
| 424 | |
| 425 | #ifndef MD_IRQID_MDGDMA2 |
| 426 | #define MD_IRQID_MDGDMA2 PS_IRQID_MDGDMA2 |
| 427 | #endif |
| 428 | |
| 429 | // To enable or disable META Mode SW Escaping, defined this macro to enable it |
| 430 | #define META_MODE_SW_ESCAPING |
| 431 | #define UART_ESCAPE_CHAR 0x77 |
| 432 | #define UART_ECPT_MAX_TIMEOUT 5000 //5s |
| 433 | |
| 434 | kal_uint8 UART_handle; |
| 435 | |
| 436 | tty_excp_hif_state uart_ecpt_tx_state[MAX_UART_PORT_NUM] = |
| 437 | { |
| 438 | HIF_STATE_NORMAL, |
| 439 | HIF_STATE_NORMAL, |
| 440 | }; |
| 441 | UART_ecpt_timer_t uart_ecpt_timer[MAX_UART_PORT_NUM]; |
| 442 | UARTStruct UARTPort[MAX_UART_PORT_NUM]; |
| 443 | |
| 444 | #ifdef DRV_DEBUG |
| 445 | kal_uint8 uart_initialize[MAX_UART_PORT_NUM]; |
| 446 | #endif /*DRV_DEBUG*/ |
| 447 | |
| 448 | #define DEBUG_PORT uart_port1 // Use UART1 as debug port |
| 449 | #define DEBUG_BAUDRATE 115200 |
| 450 | kal_int32 init_log_fail_count = 0; |
| 451 | kal_bool mutex_status = KAL_FALSE; |
| 452 | kal_mutexid mutexid = 0; |
| 453 | |
| 454 | #if __LTE_ONLY__ |
| 455 | #define MCU_BOOT_SPEED 40040000 |
| 456 | #else |
| 457 | //MCU booting speed 26M/baudrate(bits/second) = 260M/baudrate(bytes/second) = MCU tick/bytes |
| 458 | #define MCU_BOOT_SPEED 260000000 //Currently all chips use 26M, 260M because of count [MCU ticks/byte] |
| 459 | #endif |
| 460 | |
| 461 | kal_bool send_Txilm[MAX_UART_PORT_NUM] = {// change from kal_uint8 to kal_bool, avoid Warning 641: Converting enum 'kal_bool' to int" |
| 462 | KAL_FALSE, |
| 463 | KAL_FALSE, |
| 464 | }; |
| 465 | |
| 466 | kal_bool send_Rxilm[MAX_UART_PORT_NUM] = {// change from kal_uint8 to kal_bool, avoid Warning 641: Converting enum 'kal_bool' to int" |
| 467 | KAL_TRUE, |
| 468 | KAL_TRUE, |
| 469 | }; |
| 470 | |
| 471 | const VOID_FUNC UART_HISR[MAX_UART_PORT_NUM] = |
| 472 | { |
| 473 | UART1_HISR, |
| 474 | UART2_HISR, |
| 475 | }; |
| 476 | |
| 477 | const kal_uint32 UART_BaseAddr[MAX_UART_PORT_NUM] = |
| 478 | { |
| 479 | UART1_base, |
| 480 | UART2_base, |
| 481 | }; |
| 482 | #ifdef __DMA_UART_VIRTUAL_FIFO__ |
| 483 | kal_bool UART_VFIFO_support[MAX_UART_PORT_NUM] = |
| 484 | { |
| 485 | KAL_TRUE, |
| 486 | KAL_TRUE, |
| 487 | }; |
| 488 | |
| 489 | #else |
| 490 | kal_bool UART_VFIFO_support[MAX_UART_PORT_NUM] = |
| 491 | { |
| 492 | KAL_FALSE, |
| 493 | KAL_FALSE, |
| 494 | }; |
| 495 | #endif/*__DMA_UART_VIRTUAL_FIFO__*/ |
| 496 | |
| 497 | //Add for new internal func |
| 498 | void UART2_TrxHandler(void); |
| 499 | kal_uint8 UART_GetIRQCode(UART_PORT port); |
| 500 | void uart_qbm_virt_to_phy(void** pp_gpd_head, void** pp_gpd_tail); |
| 501 | void uart_qbm_phy_to_virt(void**pp_gpd_head, void**pp_gpd_tail); |
| 502 | void UART_META_PutBytes(UART_PORT port, void * gpd_head, void * gpd_tail); |
| 503 | kal_uint16 U_ExBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length, kal_uint8 *status, module_type ownerid); |
| 504 | void UART_META_ExBytes(UART_PORT port, void * gpd_head, void * gpd_tail); |
| 505 | |
| 506 | |
| 507 | |
| 508 | kal_uint8 uart_escape_state=0; |
| 509 | |
| 510 | extern UartDriver_strcut* pUart_CMD_FUNC[]; |
| 511 | #if defined(DRV_DEBUG_BUFFER_DMA_MODE) && !defined(KTEST_UART_TRACES) |
| 512 | kal_spinlockid print_buf_lock = 0; |
| 513 | #endif |
| 514 | //void dummy_fdma(kal_uint32 gdma_start); |
| 515 | |
| 516 | |
| 517 | void UART_Calback(void *parameter); |
| 518 | void U_ConfigEscape (UART_PORT port, kal_uint8 EscChar, kal_uint16 ESCGuardtime, module_type ownerid); |
| 519 | void UART_TrxHandler(void *parameter); |
| 520 | void UART_TxDMAHandler(void *parameter, kal_uint8 chk_done); |
| 521 | /*UART Customization */ |
| 522 | extern const UART_customize_function_struct *UART_GetFunc(void); |
| 523 | const UART_customize_function_struct *UartCustomFunc; |
| 524 | const UART_rings_struct *UART_rings; |
| 525 | kal_bool WaitForUARTTx[MAX_UART_PORT_NUM] = {KAL_FALSE}; |
| 526 | |
| 527 | #define ASSERT_WAIT_LOOP 0xffffffff |
| 528 | #define VFIFO_SWITCH_WAIT_LOOP 100000 |
| 529 | kal_uint16 DELAY_FOR_PUTBYTE = 300; |
| 530 | |
| 531 | // for HDMA |
| 532 | void *uart_tgpd_head[3]; |
| 533 | void *uart_rgpd_head[3]; |
| 534 | void *uart_tgpd_tail[3]; |
| 535 | void *uart_rgpd_tail[3]; |
| 536 | |
| 537 | void *uart_wait_tgpd_head[3]; |
| 538 | void *uart_wait_tgpd_tail[3]; |
| 539 | |
| 540 | |
| 541 | // for UART Exception mode |
| 542 | kal_uint8 uart_ecpt_bps_buf[UART_ECPT_QBM_BPS_BUF_SZ]; |
| 543 | kal_bool uart_ecpt_init = KAL_FALSE; |
| 544 | uart_bps_gpd_t uart_bps_gpd; |
| 545 | |
| 546 | |
| 547 | #if defined(DRV_UART_MEMORY_TRACE) |
| 548 | UART_DRV_DBG_STRUCT UART_DRV_DBG_INFO_DATA; |
| 549 | /*uart_drv_dbg_trace(NAND_READ_START,drv_get_current_time(),0,0);*/ |
| 550 | void uart_drv_dbg_trace(kal_uint16 index, kal_uint32 time, kal_uint32 data1, kal_uint32 data2) |
| 551 | { |
| 552 | kal_uint32 savedMask; |
| 553 | savedMask = SaveAndSetIRQMask(); |
| 554 | { |
| 555 | UART_DRV_DBG_INFO_DATA.dbg_data[UART_DRV_DBG_INFO_DATA.dbg_data_idx&(MAX_UART_DRV_DBG_INFO_SIZE-1)].tag = index; |
| 556 | UART_DRV_DBG_INFO_DATA.dbg_data[UART_DRV_DBG_INFO_DATA.dbg_data_idx&(MAX_UART_DRV_DBG_INFO_SIZE-1)].time = time; |
| 557 | UART_DRV_DBG_INFO_DATA.dbg_data[UART_DRV_DBG_INFO_DATA.dbg_data_idx&(MAX_UART_DRV_DBG_INFO_SIZE-1)].data1 = data1; |
| 558 | UART_DRV_DBG_INFO_DATA.dbg_data[UART_DRV_DBG_INFO_DATA.dbg_data_idx&(MAX_UART_DRV_DBG_INFO_SIZE-1)].data2 = data2; |
| 559 | UART_DRV_DBG_INFO_DATA.dbg_data_idx++; |
| 560 | } |
| 561 | RestoreIRQMask(savedMask); |
| 562 | } |
| 563 | #endif //#if defined(DRV_UART_MEMORY_TRACE) |
| 564 | |
| 565 | |
| 566 | |
| 567 | void uart_customize_init(void) |
| 568 | { |
| 569 | /* retreive the function table */ |
| 570 | UartCustomFunc=UART_GetFunc(); |
| 571 | /* use the entry in function table to retreive desired information */ |
| 572 | UART_rings = UartCustomFunc->UART_Get_Data(); |
| 573 | |
| 574 | } |
| 575 | |
| 576 | kal_bool UART_IsVfifoSetting(UART_PORT port, UART_TxRx_VFIFO_support vs) |
| 577 | { |
| 578 | #ifdef __DMA_UART_VIRTUAL_FIFO__ |
| 579 | if(port >= MAX_UART_PORT_NUM) |
| 580 | return KAL_FALSE; |
| 581 | if(vs != NONE_VFIFO) |
| 582 | return UART_VFIFO_support[port]; |
| 583 | else //NONE_VFIFO |
| 584 | return (kal_bool)!UART_VFIFO_support[port]; |
| 585 | #else |
| 586 | if(vs == NONE_VFIFO) |
| 587 | return KAL_TRUE; |
| 588 | else //NONE_VFIFO |
| 589 | return KAL_FALSE; |
| 590 | #endif |
| 591 | } |
| 592 | |
| 593 | /*check if chip can support auto escape*/ |
| 594 | kal_bool uart_support_autoescape(void) |
| 595 | { |
| 596 | return KAL_TRUE; |
| 597 | } |
| 598 | |
| 599 | void UART_sendilm(UART_PORT port, msg_type msgid) {} |
| 600 | |
| 601 | //Add for U_ClrRxBuffer and U_ClrTxBuffer, reduce code size |
| 602 | void UART_Set_NormalFlowControl(UART_PORT port) |
| 603 | { |
| 604 | if (UARTPort[port].DCB.flowControl == fc_none) |
| 605 | DRV_UART_WriteReg(UART_IER(UART_BaseAddr[port]),IER_HW_NORMALINTS); |
| 606 | else if (UARTPort[port].DCB.flowControl == fc_hw) |
| 607 | DRV_UART_WriteReg(UART_IER(UART_BaseAddr[port]),IER_HW_NORMALINTS); |
| 608 | else if (UARTPort[port].DCB.flowControl == fc_sw) |
| 609 | DRV_UART_WriteReg(UART_IER(UART_BaseAddr[port]),IER_SW_NORMALINTS); |
| 610 | } |
| 611 | |
| 612 | void U_ClrRxBuffer(UART_PORT port, module_type ownerid) /*clear sw buffer*/ |
| 613 | { |
| 614 | kal_uint32 savedMask; |
| 615 | |
| 616 | savedMask = SaveAndSetIRQMask(); |
| 617 | BWrite_addr(UARTPort[port].Rx_Buffer) = 0; |
| 618 | BRead_addr(UARTPort[port].Rx_Buffer) = 0; |
| 619 | |
| 620 | // UART_Set_NormalFlowControl(port); |
| 621 | |
| 622 | send_Rxilm[port] = KAL_TRUE; |
| 623 | RestoreIRQMask(savedMask); |
| 624 | |
| 625 | // HDMA procedure |
| 626 | uart_en_q_de_q_with_mutex(port, UART_RX, UART_DE_Q_ALL, NULL, NULL); |
| 627 | // end of HDMA procedure |
| 628 | |
| 629 | } |
| 630 | |
| 631 | void U_ClrTxBuffer(UART_PORT port, module_type ownerid) /*clear sw buffer*/ |
| 632 | { |
| 633 | |
| 634 | kal_uint32 savedMask; |
| 635 | |
| 636 | savedMask = SaveAndSetIRQMask(); |
| 637 | |
| 638 | BWrite_addr(UARTPort[port].Tx_Buffer) = 0; |
| 639 | BRead_addr(UARTPort[port].Tx_Buffer) = 0; |
| 640 | |
| 641 | // UART_Set_NormalFlowControl(port); |
| 642 | |
| 643 | send_Txilm[port] = KAL_TRUE; |
| 644 | |
| 645 | RestoreIRQMask(savedMask); |
| 646 | |
| 647 | |
| 648 | // HDMA procedure |
| 649 | uart_en_q_de_q_with_mutex(port, UART_TX, UART_DE_Q_ALL, NULL, NULL); |
| 650 | // end of HDMA procedure |
| 651 | } |
| 652 | void UART_EnableTX(UART_PORT port, kal_bool enable) |
| 653 | { |
| 654 | if (port < MAX_UART_PORT_NUM) |
| 655 | { |
| 656 | UARTPort[port].EnableTX= enable; |
| 657 | if(enable == KAL_TRUE){ |
| 658 | EnableTxIntr(UART_BaseAddr[port]); |
| 659 | }else{ |
| 660 | DisableTxIntr(UART_BaseAddr[port]); |
| 661 | } |
| 662 | }else{ |
| 663 | ASSERT(0); |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | void UART_SleepOnTx_Enable(UART_PORT port, UART_SLEEP_ON_TX enable_flag) {} |
| 668 | |
| 669 | kal_uint16 U_GetBytesAvail(UART_PORT port) |
| 670 | { |
| 671 | kal_uint16 real_count; |
| 672 | |
| 673 | Buf_GetBytesAvail(&(UARTPort[port].Rx_Buffer),real_count); |
| 674 | |
| 675 | return real_count; |
| 676 | } |
| 677 | |
| 678 | kal_uint16 U_GetTxRoomLeft(UART_PORT port) |
| 679 | { |
| 680 | kal_uint16 real_count; |
| 681 | |
| 682 | Buf_GetRoomLeft(&(UARTPort[port].Tx_Buffer),real_count); |
| 683 | return real_count; |
| 684 | } |
| 685 | |
| 686 | #ifndef __ROMSA_SUPPORT__ /* Note: for ROM code */ |
| 687 | |
| 688 | #if defined(__MTK_INTERNAL__) && defined(__MTK_TARGET__) |
| 689 | kal_uint16 DEVDRV_LS_INTERNCODE |
| 690 | #else |
| 691 | kal_uint16 |
| 692 | #endif |
| 693 | U_GetTxISRRoomLeft(UART_PORT port) |
| 694 | { |
| 695 | return 0; |
| 696 | } |
| 697 | |
| 698 | #endif /* Note: for ROM code */ |
| 699 | |
| 700 | |
| 701 | /* |
| 702 | * FUNCTION |
| 703 | * GetUARTByte |
| 704 | * |
| 705 | * DESCRIPTION |
| 706 | * This function is to read data from UART |
| 707 | * |
| 708 | * CALLS |
| 709 | * This function is to receive data through UART |
| 710 | * |
| 711 | * PARAMETERS |
| 712 | * None |
| 713 | * |
| 714 | * RETURNS |
| 715 | * the data from UART |
| 716 | * |
| 717 | * GLOBALS AFFECTED |
| 718 | * external_global |
| 719 | */ |
| 720 | kal_uint8 U_GetUARTByte(UART_PORT port) |
| 721 | { |
| 722 | kal_uint8 data; |
| 723 | kal_uint8 U_GetUARTByteWithTimeOut(UART_PORT port, kal_uint8* ch, kal_uint32 timeout_value);//liming add statement |
| 724 | while(!U_GetUARTByteWithTimeOut(port, &data, 0xffffffff)); // for descrease code size (U_GetUARTByte &U_GetUARTByteTimeout) |
| 725 | return data; |
| 726 | } |
| 727 | |
| 728 | |
| 729 | /* |
| 730 | * FUNCTION |
| 731 | * GetUARTByte |
| 732 | * |
| 733 | * DESCRIPTION |
| 734 | * This function is to read data from UART |
| 735 | * |
| 736 | * CALLS |
| 737 | * This function is to receive data through UART |
| 738 | * |
| 739 | * PARAMETERS |
| 740 | * None |
| 741 | * |
| 742 | * RETURNS |
| 743 | * the data from UART |
| 744 | * |
| 745 | * GLOBALS AFFECTED |
| 746 | * external_global |
| 747 | */ |
| 748 | kal_uint8 U_GetUARTByteWithTimeOut(UART_PORT port, kal_uint8* ch, kal_uint32 timeout_value) |
| 749 | { |
| 750 | kal_uint8 res_byte = 0; |
| 751 | kal_uint8 data; |
| 752 | |
| 753 | while(timeout_value != 0) |
| 754 | { |
| 755 | kal_uint16 LSR; |
| 756 | LSR = DRV_UART_Reg(UART_LSR(UART_BaseAddr[port])); |
| 757 | if (LSR & UART_LSR_DR) |
| 758 | { |
| 759 | data = (kal_uint8)DRV_UART_Reg(UART_RBR(UART_BaseAddr[port])); |
| 760 | res_byte = 1; |
| 761 | //only META port use old flow control escape character, |
| 762 | if( (kal_query_boot_mode()== FACTORY_BOOT && UARTPort[port].DCB.flowControl==fc_sw && UARTPort[port].ownerid==MOD_DHL_READER)|| |
| 763 | (uart_support_autoescape()==KAL_FALSE&&UARTPort[port].DCB.flowControl==fc_sw)) |
| 764 | { |
| 765 | if(uart_escape_state==0) |
| 766 | { |
| 767 | if(data==0x77) |
| 768 | uart_escape_state=0x77; |
| 769 | else |
| 770 | { |
| 771 | *ch = data; |
| 772 | break; |
| 773 | } |
| 774 | } |
| 775 | else if (uart_escape_state==0x77) |
| 776 | { |
| 777 | uart_escape_state=0x0; |
| 778 | |
| 779 | if (data == 0x01) |
| 780 | { |
| 781 | *ch = UARTPort[port].DCB.xonChar; |
| 782 | break; |
| 783 | } |
| 784 | else if (data == 0x02) |
| 785 | { |
| 786 | *ch = UARTPort[port].DCB.xoffChar; |
| 787 | break; |
| 788 | } |
| 789 | else if (data == 0x03) |
| 790 | { |
| 791 | *ch = 0x77; |
| 792 | break; |
| 793 | } |
| 794 | } |
| 795 | } |
| 796 | else |
| 797 | { |
| 798 | *ch = data; |
| 799 | break; |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | --timeout_value; |
| 804 | } |
| 805 | |
| 806 | return res_byte; |
| 807 | } |
| 808 | |
| 809 | /* |
| 810 | * FUNCTION |
| 811 | * PutUARTByte |
| 812 | * |
| 813 | * DESCRIPTION |
| 814 | * This function is to write data to UART |
| 815 | * |
| 816 | * CALLS |
| 817 | * This function is to transmit data through UART |
| 818 | * |
| 819 | * PARAMETERS |
| 820 | * None |
| 821 | * |
| 822 | * RETURNS |
| 823 | * the data from UART |
| 824 | * |
| 825 | * GLOBALS AFFECTED |
| 826 | * external_global |
| 827 | */ |
| 828 | void PutUARTRingBufferData(UART_PORT port) {} |
| 829 | |
| 830 | void UART_PutUARTByte_limited(UART_PORT port, kal_uint8 data) |
| 831 | { |
| 832 | volatile kal_uint16 LSR; |
| 833 | kal_uint32 count = 0; |
| 834 | |
| 835 | if(init_log_fail_count > 3) |
| 836 | { |
| 837 | DRV_UART_WriteReg(UART_THR(UART_BaseAddr[port]),(kal_uint16)data); |
| 838 | return; |
| 839 | } |
| 840 | |
| 841 | while(1) |
| 842 | { |
| 843 | LSR = DRV_UART_Reg(UART_LSR(UART_BaseAddr[port])); |
| 844 | count++; |
| 845 | if ( LSR & UART_LSR_THRE ) |
| 846 | { |
| 847 | DRV_UART_WriteReg(UART_THR(UART_BaseAddr[port]),(kal_uint16)data); |
| 848 | break; |
| 849 | } |
| 850 | else if(count > (MCU_BOOT_SPEED/DEBUG_BAUDRATE) ) |
| 851 | { |
| 852 | DRV_UART_WriteReg(UART_THR(UART_BaseAddr[port]),(kal_uint16)data); //don't care the pending |
| 853 | init_log_fail_count++; |
| 854 | break; |
| 855 | } |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | void U_PutUARTByte(UART_PORT port, kal_uint8 data) { |
| 860 | kal_uint16 LSR; |
| 861 | |
| 862 | while(1) |
| 863 | { |
| 864 | LSR = DRV_UART_Reg(UART_LSR(UART_BaseAddr[port])); |
| 865 | if ( LSR & UART_LSR_THRE ) |
| 866 | { |
| 867 | DRV_UART_WriteReg(UART_THR(UART_BaseAddr[port]),(kal_uint16)data); |
| 868 | break; |
| 869 | } |
| 870 | } |
| 871 | } |
| 872 | void PutUARTData(UART_PORT port, kal_uint8 escape_char, kal_uint8 data) |
| 873 | { |
| 874 | if(port >= MAX_UART_PORT_NUM) |
| 875 | return; |
| 876 | |
| 877 | //only META port use old flow control escape character, |
| 878 | if((kal_query_boot_mode() == FACTORY_BOOT && UARTPort[port].DCB.flowControl == fc_sw && UARTPort[port].ownerid == MOD_DHL_READER) |
| 879 | || (uart_support_autoescape() == KAL_FALSE && UARTPort[port].DCB.flowControl == fc_sw)) |
| 880 | { |
| 881 | if (data == UARTPort[port].DCB.xonChar) |
| 882 | { |
| 883 | pUart_CMD_FUNC[port]->PutUARTByte(port, escape_char); |
| 884 | pUart_CMD_FUNC[port]->PutUARTByte(port, 0x01); |
| 885 | } |
| 886 | else if (data == UARTPort[port].DCB.xoffChar) |
| 887 | { |
| 888 | pUart_CMD_FUNC[port]->PutUARTByte(port, escape_char); |
| 889 | pUart_CMD_FUNC[port]->PutUARTByte(port, 0x02); |
| 890 | } |
| 891 | else if (data == escape_char) |
| 892 | { |
| 893 | pUart_CMD_FUNC[port]->PutUARTByte(port, escape_char); |
| 894 | pUart_CMD_FUNC[port]->PutUARTByte(port, 0x03); |
| 895 | } |
| 896 | else |
| 897 | { |
| 898 | pUart_CMD_FUNC[port]->PutUARTByte(port, data); |
| 899 | } |
| 900 | } |
| 901 | else |
| 902 | { |
| 903 | pUart_CMD_FUNC[port]->PutUARTByte(port, data); |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | void PutUARTByteDelay(UART_PORT port, kal_uint8 data) |
| 908 | { |
| 909 | kal_uint16 LSR; |
| 910 | kal_uint16 i; |
| 911 | if(port >= MAX_UART_PORT_NUM) |
| 912 | return; |
| 913 | |
| 914 | while(1) |
| 915 | { |
| 916 | LSR = DRV_UART_Reg(UART_LSR(UART_BaseAddr[port])); |
| 917 | |
| 918 | if( LSR & UART_LSR_THRE ) |
| 919 | { |
| 920 | for(i = 0; i < DELAY_FOR_PUTBYTE; i++); //add delay... |
| 921 | DRV_UART_WriteReg(UART_THR(UART_BaseAddr[port]),(kal_uint16)data); |
| 922 | break; |
| 923 | } |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | void PutUARTDataDelay(UART_PORT port, kal_uint8 escape_char, kal_uint8 data) |
| 928 | { |
| 929 | if(port >= MAX_UART_PORT_NUM) |
| 930 | return; |
| 931 | |
| 932 | if( (kal_query_boot_mode()== FACTORY_BOOT && UARTPort[port].DCB.flowControl==fc_sw && UARTPort[port].ownerid==MOD_DHL_READER)|| |
| 933 | (uart_support_autoescape()==KAL_FALSE)) |
| 934 | { |
| 935 | if (data == UARTPort[port].DCB.xonChar) |
| 936 | { |
| 937 | PutUARTByteDelay(port, escape_char); |
| 938 | PutUARTByteDelay(port, 0x01); |
| 939 | } |
| 940 | else if (data == UARTPort[port].DCB.xoffChar) |
| 941 | { |
| 942 | PutUARTByteDelay(port, escape_char); |
| 943 | PutUARTByteDelay(port, 0x02); |
| 944 | } |
| 945 | else if (data == escape_char) |
| 946 | { |
| 947 | PutUARTByteDelay(port, escape_char); |
| 948 | PutUARTByteDelay(port, 0x03); |
| 949 | } |
| 950 | else |
| 951 | { |
| 952 | PutUARTByteDelay(port, data); |
| 953 | } |
| 954 | } |
| 955 | else |
| 956 | { |
| 957 | PutUARTByteDelay(port, data); |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | |
| 962 | kal_uint16 U_ExBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length, kal_uint8 *status, module_type ownerid) |
| 963 | { |
| 964 | kal_uint16 real_count= Length, index; |
| 965 | kal_uint16 data_count = 0; |
| 966 | |
| 967 | if((kal_query_boot_mode() == FACTORY_BOOT && UARTPort[port].DCB.flowControl == fc_sw && UARTPort[port].ownerid == MOD_DHL_READER) |
| 968 | || (uart_support_autoescape() == KAL_FALSE && UARTPort[port].DCB.flowControl == fc_sw)) |
| 969 | //if(0) |
| 970 | { |
| 971 | for(index = 0; (index < real_count) && (data_count < Length); index++) |
| 972 | { |
| 973 | // The following are for software flow control |
| 974 | if(uart_escape_state==0) |
| 975 | { |
| 976 | if(*(Buffaddr + index) == 0x77) |
| 977 | { |
| 978 | uart_escape_state=0x77; |
| 979 | } else |
| 980 | { |
| 981 | *(Buffaddr + data_count) = *(Buffaddr + index); |
| 982 | data_count++; |
| 983 | } |
| 984 | |
| 985 | } else if(uart_escape_state == 0x77) |
| 986 | { |
| 987 | switch(*(Buffaddr + index)) |
| 988 | { |
| 989 | case 0x01: |
| 990 | *(Buffaddr+data_count) = 0x11;//UARTPort[port].DCB.xonChar; |
| 991 | data_count++; |
| 992 | break; |
| 993 | case 0x02: |
| 994 | *(Buffaddr+data_count)= 0x13; //UARTPort[port].DCB.xoffChar; |
| 995 | data_count++; |
| 996 | break; |
| 997 | case 0x03: |
| 998 | *(Buffaddr + data_count) = 0x77; |
| 999 | data_count++; |
| 1000 | break; |
| 1001 | default: |
| 1002 | break; |
| 1003 | |
| 1004 | } |
| 1005 | uart_escape_state=0x0; |
| 1006 | } |
| 1007 | |
| 1008 | |
| 1009 | } |
| 1010 | }else{ |
| 1011 | for(index = 0; (index < real_count) && (data_count < Length); index++){ |
| 1012 | *(Buffaddr + data_count) = *(Buffaddr + index); |
| 1013 | data_count++; |
| 1014 | } |
| 1015 | |
| 1016 | } |
| 1017 | |
| 1018 | return data_count; |
| 1019 | } |
| 1020 | |
| 1021 | void UART_META_ExBytes(UART_PORT port, void * gpd_head, void * gpd_tail){ |
| 1022 | hdma_tbd_t *bd_ptr = NULL, *p_bd_cur =NULL; |
| 1023 | hdma_tgpd_t *gpd_ptr = NULL; |
| 1024 | kal_uint32 gpd_data_len=0, gpd_data_real_len = 0, bd_data_len=0, bd_data_real_len = 0; |
| 1025 | kal_uint8 *gpd_data_ptr=NULL, *bd_data_ptr=NULL; |
| 1026 | |
| 1027 | |
| 1028 | gpd_ptr = (hdma_tgpd_t*)gpd_head; |
| 1029 | while(1){ |
| 1030 | if (QBM_DES_GET_BDP(gpd_ptr)) { |
| 1031 | bd_ptr = QBM_DES_GET_DATAPTR(gpd_ptr); |
| 1032 | p_bd_cur = bd_ptr; |
| 1033 | while (1) { |
| 1034 | bd_data_len = QBM_DES_GET_DATALEN(p_bd_cur); |
| 1035 | if(bd_data_len>0){ |
| 1036 | bd_data_ptr = QBM_DES_GET_DATAPTR(p_bd_cur); |
| 1037 | QBM_CACHE_INVALID(bd_data_ptr, bd_data_len); |
| 1038 | bd_data_real_len = U_ExBytes(port,bd_data_ptr ,bd_data_len, NULL, UARTPort[port].ownerid); |
| 1039 | if (bd_data_len != bd_data_real_len) { |
| 1040 | QBM_CACHE_FLUSH(bd_data_ptr, bd_data_real_len); |
| 1041 | QBM_DES_SET_DATALEN(p_bd_cur, bd_data_real_len); |
| 1042 | QBM_CACHE_FLUSH(p_bd_cur, QBM_SIZE_TGPD); |
| 1043 | } |
| 1044 | } |
| 1045 | if (QBM_DES_GET_EOL(p_bd_cur)) { |
| 1046 | break; |
| 1047 | } |
| 1048 | p_bd_cur =(void *) QBM_DES_GET_NEXT(p_bd_cur); |
| 1049 | |
| 1050 | } |
| 1051 | } else{ |
| 1052 | gpd_data_len = QBM_DES_GET_DATALEN(gpd_ptr); |
| 1053 | if(gpd_data_len>0){ |
| 1054 | gpd_data_ptr = QBM_DES_GET_DATAPTR(gpd_ptr); |
| 1055 | QBM_CACHE_INVALID(gpd_data_ptr, gpd_data_len); |
| 1056 | gpd_data_real_len = U_ExBytes(port,gpd_data_ptr ,gpd_data_len, NULL, UARTPort[port].ownerid); |
| 1057 | if (gpd_data_len != gpd_data_real_len) { |
| 1058 | QBM_CACHE_FLUSH(gpd_data_ptr, gpd_data_real_len); |
| 1059 | QBM_DES_SET_DATALEN(gpd_ptr,gpd_data_real_len); |
| 1060 | QBM_CACHE_FLUSH(gpd_ptr, QBM_SIZE_TGPD); |
| 1061 | } |
| 1062 | } |
| 1063 | } |
| 1064 | if(gpd_ptr == gpd_tail) |
| 1065 | { |
| 1066 | break; |
| 1067 | } else |
| 1068 | { |
| 1069 | gpd_ptr = (void *) QBM_DES_GET_NEXT(gpd_ptr); |
| 1070 | } |
| 1071 | } |
| 1072 | } |
| 1073 | void UART_Boot_PutUARTBytes(UART_PORT port, kal_uint8 *data,kal_uint16 len) |
| 1074 | { |
| 1075 | volatile kal_uint16 LSR; |
| 1076 | kal_uint16 index; |
| 1077 | static kal_uint32 UART_Boot_Send_Count = 0; |
| 1078 | |
| 1079 | UART_Boot_Send_Count+=len; |
| 1080 | |
| 1081 | for(index=0;index<len;index++) |
| 1082 | UART_PutUARTByte_limited(port,*(data+index)); |
| 1083 | |
| 1084 | index = 0; |
| 1085 | while(1) //make sure tx already send out all data. |
| 1086 | { |
| 1087 | LSR = DRV_UART_Reg(UART_LSR(UART_BaseAddr[port])); |
| 1088 | if( LSR & UART_LSR_THRE ) |
| 1089 | { |
| 1090 | break; |
| 1091 | }else if( (MCU_BOOT_SPEED/DEBUG_BAUDRATE) < index++) |
| 1092 | { |
| 1093 | init_log_fail_count++; |
| 1094 | break; |
| 1095 | } |
| 1096 | } |
| 1097 | } |
| 1098 | |
| 1099 | void U_PutUARTBytes(UART_PORT port, kal_uint8 *data,kal_uint16 len) { |
| 1100 | kal_uint16 index; |
| 1101 | |
| 1102 | for(index=0;index<len;index++) |
| 1103 | pUart_CMD_FUNC[port]->PutUARTByte(port,*(data+index)); |
| 1104 | |
| 1105 | } |
| 1106 | void PutUARTDatas(UART_PORT port, kal_uint8 escape_char, kal_uint8 *data,kal_uint16 len) |
| 1107 | { |
| 1108 | kal_uint16 index; |
| 1109 | if(port >= MAX_UART_PORT_NUM) |
| 1110 | return; |
| 1111 | |
| 1112 | if( (sst_get_exception_count() > 0) && (0 == UARTPort[port].Tx_DMA_Ch) && (1500000 == UARTPort[port].DCB.baud)) |
| 1113 | for(index=0;index<len;index++) |
| 1114 | PutUARTDataDelay(port,escape_char,*(data+index)); |
| 1115 | else |
| 1116 | for(index=0;index<len;index++) |
| 1117 | PutUARTData(port,escape_char,*(data+index)); |
| 1118 | } |
| 1119 | |
| 1120 | void U_SetBaudRate(UART_PORT port, UART_baudrate baudrate, module_type ownerid) |
| 1121 | { |
| 1122 | kal_uint16 byte = 0; |
| 1123 | kal_uint32 freq_div = 1; |
| 1124 | kal_uint32 sample_count = 0; |
| 1125 | kal_uint32 UART_BASE; |
| 1126 | |
| 1127 | UART_BASE = UART_BaseAddr[port]; |
| 1128 | UARTPort[port].DCB.baud = baudrate; |
| 1129 | |
| 1130 | if(baudrate) |
| 1131 | { |
| 1132 | do { |
| 1133 | sample_count = (UART_CLOCK + (freq_div * baudrate / 2)) / (freq_div * baudrate); |
| 1134 | if(sample_count > 0xff) freq_div++; |
| 1135 | } while(sample_count > 0xff); |
| 1136 | } |
| 1137 | |
| 1138 | // configure register |
| 1139 | DRV_UART_WriteReg(UART_RATE_STEP(UART_BASE), 0x3); |
| 1140 | |
| 1141 | byte = DRV_Reg32(UART_LCR(UART_BASE)); // DLAB start |
| 1142 | DRV_WriteReg32(UART_LCR(UART_BASE), byte | UART_LCR_DLAB); |
| 1143 | |
| 1144 | DRV_WriteReg32(UART_DLL(UART_BASE), freq_div & 0xFF); |
| 1145 | DRV_WriteReg32(UART_DLH(UART_BASE), (freq_div >> 8) & 0xFF); |
| 1146 | |
| 1147 | DRV_UART_WriteReg(UART_STEP_COUNT(UART_BASE), sample_count - 1); |
| 1148 | DRV_UART_WriteReg(UART_SAMPLE_COUNT(UART_BASE), sample_count >> 1); |
| 1149 | DRV_UART_WriteReg(UART_LCR(UART_BASE), byte); // DLAB end |
| 1150 | } |
| 1151 | |
| 1152 | |
| 1153 | void UART_Bootup_Init() |
| 1154 | { |
| 1155 | UARTPort[DEBUG_PORT].ownerid = (module_type)( (kal_uint16)MOD_UART1_HISR + (kal_uint8) DEBUG_PORT); |
| 1156 | |
| 1157 | //Set SW flow control as equal to catcher default flow control |
| 1158 | DRV_UART_WriteReg(UART_LCR(UART1_base),0xbf); /* Enchance setting */ |
| 1159 | DRV_UART_WriteReg(UART_EFR(UART1_base),UART_EFR_SWFlowCtrlX1); |
| 1160 | |
| 1161 | //always open as new SW flow control, DHL under META will reset to disable |
| 1162 | { |
| 1163 | DRV_UART_WriteReg(UART_ESCAPE_DAT(UART1_base),0x77); |
| 1164 | DRV_UART_WriteReg(UART_ESCAPE_EN(UART1_base),0x1); |
| 1165 | } |
| 1166 | DRV_UART_WriteReg(UART_XON1(UART1_base),0x11); |
| 1167 | DRV_UART_WriteReg(UART_XOFF1(UART1_base),0x13); |
| 1168 | DRV_UART_WriteReg(UART_XON2(UART1_base),0x11); |
| 1169 | DRV_UART_WriteReg(UART_XOFF2(UART1_base),0x13); |
| 1170 | DRV_UART_WriteReg(UART_LCR(UART1_base),0x3); |
| 1171 | |
| 1172 | |
| 1173 | U_SetBaudRate(DEBUG_PORT, DEBUG_BAUDRATE, (module_type)( (kal_uint16)MOD_UART1_HISR + (kal_uint8) DEBUG_PORT)); |
| 1174 | } |
| 1175 | |
| 1176 | /*This function is to cover 6218B/6219 hw bug. |
| 1177 | UART should not send receiving data to its FIFO when doing auto baud*/ |
| 1178 | void U_SetAutoBaud_Div(UART_PORT port, module_type ownerid) {} |
| 1179 | |
| 1180 | void U_SetDCBConfig(UART_PORT port, UARTDCBStruct *UART_Config, module_type ownerid) |
| 1181 | { |
| 1182 | kal_uint16 byte; |
| 1183 | kal_uint16 IER; |
| 1184 | kal_uint32 savedMask; |
| 1185 | kal_uint32 UART_BASE; |
| 1186 | |
| 1187 | UART_BASE = UART_BaseAddr[port]; |
| 1188 | savedMask = SaveAndSetIRQMask(); |
| 1189 | IER = DRV_UART_Reg(UART_IER(UART_BASE)); |
| 1190 | DRV_UART_WriteReg(UART_IER(UART_BASE),UART_IER_ALLOFF); |
| 1191 | RestoreIRQMask(savedMask); |
| 1192 | |
| 1193 | U_SetBaudRate(port, UART_Config->baud, ownerid); |
| 1194 | |
| 1195 | /* Setup N81 */ |
| 1196 | byte = DRV_UART_Reg(UART_LCR(UART_BASE)); /* DLAB start */ |
| 1197 | byte &= ~UART_DATA_MASK; |
| 1198 | switch(UART_Config->dataBits) |
| 1199 | { |
| 1200 | case len_5: |
| 1201 | byte |= UART_WLS_5; |
| 1202 | break; |
| 1203 | |
| 1204 | case len_6: |
| 1205 | byte |= UART_WLS_6; |
| 1206 | break; |
| 1207 | |
| 1208 | case len_7: |
| 1209 | byte |= UART_WLS_7; |
| 1210 | break; |
| 1211 | |
| 1212 | case len_8: |
| 1213 | byte |= UART_WLS_8; |
| 1214 | break; |
| 1215 | |
| 1216 | default: |
| 1217 | break; |
| 1218 | } |
| 1219 | byte &= ~UART_STOP_MASK; |
| 1220 | switch(UART_Config->stopBits) |
| 1221 | { |
| 1222 | case sb_1: |
| 1223 | byte |= UART_1_STOP; |
| 1224 | break; |
| 1225 | |
| 1226 | case sb_2: |
| 1227 | byte |= UART_2_STOP; |
| 1228 | break; |
| 1229 | |
| 1230 | case sb_1_5: |
| 1231 | byte |= UART_1_5_STOP; |
| 1232 | break; |
| 1233 | |
| 1234 | default: |
| 1235 | break; |
| 1236 | } |
| 1237 | |
| 1238 | byte &= ~UART_PARITY_MASK; |
| 1239 | switch(UART_Config->parity) |
| 1240 | { |
| 1241 | case pa_none: |
| 1242 | byte |= UART_NONE_PARITY; |
| 1243 | break; |
| 1244 | |
| 1245 | case pa_odd: |
| 1246 | byte |= UART_ODD_PARITY; |
| 1247 | break; |
| 1248 | |
| 1249 | case pa_even: |
| 1250 | byte |= UART_EVEN_PARITY; |
| 1251 | break; |
| 1252 | |
| 1253 | case pa_space: |
| 1254 | byte |= UART_SPACE_PARITY; |
| 1255 | break; |
| 1256 | |
| 1257 | default: |
| 1258 | break; |
| 1259 | } |
| 1260 | DRV_UART_WriteReg(UART_LCR(UART_BASE),byte); /* DLAB End */ |
| 1261 | /* flowControl */ |
| 1262 | byte = DRV_UART_Reg(UART_LCR(UART_BASE)); |
| 1263 | |
| 1264 | DRV_UART_WriteReg(UART_LCR(UART_BASE),0xbf); /* Enchance setting */ |
| 1265 | switch(UART_Config->flowControl) |
| 1266 | { |
| 1267 | case fc_none: |
| 1268 | DRV_UART_WriteReg(UART_EFR(UART_BASE),UART_EFR_ALLOFF); |
| 1269 | |
| 1270 | // Disable AutoEscape, we expect to use this functionality for S/W flow control |
| 1271 | /*For AutoEscape*/ |
| 1272 | DRV_UART_WriteReg(UART_ESCAPE_EN(UART_BaseAddr[port]),0x0); |
| 1273 | |
| 1274 | break; |
| 1275 | |
| 1276 | case fc_hw: |
| 1277 | DRV_UART_WriteReg(UART_EFR(UART_BASE),UART_EFR_AutoRTSCTS); |
| 1278 | |
| 1279 | // Disable AutoEscape, we expect to use this functionality for S/W flow control |
| 1280 | /*For AutoEscape*/ |
| 1281 | DRV_UART_WriteReg(UART_ESCAPE_EN(UART_BaseAddr[port]),0x0); |
| 1282 | break; |
| 1283 | |
| 1284 | case fc_sw: |
| 1285 | |
| 1286 | DRV_UART_WriteReg(UART_EFR(UART_BASE), UART_EFR_SWFlowCtrlX1 |UART_EFR_Enchance); |
| 1287 | //reset first |
| 1288 | DRV_UART_WriteReg(UART_ESCAPE_EN(UART_BaseAddr[port]),0x0); |
| 1289 | if(uart_support_autoescape()==KAL_TRUE) |
| 1290 | { |
| 1291 | /*For META, Dont use auto escape*/ |
| 1292 | #if defined(META_MODE_SW_ESCAPING) |
| 1293 | if(kal_query_boot_mode() != FACTORY_BOOT || UARTPort[port].ownerid != MOD_DHL_READER) |
| 1294 | #endif |
| 1295 | { |
| 1296 | /*For AutoEscape*/ |
| 1297 | DRV_UART_WriteReg(UART_ESCAPE_DAT(UART_BaseAddr[port]),0x77); |
| 1298 | DRV_UART_WriteReg(UART_ESCAPE_EN(UART_BaseAddr[port]),0x1); |
| 1299 | } |
| 1300 | } |
| 1301 | break; |
| 1302 | |
| 1303 | default: |
| 1304 | break; |
| 1305 | } |
| 1306 | /* XON and XOFF characters */ |
| 1307 | DRV_UART_WriteReg(UART_XON1(UART_BASE),UART_Config->xonChar); |
| 1308 | DRV_UART_WriteReg(UART_XOFF1(UART_BASE),UART_Config->xoffChar); |
| 1309 | DRV_UART_WriteReg(UART_XON2(UART_BASE),UART_Config->xonChar); |
| 1310 | DRV_UART_WriteReg(UART_XOFF2(UART_BASE),UART_Config->xoffChar); |
| 1311 | DRV_UART_WriteReg(UART_LCR(UART_BASE),byte); /* DLAB End */ |
| 1312 | |
| 1313 | kal_mem_cpy( &UARTPort[port].DCB, UART_Config, sizeof(UARTDCBStruct) ); |
| 1314 | |
| 1315 | savedMask = SaveAndSetIRQMask(); |
| 1316 | DRV_UART_WriteReg(UART_IER(UART_BASE),IER); |
| 1317 | RestoreIRQMask(savedMask); |
| 1318 | } |
| 1319 | |
| 1320 | void U_ReadDCBConfig (UART_PORT port, UARTDCBStruct *DCB) |
| 1321 | { |
| 1322 | kal_mem_cpy( DCB, &UARTPort[port].DCB, sizeof(UARTDCBStruct) ); |
| 1323 | } |
| 1324 | |
| 1325 | void UART_loopback(UART_PORT port) |
| 1326 | { |
| 1327 | kal_uint16 tmp; |
| 1328 | kal_uint32 UART_BASE; |
| 1329 | /* Enable Loop Back test!! */ |
| 1330 | if(port >= MAX_UART_PORT_NUM) |
| 1331 | return; |
| 1332 | UART_BASE = UART_BaseAddr[port]; |
| 1333 | tmp = DRV_UART_Reg(UART_MCR(UART_BASE)); |
| 1334 | tmp |= UART_MCR_LOOPB; |
| 1335 | DRV_UART_WriteReg(UART_MCR(UART_BASE), tmp); |
| 1336 | } |
| 1337 | |
| 1338 | void UART_PDN_Disable(UART_PORT port) |
| 1339 | { |
| 1340 | switch(port) |
| 1341 | { |
| 1342 | case uart_port1: |
| 1343 | PDN_CLR(PDN_UART0); |
| 1344 | #if defined(__HIF_UART_SUPPORT__) ||(defined(DRV_DEBUG)&&(defined(DRV_DEBUG_DMA_MODE) || defined(DRV_DEBUG_BUFFER_DMA_MODE))) |
| 1345 | HDMA_PDN_CLR(port+2); |
| 1346 | HDMA_PDN_CLR(port+3); |
| 1347 | #endif |
| 1348 | break; |
| 1349 | case uart_port2: |
| 1350 | PDN_CLR(PDN_UART1); |
| 1351 | break; |
| 1352 | default: |
| 1353 | ASSERT(0); |
| 1354 | break; |
| 1355 | } |
| 1356 | } |
| 1357 | |
| 1358 | void UART_PDN_Enable(UART_PORT port) |
| 1359 | { |
| 1360 | switch(port) |
| 1361 | { |
| 1362 | case uart_port1: |
| 1363 | PDN_SET(PDN_UART0); |
| 1364 | HDMA_PDN_SET(port+2); |
| 1365 | HDMA_PDN_SET(port+3); |
| 1366 | break; |
| 1367 | case uart_port2: |
| 1368 | PDN_SET(PDN_UART1); |
| 1369 | break; |
| 1370 | default: |
| 1371 | ASSERT(0); |
| 1372 | break; |
| 1373 | } |
| 1374 | } |
| 1375 | |
| 1376 | void UART_HWInit(UART_PORT port) |
| 1377 | { |
| 1378 | UARTDCBStruct *DCBdefault; |
| 1379 | UARTDCBStruct UART_DefaultConfig = |
| 1380 | { |
| 1381 | UART_BAUD_1500000, // baud |
| 1382 | len_8, // dataBits |
| 1383 | sb_1, // stopBits |
| 1384 | pa_none, // parity |
| 1385 | fc_none, // no flow control |
| 1386 | 0x11, // xonChar |
| 1387 | 0x13, // xoffChar |
| 1388 | KAL_FALSE |
| 1389 | }; |
| 1390 | kal_uint32 UART_BASE; |
| 1391 | |
| 1392 | if(port >= MAX_UART_PORT_NUM) |
| 1393 | return; |
| 1394 | UART_BASE = UART_BaseAddr[port]; |
| 1395 | |
| 1396 | UART_PDN_Disable(port); |
| 1397 | |
| 1398 | /* Setup N81,(UART_WLS_8 | UART_NONE_PARITY | UART_1_STOP) = 0x03 */ |
| 1399 | /* BaudRate and autoflowcontrol */ |
| 1400 | DCBdefault = (UARTDCBStruct *)&UART_DefaultConfig; |
| 1401 | U_SetDCBConfig(port, DCBdefault, UARTPort[port].ownerid); |
| 1402 | |
| 1403 | DRV_UART_Reg(UART_LSR(UART_BASE)); |
| 1404 | DRV_UART_Reg(UART_MSR(UART_BASE)); |
| 1405 | |
| 1406 | /* DTR , RTS is on, data will be coming,Output2 is high */ |
| 1407 | DRV_UART_SetBits(UART_MCR(UART_BASE), UART_MCR_Normal); |
| 1408 | |
| 1409 | DRV_UART_WriteReg(UART_IER(UART_BASE), UART_IER_ALLOFF); |
| 1410 | |
| 1411 | // Set handle value to 0xFF to indicate this handle is invalid |
| 1412 | UARTPort[port].handle = 0xFF; |
| 1413 | |
| 1414 | UARTPort[port].Rec_state = UART_RecNormal; |
| 1415 | UARTPort[port].port_no = port; |
| 1416 | |
| 1417 | UARTPort[port].sleep_on_tx = uart_sleep_on_tx_allow; |
| 1418 | UARTPort[port].EnableTX= KAL_TRUE; |
| 1419 | UARTPort[port].power_on= KAL_TRUE; |
| 1420 | |
| 1421 | // HDMA related HW init |
| 1422 | // init FIFO Control Regitser: UART_FCR_RFTL_12 | UART_FCR_TFTL_0 | UART_FCR_CLRT | UART_FCR_CLRR | UART_FCR_FIFOE |
| 1423 | DRV_UART_WriteReg(UART_FCR(UART_BaseAddr[port]), 0x87); |
| 1424 | #if defined(MTK_SLEEP_ENABLE) |
| 1425 | DRV_UART_WriteReg(UART_SLEEP_EN(UART_BASE),KAL_TRUE); |
| 1426 | #endif |
| 1427 | switch(port) |
| 1428 | { |
| 1429 | case uart_port1: |
| 1430 | // init TX HDMA |
| 1431 | HDMA_MODE_CONFIG(UART1_HDMA_TX_CHANNEL, HDMA_CKSUM_EN_DEFAULT, HDMA_LIST_MODE, HDMA_CKSUM_12B); |
| 1432 | HDMA_CONFIG(UART1_HDMA_TX_CHANNEL, HDMA_BURST_SIZE_DEFAULT, HDMA_DEV_BUS_WIDTH_DEFAULT, HDMA_MEM_BUS_WIDTH_DEFAULT); |
| 1433 | HDMA_BUF0_XFER_SIZE_CONFIG(UART1_HDMA_TX_CHANNEL, 0); |
| 1434 | |
| 1435 | // init RX HDMA |
| 1436 | HDMA_CONFIG_RX_SEL(UART1_HDMA_RX_CHANNEL, 0x3); |
| 1437 | HDMA_MODE_CONFIG(UART1_HDMA_RX_CHANNEL, HDMA_CKSUM_EN_DEFAULT, HDMA_LIST_MODE, HDMA_CKSUM_12B); |
| 1438 | HDMA_CONFIG(UART1_HDMA_RX_CHANNEL, HDMA_BURST_SIZE_DEFAULT, HDMA_DEV_BUS_WIDTH_DEFAULT, HDMA_MEM_BUS_WIDTH_DEFAULT); |
| 1439 | HDMA_BUF0_XFER_SIZE_CONFIG(UART1_HDMA_RX_CHANNEL, 0); |
| 1440 | #ifdef DRV_DEBUG |
| 1441 | DRV_WriteReg32(UART_DMA_EN(UART_BaseAddr[port]), 0x0); |
| 1442 | #else |
| 1443 | DRV_WriteReg32(UART_DMA_EN(UART_BaseAddr[port]), UART_TXRXDMA_ON|UART_TO_CNT_AUTORST); |
| 1444 | DRV_WriteReg32(UART_DMA_ACK(UART_BaseAddr[port]),UART_DMA_ACK_DIS); |
| 1445 | #endif |
| 1446 | break; |
| 1447 | |
| 1448 | case uart_port2: |
| 1449 | break; |
| 1450 | default: |
| 1451 | ASSERT(0); |
| 1452 | break; |
| 1453 | } |
| 1454 | |
| 1455 | // If needTxDoneCb is 1, the driver must call DclSerialPort_DrvTxDone(handle, source_id, tx_ior) after tx_ior data is sent. |
| 1456 | // initial value is 0 |
| 1457 | UARTPort[port].need_tx_done_cb = KAL_FALSE; |
| 1458 | } |
| 1459 | |
| 1460 | kal_bool U_Open(UART_PORT port, module_type ownerid) |
| 1461 | { |
| 1462 | kal_uint32 UART_BASE; |
| 1463 | kal_uint16 MSR; |
| 1464 | kal_uint8 byte; |
| 1465 | kal_uint8 irq_code = 0; |
| 1466 | |
| 1467 | UART_BASE = UART_BaseAddr[port]; |
| 1468 | if(port == uart_port_null) |
| 1469 | return KAL_FALSE; |
| 1470 | |
| 1471 | UARTPort[port].initialized = KAL_TRUE; |
| 1472 | UARTPort[port].ownerid = ownerid; |
| 1473 | |
| 1474 | UARTPort[port].RingBuffers.rx_buffer = UART_rings->ring[port].rx_adrs; |
| 1475 | UARTPort[port].RingBuffers.tx_buffer = UART_rings->ring[port].tx_adrs; |
| 1476 | Buf_init(&(UARTPort[port].Rx_Buffer),(kal_uint8 *)(UARTPort[port].RingBuffers.rx_buffer),(kal_uint16)UART_rings->ring[port].rx_len); |
| 1477 | Buf_init(&(UARTPort[port].Tx_Buffer),(kal_uint8 *)(UARTPort[port].RingBuffers.tx_buffer),(kal_uint16)UART_rings->ring[port].tx_len); |
| 1478 | if( UART_IsVfifoSetting(port, TX_VFIFO) == KAL_FALSE ) |
| 1479 | { |
| 1480 | UARTPort[port].RingBuffers.txISR_buffer = UART_rings->ring[port].txisr_adrs; |
| 1481 | Buf_init(&(UARTPort[port].Tx_Buffer_ISR),(kal_uint8 *)(UARTPort[port].RingBuffers.txISR_buffer),(kal_uint16)UART_rings->ring[port].txisr_len); |
| 1482 | } |
| 1483 | |
| 1484 | MSR = DRV_UART_Reg(UART_MSR(UART_BASE)); |
| 1485 | |
| 1486 | if (MSR & UART_MSR_DSR) |
| 1487 | UARTPort[port].DSR = io_high; |
| 1488 | else |
| 1489 | UARTPort[port].DSR = io_low; |
| 1490 | |
| 1491 | /* Rx FIFO trigger = 62, Tx FIFO trigger is 16, and FIFO enable. */ |
| 1492 | DRV_UART_WriteReg(UART_FCR(UART_BASE),UART_FCR_Normal); |
| 1493 | |
| 1494 | if( UART_IsVfifoSetting(port, TXRX_VFIFO)) |
| 1495 | { |
| 1496 | ASSERT(0);/*wrong configuration*/ |
| 1497 | } |
| 1498 | else |
| 1499 | { |
| 1500 | if (UARTPort[port].DCB.flowControl == fc_none) |
| 1501 | { |
| 1502 | DRV_UART_WriteReg(UART_IER(UART_BaseAddr[port]),IER_HW_NORMALINTS); |
| 1503 | } |
| 1504 | else if (UARTPort[port].DCB.flowControl == fc_hw) |
| 1505 | { |
| 1506 | // DRV_UART_WriteReg(UART_IER(UART_BaseAddr[port]),IER_HW_NORMALINTS); |
| 1507 | DRV_UART_WriteReg32(UART_MCR(UART_BASE), (DRV_UART_Reg32(UART_MCR(UART_BASE)) | 0x02)); |
| 1508 | byte = DRV_UART_Reg(UART_LCR(UART_BASE)); |
| 1509 | DRV_UART_WriteReg(UART_LCR(UART_BASE), 0xbf); |
| 1510 | DRV_UART_WriteReg(UART_EFR(UART_BASE), DRV_UART_Reg(UART_EFR(UART_BASE)) | UART_EFR_AutoRTSCTS); |
| 1511 | DRV_UART_WriteReg(UART_LCR(UART_BASE), byte); |
| 1512 | } |
| 1513 | else if (UARTPort[port].DCB.flowControl == fc_sw) |
| 1514 | { |
| 1515 | // need to set EFR enhance before IRE |
| 1516 | byte = DRV_UART_Reg(UART_LCR(UART_BASE)); |
| 1517 | DRV_UART_WriteReg(UART_LCR(UART_BASE),0xbf); |
| 1518 | DRV_UART_WriteReg(UART_EFR(UART_BASE), DRV_UART_Reg(UART_EFR(UART_BASE)) | UART_EFR_Enchance); |
| 1519 | DRV_UART_WriteReg(UART_LCR(UART_BASE),byte); |
| 1520 | |
| 1521 | DRV_UART_WriteReg(UART_IER(UART_BaseAddr[port]),IER_SW_NORMALINTS); |
| 1522 | DRV_UART_WriteReg(UART_ESCAPE_EN(UART_BaseAddr[port]),0x0); //reset to disable first |
| 1523 | if(uart_support_autoescape()==KAL_TRUE) |
| 1524 | { |
| 1525 | /*For META, Dont use auto escape*/ |
| 1526 | #if defined(META_MODE_SW_ESCAPING) |
| 1527 | if(kal_query_boot_mode() != FACTORY_BOOT || UARTPort[port].ownerid != MOD_DHL_READER) |
| 1528 | #endif |
| 1529 | { |
| 1530 | /*For AutoEscape*/ |
| 1531 | byte = DRV_UART_Reg(UART_LCR(UART_BASE)); |
| 1532 | // DLAB start */ |
| 1533 | DRV_UART_WriteReg(UART_LCR(UART_BASE),0xbf); /* Enchance setting */ |
| 1534 | DRV_UART_WriteReg(UART_XON1(UART_BaseAddr[port]),0x11); |
| 1535 | DRV_UART_WriteReg(UART_XON2(UART_BaseAddr[port]),0x11); |
| 1536 | DRV_UART_WriteReg(UART_XOFF1(UART_BaseAddr[port]),0x13); |
| 1537 | DRV_UART_WriteReg(UART_XOFF2(UART_BaseAddr[port]),0x13); |
| 1538 | //autoescape |
| 1539 | DRV_UART_WriteReg(UART_ESCAPE_DAT(UART_BaseAddr[port]),0x77); |
| 1540 | DRV_UART_WriteReg(UART_ESCAPE_EN(UART_BaseAddr[port]),0x1); |
| 1541 | DRV_UART_WriteReg(UART_LCR(UART_BASE),byte); /* Enchance setting */ |
| 1542 | } |
| 1543 | } |
| 1544 | } |
| 1545 | } |
| 1546 | |
| 1547 | /*For excetpion, we dont need to do the following */ |
| 1548 | #ifdef __MTK_TARGET__ |
| 1549 | if(INT_QueryExceptionStatus()) |
| 1550 | return KAL_TRUE; |
| 1551 | #endif |
| 1552 | switch(port) |
| 1553 | { |
| 1554 | case uart_port1: |
| 1555 | irq_code = UART_GetIRQCode(uart_port1); |
| 1556 | IRQMask(irq_code); |
| 1557 | //IRQ_Register_LISR(irq_code, UART1_LISR, "UART1"); |
| 1558 | //IRQSensitivity(irq_code, LEVEL_SENSITIVE); |
| 1559 | IRQClearInt(irq_code); |
| 1560 | DRV_WriteReg32(UART_IER(UART_BASE), 0x4); |
| 1561 | IRQUnmask(irq_code); |
| 1562 | break; |
| 1563 | |
| 1564 | case uart_port2: |
| 1565 | irq_code = UART_GetIRQCode(uart_port2); |
| 1566 | IRQMask(irq_code); |
| 1567 | //IRQ_Register_LISR(irq_code, UART2_LISR, "UART2"); |
| 1568 | //IRQSensitivity(irq_code, LEVEL_SENSITIVE); |
| 1569 | IRQClearInt(irq_code); |
| 1570 | DRV_WriteReg32(UART_IER(UART_BASE), 0x4); |
| 1571 | IRQUnmask(irq_code); |
| 1572 | break; |
| 1573 | default: |
| 1574 | ASSERT(0); |
| 1575 | break; |
| 1576 | } |
| 1577 | |
| 1578 | IRQMask(UART_HDMA_INTR_ID); |
| 1579 | //IRQ_Register_LISR(UART_HDMA_INTR_ID, uart_hdma_lisr, "UART_HDMA"); |
| 1580 | //IRQSensitivity(UART_HDMA_INTR_ID, LEVEL_SENSITIVE); |
| 1581 | |
| 1582 | HDMA_LENERR_INTR_UNMASK(2); |
| 1583 | HDMA_BD_CSERR_INTR_UNMASK(2); |
| 1584 | HDMA_GPD_CSERR_INTR_UNMASK(2); |
| 1585 | HDMA_LENERR_INTR_UNMASK(3); |
| 1586 | HDMA_BD_CSERR_INTR_UNMASK(3); |
| 1587 | HDMA_GPD_CSERR_INTR_UNMASK(3); |
| 1588 | HDMA_QE_INTR_UNMASK(3); // RX done |
| 1589 | HDMA_INT_CLEAR_ALL(); |
| 1590 | IRQUnmask(UART_HDMA_INTR_ID); |
| 1591 | |
| 1592 | return KAL_TRUE; |
| 1593 | } |
| 1594 | |
| 1595 | void U_Purge(UART_PORT port, UART_buffer dir, module_type ownerid) |
| 1596 | { |
| 1597 | kal_uint32 UART_BASE = UART_BaseAddr[port]; |
| 1598 | |
| 1599 | /* Rx FIFO trigger = 62, Tx FIFO trigger is 16, and FIFO enable. */ |
| 1600 | // for MT6290, Rx FIFO trigger = 12. Tx FIFO trigger is 0 |
| 1601 | if (dir == RX_BUF) |
| 1602 | DRV_UART_WriteReg(UART_FCR(UART_BASE),(UART_FCR_Normal & ~UART_FCR_CLRT)); |
| 1603 | else |
| 1604 | DRV_UART_WriteReg(UART_FCR(UART_BASE),(UART_FCR_Normal & ~UART_FCR_CLRR)); |
| 1605 | } |
| 1606 | |
| 1607 | void U_Close(UART_PORT port, module_type ownerid) |
| 1608 | { |
| 1609 | kal_uint32 UART_BASE = UART_BaseAddr[port]; |
| 1610 | kal_uint8 irq_code; |
| 1611 | |
| 1612 | UARTPort[port].initialized = KAL_FALSE; |
| 1613 | UARTPort[port].ownerid = (module_type) ((kal_uint16) MOD_UART1_HISR + (kal_uint8) port); |
| 1614 | |
| 1615 | switch(port) |
| 1616 | { |
| 1617 | case uart_port1: |
| 1618 | irq_code = UART_GetIRQCode(uart_port1); |
| 1619 | IRQMask(irq_code); |
| 1620 | break; |
| 1621 | case uart_port2: |
| 1622 | irq_code = UART_GetIRQCode(uart_port2); |
| 1623 | IRQMask(irq_code); |
| 1624 | break; |
| 1625 | default: |
| 1626 | ASSERT(0); |
| 1627 | break; |
| 1628 | } |
| 1629 | |
| 1630 | DRV_UART_WriteReg(UART_IER(UART_BASE), UART_IER_ALLOFF); |
| 1631 | |
| 1632 | U_ConfigEscape(port, 0xff, 0, UARTPort[port].ownerid); |
| 1633 | |
| 1634 | U_ClrRxBuffer(port, UARTPort[port].ownerid); // clear sw RX buffer |
| 1635 | U_ClrTxBuffer(port, UARTPort[port].ownerid); // clear sw TX buffer |
| 1636 | U_Purge(port, RX_BUF, UARTPort[port].ownerid); // clear hw RX FIFO |
| 1637 | U_Purge(port, TX_BUF, UARTPort[port].ownerid); // clear hw TX FIFO |
| 1638 | |
| 1639 | DRV_UART_WriteReg(UART_IER(UART_BASE),UART_IER_ALLOFF); |
| 1640 | |
| 1641 | UART_PDN_Enable(port); |
| 1642 | |
| 1643 | |
| 1644 | if(UARTPort[port].handle != 0xFF) |
| 1645 | { |
| 1646 | UARTPort[port].handle = 0xFF; |
| 1647 | } |
| 1648 | } |
| 1649 | |
| 1650 | void U_SetOwner (UART_PORT port, module_type ownerid) |
| 1651 | { |
| 1652 | U_ClrTxBuffer(port, UARTPort[port].ownerid); // clear sw TX buffer |
| 1653 | U_ClrRxBuffer(port, UARTPort[port].ownerid); // clear sw RX buffer |
| 1654 | |
| 1655 | UARTPort[port].ownerid = ownerid; |
| 1656 | UARTPort[port].need_tx_done_cb = KAL_FALSE; |
| 1657 | } |
| 1658 | |
| 1659 | module_type U_GetOwnerID(UART_PORT port) |
| 1660 | { |
| 1661 | return UARTPort[port].ownerid; |
| 1662 | } |
| 1663 | |
| 1664 | void U_ConfigEscape (UART_PORT port, kal_uint8 EscChar, kal_uint16 ESCGuardtime, module_type ownerid) |
| 1665 | { |
| 1666 | |
| 1667 | UARTPort[port].ESCDet.EscChar = EscChar; |
| 1668 | UARTPort[port].ESCDet.GuardTime = ESCGuardtime; |
| 1669 | // Escape character register is WO |
| 1670 | DRV_UART_WriteReg(UART_ESCAPE_DAT(UART_BaseAddr[port]), EscChar); // added by ansel |
| 1671 | DRV_UART_WriteReg(UART_GUARD(UART_BaseAddr[port]), ESCGuardtime); // added by ansel |
| 1672 | if (UARTPort[port].ESCDet.GuardTime) |
| 1673 | { |
| 1674 | UARTPort[port].Rec_state = UART_RecNormal; |
| 1675 | } |
| 1676 | } |
| 1677 | |
| 1678 | void U_SetFlowCtrl(UART_PORT port, kal_bool XON, module_type ownerid) {} /*NULL for all*/ |
| 1679 | |
| 1680 | kal_uint32 U_GetFlowCtrl(UART_PORT port, module_type ownerid) |
| 1681 | { |
| 1682 | kal_uint16 IER, LCR; |
| 1683 | kal_uint32 savedMask; |
| 1684 | kal_uint32 UART_BASE; |
| 1685 | kal_uint32 EFR; |
| 1686 | |
| 1687 | UART_BASE = UART_BaseAddr[port]; |
| 1688 | |
| 1689 | savedMask = SaveAndSetIRQMask(); |
| 1690 | IER = DRV_UART_Reg(UART_IER(UART_BASE)); |
| 1691 | DRV_UART_WriteReg(UART_IER(UART_BASE), UART_IER_ALLOFF); |
| 1692 | RestoreIRQMask(savedMask); |
| 1693 | |
| 1694 | LCR = DRV_UART_Reg(UART_LCR(UART_BASE)); |
| 1695 | DRV_UART_WriteReg(UART_LCR(UART_BASE), 0xBF); |
| 1696 | EFR = DRV_UART_Reg(UART_EFR(UART_BASE)); |
| 1697 | DRV_UART_WriteReg(UART_LCR(UART_BASE), LCR); |
| 1698 | |
| 1699 | savedMask = SaveAndSetIRQMask(); |
| 1700 | DRV_UART_WriteReg(UART_IER(UART_BASE), IER); |
| 1701 | RestoreIRQMask(savedMask); |
| 1702 | |
| 1703 | return EFR; |
| 1704 | } |
| 1705 | |
| 1706 | void U_CtrlDCD(UART_PORT port, IO_level SDCD, module_type ownerid) {} /*NULL for DCE*/ |
| 1707 | void U_CtrlRI (UART_PORT port, IO_level SRI, module_type ownerid) {} /*NULL for DCE*/ |
| 1708 | void U_CtrlDTR (UART_PORT port, IO_level SDTR, module_type ownerid) {} |
| 1709 | void U_ReadHWStatus(UART_PORT port, IO_level *SDSR, IO_level *SCTS) |
| 1710 | { |
| 1711 | kal_uint16 MSR; |
| 1712 | kal_uint32 UART_BASE; |
| 1713 | |
| 1714 | UART_BASE = UART_BaseAddr[port]; |
| 1715 | MSR = DRV_UART_Reg(UART_MSR(UART_BASE)); |
| 1716 | *SDSR = (IO_level)(( MSR & UART_MSR_DSR) >> 5); |
| 1717 | *SCTS = (IO_level)(( MSR & UART_MSR_CTS) >> 4); |
| 1718 | } |
| 1719 | |
| 1720 | void U_CtrlBreak(UART_PORT port, IO_level SBREAK, module_type ownerid) |
| 1721 | { |
| 1722 | kal_uint32 UART_BASE = UART_BaseAddr[port]; |
| 1723 | if(SBREAK == io_high) |
| 1724 | { |
| 1725 | if(HDMA_BUF0_IS_ACTIVE((port + 2))) |
| 1726 | HDMA_BUF0_STOP((port + 2)); |
| 1727 | DRV_UART_SetBits(UART_LCR(UART_BASE), UART_LCR_BREAK); |
| 1728 | } else |
| 1729 | { |
| 1730 | DRV_UART_ClearBits(UART_LCR(UART_BASE), UART_LCR_BREAK); |
| 1731 | if(uart_wait_tgpd_head[port] != NULL || uart_tgpd_head[port] != NULL) |
| 1732 | HDMA_BUF0_RESUME((port + 2)); |
| 1733 | } |
| 1734 | } |
| 1735 | |
| 1736 | kal_uint16 U_GetBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length, kal_uint8 *status, module_type ownerid) |
| 1737 | { |
| 1738 | kal_uint16 real_count, index; |
| 1739 | kal_uint16 data_count = 0; |
| 1740 | |
| 1741 | if(status != NULL) |
| 1742 | *status = 0; |
| 1743 | |
| 1744 | DisableRxIntr(UART_BaseAddr[port]); |
| 1745 | if (status != NULL) |
| 1746 | { |
| 1747 | if (UARTPort[port].EscFound) |
| 1748 | { |
| 1749 | *status |= UART_STAT_EscDet; |
| 1750 | UARTPort[port].EscFound = KAL_FALSE; |
| 1751 | } |
| 1752 | if(UARTPort[port].breakDet) |
| 1753 | { |
| 1754 | *status |= UART_STAT_Break; |
| 1755 | UARTPort[port].breakDet = KAL_FALSE; |
| 1756 | } |
| 1757 | } |
| 1758 | |
| 1759 | EnableRxIntr(UART_BaseAddr[port]); |
| 1760 | |
| 1761 | do { |
| 1762 | Buf_GetBytesAvail(&(UARTPort[port].Rx_Buffer),real_count); |
| 1763 | |
| 1764 | if((kal_query_boot_mode() == FACTORY_BOOT && UARTPort[port].DCB.flowControl == fc_sw && UARTPort[port].ownerid == MOD_DHL_READER) |
| 1765 | || (uart_support_autoescape() == KAL_FALSE && UARTPort[port].DCB.flowControl == fc_sw)) |
| 1766 | { |
| 1767 | |
| 1768 | for(index = 0; (index < real_count) && (data_count < Length); index++) |
| 1769 | { |
| 1770 | Buf_Pop(&(UARTPort[port].Rx_Buffer), *(Buffaddr + data_count)); |
| 1771 | |
| 1772 | // The following are for software flow control |
| 1773 | if(uart_escape_state==0) |
| 1774 | { |
| 1775 | if(*(Buffaddr + data_count) == 0x77) |
| 1776 | { |
| 1777 | uart_escape_state=0x77; |
| 1778 | } else |
| 1779 | { |
| 1780 | data_count++; |
| 1781 | } |
| 1782 | |
| 1783 | } else if(uart_escape_state == 0x77) |
| 1784 | { |
| 1785 | switch(*(Buffaddr + data_count)) |
| 1786 | { |
| 1787 | case 0x01: |
| 1788 | *(Buffaddr+data_count) = UARTPort[port].DCB.xonChar; |
| 1789 | data_count++; |
| 1790 | break; |
| 1791 | case 0x02: |
| 1792 | *(Buffaddr+data_count)=UARTPort[port].DCB.xoffChar; |
| 1793 | data_count++; |
| 1794 | break; |
| 1795 | case 0x03: |
| 1796 | *(Buffaddr + data_count) = 0x77; |
| 1797 | data_count++; |
| 1798 | break; |
| 1799 | default: |
| 1800 | break; |
| 1801 | |
| 1802 | } |
| 1803 | uart_escape_state=0x0; |
| 1804 | |
| 1805 | } |
| 1806 | } |
| 1807 | |
| 1808 | } else // HW flow control |
| 1809 | { |
| 1810 | for(index = 0; (index < real_count) && (data_count < Length); index++) |
| 1811 | { |
| 1812 | Buf_Pop(&(UARTPort[port].Rx_Buffer),*(Buffaddr + data_count)); |
| 1813 | data_count++; |
| 1814 | } |
| 1815 | } |
| 1816 | |
| 1817 | // satisfy uart owner request, so break |
| 1818 | if (data_count == Length) break; |
| 1819 | |
| 1820 | // disable interrupt |
| 1821 | DisableRxIntr(UART_BaseAddr[port]); |
| 1822 | |
| 1823 | Buf_GetBytesAvail(&(UARTPort[port].Rx_Buffer),real_count); |
| 1824 | // there is no data in ringbuffer, so break |
| 1825 | if(real_count == 0) |
| 1826 | { |
| 1827 | send_Rxilm[port] = KAL_TRUE; |
| 1828 | // enable interrupt |
| 1829 | EnableRxIntr(UART_BaseAddr[port]); |
| 1830 | break; |
| 1831 | } |
| 1832 | |
| 1833 | /* enable interrupt*/ |
| 1834 | EnableRxIntr(UART_BaseAddr[port]); |
| 1835 | } while(KAL_TRUE); |
| 1836 | |
| 1837 | return data_count; |
| 1838 | } |
| 1839 | |
| 1840 | #ifdef DRV_DEBUG |
| 1841 | |
| 1842 | void UART_DMA_PutBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length) |
| 1843 | { |
| 1844 | if(port>=uart_port3){ |
| 1845 | return; |
| 1846 | } |
| 1847 | clean_and_invalidate_dcache(CPU_CACHE_LINE_ALIGN_ADDR((kal_uint32)Buffaddr), CPU_CACHE_LINE_ALIGN_LEN((kal_uint32)Buffaddr, (kal_uint32)Length)); |
| 1848 | |
| 1849 | HDMA_BUF0_PROG_ADDR_CONFIG(port+2, (kal_uint32)Buffaddr); |
| 1850 | HDMA_BUF0_XFER_SIZE_CONFIG(port+2, (kal_uint32)Length); |
| 1851 | |
| 1852 | Data_Sync_Barrier(); |
| 1853 | |
| 1854 | HDMA_BUF0_START(port+2); |
| 1855 | } |
| 1856 | |
| 1857 | kal_uint16 BMT_PutBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length) |
| 1858 | { |
| 1859 | kal_uint16 real_count, index; |
| 1860 | #if defined(DRV_DEBUG_BUFFER_DMA_MODE) |
| 1861 | kal_uint16 is_empty; |
| 1862 | #endif |
| 1863 | if(port >= MAX_UART_PORT_NUM) |
| 1864 | return 0; |
| 1865 | |
| 1866 | Buf_GetRoomLeft(&(UARTPort[port].Tx_Buffer), real_count); |
| 1867 | if(real_count > Length) |
| 1868 | { |
| 1869 | real_count = Length; |
| 1870 | } |
| 1871 | |
| 1872 | /* |
| 1873 | * The spin lock is used for the con-currency case of HDMA HISR |
| 1874 | * and dbg_print. The write/read pointer of buffer is the basis |
| 1875 | * whether to start the next DMA or NOT, so use the spin lock |
| 1876 | * to protect the pointer updatding actions |
| 1877 | */ |
| 1878 | #if defined(DRV_DEBUG_BUFFER_DMA_MODE) |
| 1879 | #ifndef KTEST_UART_TRACES |
| 1880 | kal_take_spinlock(print_buf_lock, KAL_INFINITE_WAIT); |
| 1881 | #else |
| 1882 | kal_hrt_take_itc_lock(KAL_ITC_PRINT, KAL_INFINITE_WAIT); |
| 1883 | #endif |
| 1884 | |
| 1885 | /* To check if DMA should be start in this API */ |
| 1886 | Buf_IsEmpty(&(UARTPort[port].Tx_Buffer), is_empty); |
| 1887 | #endif |
| 1888 | |
| 1889 | for(index = 0; index < real_count; index++) |
| 1890 | { |
| 1891 | Buf_Push(&(UARTPort[port].Tx_Buffer), *(Buffaddr + index)); |
| 1892 | } |
| 1893 | |
| 1894 | #if defined(DRV_DEBUG_BUFFER_DMA_MODE) |
| 1895 | #ifndef KTEST_UART_TRACES |
| 1896 | kal_give_spinlock(print_buf_lock); |
| 1897 | #else |
| 1898 | kal_hrt_give_itc_lock(KAL_ITC_PRINT); |
| 1899 | #endif |
| 1900 | #endif |
| 1901 | |
| 1902 | switch(port) |
| 1903 | { |
| 1904 | case uart_port1: |
| 1905 | #if defined(DRV_DEBUG_BUFFER_DMA_MODE) |
| 1906 | if (is_empty == Buff_isEmpty) |
| 1907 | UART_TxDMAHandler(&UARTPort[uart_port1], 0); |
| 1908 | #else |
| 1909 | EnableTxIntr(UART_BaseAddr[port]); |
| 1910 | #endif |
| 1911 | break; |
| 1912 | case uart_port2: |
| 1913 | EnableTxIntr(UART_BaseAddr[port]); |
| 1914 | break; |
| 1915 | default: |
| 1916 | ASSERT(0); |
| 1917 | break; |
| 1918 | } |
| 1919 | |
| 1920 | |
| 1921 | return real_count; |
| 1922 | } |
| 1923 | #endif /*DRV_DEBUG*/ |
| 1924 | |
| 1925 | /************************************************************************* |
| 1926 | * FUNCTION |
| 1927 | * UART_GetTxWorkingMode |
| 1928 | * |
| 1929 | * DESCRIPTION |
| 1930 | * |
| 1931 | * This function is to get the uart TX working mode. |
| 1932 | * |
| 1933 | * PARAMETERS |
| 1934 | * port - the uart port |
| 1935 | * |
| 1936 | * RETURNS |
| 1937 | * UART_ON_VFIFO: the uart port Tx working on VFIFO mode |
| 1938 | * UART_ON_DMA: the uart port Tx working on normal DMA mode |
| 1939 | * UART_ON_MCU: the uart port Tx working on sw mode |
| 1940 | * |
| 1941 | * Global AFFECTED |
| 1942 | * |
| 1943 | *************************************************************************/ |
| 1944 | UART_WORKING_MODE UART_GetTxWorkingMode(UART_PORT port) |
| 1945 | { |
| 1946 | if(UART_IsVfifoSetting(port, TX_VFIFO)) |
| 1947 | return UART_ON_VFIFO; |
| 1948 | |
| 1949 | return UART_ON_MCU; |
| 1950 | } |
| 1951 | |
| 1952 | kal_uint16 U_PutBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length, module_type ownerid ) |
| 1953 | { |
| 1954 | kal_uint16 real_count, index; |
| 1955 | if(port >= MAX_UART_PORT_NUM) |
| 1956 | return 0; |
| 1957 | |
| 1958 | Buf_GetRoomLeft(&(UARTPort[port].Tx_Buffer), real_count); |
| 1959 | if(real_count > Length) |
| 1960 | { |
| 1961 | real_count = Length; |
| 1962 | } |
| 1963 | |
| 1964 | for(index = 0; index < real_count; index++) |
| 1965 | { |
| 1966 | Buf_Push(&(UARTPort[port].Tx_Buffer), *(Buffaddr + index)); |
| 1967 | } |
| 1968 | |
| 1969 | switch(port) |
| 1970 | { |
| 1971 | case uart_port1: |
| 1972 | EnableTxIntr(UART_BaseAddr[port]); |
| 1973 | break; |
| 1974 | case uart_port2: |
| 1975 | EnableTxIntr(UART_BaseAddr[port]); |
| 1976 | break; |
| 1977 | default: |
| 1978 | ASSERT(0); |
| 1979 | break; |
| 1980 | } |
| 1981 | return real_count; |
| 1982 | } |
| 1983 | |
| 1984 | #ifndef __ROMSA_SUPPORT__ /* Note: for ROM code */ |
| 1985 | |
| 1986 | #if defined(__MTK_INTERNAL__) && defined(__MTK_TARGET__) |
| 1987 | kal_uint16 DEVDRV_LS_INTERNCODE |
| 1988 | #else |
| 1989 | kal_uint16 |
| 1990 | #endif |
| 1991 | U_PutISRBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length, module_type ownerid) |
| 1992 | { |
| 1993 | return 0; |
| 1994 | } |
| 1995 | #endif /* Note: for ROM code */ |
| 1996 | |
| 1997 | #if defined(__MTK_INTERNAL__) && defined(__MTK_TARGET__) |
| 1998 | kal_uint16 DEVDRV_LS_INTERNCODE |
| 1999 | #else |
| 2000 | kal_uint16 |
| 2001 | #endif |
| 2002 | U_SendISRData(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length,kal_uint8 mode, kal_uint8 escape_char, module_type ownerid) |
| 2003 | { |
| 2004 | return 0; |
| 2005 | } |
| 2006 | |
| 2007 | kal_uint16 U_SendData(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length,kal_uint8 mode,kal_uint8 escape_char, module_type ownerid) |
| 2008 | { |
| 2009 | return 0; |
| 2010 | } |
| 2011 | |
| 2012 | //============================== ISR level ==================== |
| 2013 | /*============================ UART1 ========================*/ |
| 2014 | void UART_RLSHandler(void *parameter) |
| 2015 | { |
| 2016 | kal_uint16 LSR; |
| 2017 | UARTStruct *UARTData = (UARTStruct *) parameter; |
| 2018 | kal_uint32 UART_BASE; |
| 2019 | |
| 2020 | if(UARTData->port_no >= MAX_UART_PORT_NUM) |
| 2021 | return; |
| 2022 | |
| 2023 | UART_BASE = UART_BaseAddr[UARTData->port_no]; |
| 2024 | LSR = DRV_UART_Reg(UART_LSR(UART_BASE)); |
| 2025 | /* |
| 2026 | if(LSR & UART_LSR_OE) dbg_print("Overrun Error\n\r"); |
| 2027 | if(LSR & UART_LSR_PE) dbg_print("Parity Error\n\r"); |
| 2028 | if(LSR & UART_LSR_FE) dbg_print("Framing Error\n\r"); |
| 2029 | */ |
| 2030 | if(LSR & UART_LSR_BI) |
| 2031 | { |
| 2032 | UARTData->breakDet = KAL_TRUE; |
| 2033 | U_Purge(UARTData->port_no, RX_BUF, UARTPort[UARTData->port_no].ownerid); |
| 2034 | } |
| 2035 | |
| 2036 | if((LSR & UART_LSR_OE) || (LSR & UART_LSR_FIFOERR)) |
| 2037 | { |
| 2038 | //for check BT overwrite UART FIFO, because BT do not use flow control, lost data will cause BT fail |
| 2039 | // if((UARTPort[UARTData->port_no].ownerid == MOD_BT)) |
| 2040 | // { |
| 2041 | // UART_DBG(__LINE__, UART_GetTimeStamp(), ust_get_current_time(), LSR); |
| 2042 | // ASSERT(!(LSR & UART_LSR_OE)); // BT send too fast, VFIFO can not get bus, overwrite UART FIFO |
| 2043 | // } |
| 2044 | DisableRLSIntr(UART_BASE); |
| 2045 | } |
| 2046 | } |
| 2047 | |
| 2048 | void UART_Calback(void *parameter) {} |
| 2049 | |
| 2050 | void UART_SetRateFix(UART_PORT port) {} |
| 2051 | |
| 2052 | int uart_pio_get_data_like_dma(UART_PORT port, kal_uint8 *ptr_dat, kal_uint32 allow_len) |
| 2053 | { |
| 2054 | int real_len = 0; |
| 2055 | kal_uint32 base = UART_BaseAddr[port]; |
| 2056 | if ((DRV_Reg8(UART_LSR(base))&UART_LSR_DR) == 0) { |
| 2057 | /* RX no data */ |
| 2058 | return 0; |
| 2059 | } |
| 2060 | for(;;) { |
| 2061 | while ((real_len < allow_len) && (DRV_Reg8(UART_LSR(base))&UART_LSR_DR)) { |
| 2062 | *ptr_dat++ = DRV_Reg8(UART_RBR(base)); |
| 2063 | real_len ++; |
| 2064 | } |
| 2065 | |
| 2066 | if (real_len == allow_len) { |
| 2067 | /* Got Enough data */ |
| 2068 | break; |
| 2069 | } |
| 2070 | |
| 2071 | /* 32k timer, 30us */ |
| 2072 | kal_uint32 delayTime1; |
| 2073 | delayTime1 = drv_get_current_time()+3; /* delay 60~90us*/ |
| 2074 | while(delayTime1 != drv_get_current_time()) { |
| 2075 | if ((DRV_Reg8(UART_LSR(base))&UART_LSR_DR)) |
| 2076 | break; |
| 2077 | |
| 2078 | } |
| 2079 | |
| 2080 | if ((DRV_Reg8(UART_LSR(base))&UART_LSR_DR) == 0) { |
| 2081 | /* RX Timeout */ |
| 2082 | break; |
| 2083 | } |
| 2084 | } |
| 2085 | |
| 2086 | return real_len; |
| 2087 | } |
| 2088 | void UART_RecHandler(void *parameter) { |
| 2089 | UARTStruct *UARTData=(UARTStruct *)parameter; |
| 2090 | kal_uint32 UART_BASE; |
| 2091 | kal_uint16 RoomLeft; |
| 2092 | kal_uint16 LSR; |
| 2093 | kal_uint8 cRXChar; |
| 2094 | if(UARTData->port_no >= MAX_UART_PORT_NUM) |
| 2095 | return; |
| 2096 | |
| 2097 | UART_BASE = UART_BaseAddr[UARTData->port_no]; |
| 2098 | Buf_GetRoomLeft(&(UARTData->Rx_Buffer),RoomLeft); |
| 2099 | |
| 2100 | while (RoomLeft) |
| 2101 | { |
| 2102 | LSR = DRV_UART_Reg(UART_LSR(UART_BASE)); |
| 2103 | if (LSR & UART_LSR_BI) |
| 2104 | { |
| 2105 | UARTData->breakDet = KAL_TRUE; |
| 2106 | U_Purge(UARTData->port_no,RX_BUF,UARTPort[UARTData->port_no].ownerid); |
| 2107 | LSR = DRV_UART_Reg(UART_LSR(UART_BASE)); |
| 2108 | } |
| 2109 | |
| 2110 | if (LSR & UART_LSR_DR) |
| 2111 | { |
| 2112 | |
| 2113 | cRXChar = (kal_uint8)DRV_UART_Reg(UART_RBR(UART_BASE)); |
| 2114 | |
| 2115 | Buf_Push(&(UARTData->Rx_Buffer),cRXChar); |
| 2116 | RoomLeft--; |
| 2117 | } |
| 2118 | else |
| 2119 | { |
| 2120 | break; |
| 2121 | } |
| 2122 | } |
| 2123 | if (!RoomLeft) /*buffer is full*/ |
| 2124 | DisableRxIntr(UART_BASE); |
| 2125 | |
| 2126 | |
| 2127 | } |
| 2128 | |
| 2129 | #if defined(DRV_DEBUG_BUFFER_DMA_MODE) |
| 2130 | /* This function might be called by HISR and dbg_print */ |
| 2131 | void UART_TxDMAHandler(void *parameter, kal_uint8 chk_done) |
| 2132 | { |
| 2133 | UARTStruct *UARTData = (UARTStruct *) parameter; |
| 2134 | kal_uint16 real_count_TASK, done_count; |
| 2135 | BUFFER_INFO *TxBuf = (BUFFER_INFO *)(&(UARTData->Tx_Buffer)); |
| 2136 | |
| 2137 | if(UARTData->port_no >= MAX_UART_PORT_NUM) |
| 2138 | return; |
| 2139 | |
| 2140 | /* |
| 2141 | * The spin lock is used for the con-currency case of HDMA HISR |
| 2142 | * and dbg_print. The write/read pointer of buffer is the basis |
| 2143 | * whether to start the next DMA or NOT, so use the spin lock |
| 2144 | * to protect the pointer updatding actions |
| 2145 | */ |
| 2146 | #ifndef KTEST_UART_TRACES |
| 2147 | kal_take_spinlock(print_buf_lock, KAL_INFINITE_WAIT); |
| 2148 | #else |
| 2149 | kal_hrt_take_itc_lock(KAL_ITC_PRINT, KAL_INFINITE_WAIT); |
| 2150 | #endif |
| 2151 | |
| 2152 | if (chk_done) { |
| 2153 | done_count = DRV_Reg32(GDMA_HCCR(UARTData->port_no+2)) & 0xFFFF; |
| 2154 | |
| 2155 | if (done_count) { |
| 2156 | BRead(TxBuf) += done_count; |
| 2157 | if (BRead(TxBuf) >= BLength(TxBuf)) |
| 2158 | BRead(TxBuf) -= BLength(TxBuf); |
| 2159 | } |
| 2160 | } |
| 2161 | |
| 2162 | Buf_GetBytesAvail_DMA(&(UARTData->Tx_Buffer), real_count_TASK); |
| 2163 | |
| 2164 | #ifndef KTEST_UART_TRACES |
| 2165 | kal_give_spinlock(print_buf_lock); |
| 2166 | #else |
| 2167 | kal_hrt_give_itc_lock(KAL_ITC_PRINT); |
| 2168 | #endif |
| 2169 | |
| 2170 | if (real_count_TASK) { |
| 2171 | clean_and_invalidate_dcache(CPU_CACHE_LINE_ALIGN_ADDR((kal_uint32)BuffRead(TxBuf)), |
| 2172 | CPU_CACHE_LINE_ALIGN_LEN((kal_uint32)BuffRead(TxBuf), (kal_uint32)real_count_TASK)); |
| 2173 | |
| 2174 | HDMA_BUF0_PROG_ADDR_CONFIG(UARTData->port_no+2, (kal_uint32)BuffRead(TxBuf)); |
| 2175 | HDMA_BUF0_XFER_SIZE_CONFIG(UARTData->port_no+2, (kal_uint32)real_count_TASK); |
| 2176 | HDMA_BUF0_START(UARTData->port_no+2); |
| 2177 | |
| 2178 | return; |
| 2179 | } |
| 2180 | } |
| 2181 | #endif |
| 2182 | |
| 2183 | void UART_TrxHandler(void *parameter) |
| 2184 | { |
| 2185 | UARTStruct *UARTData = (UARTStruct *) parameter; |
| 2186 | kal_uint32 UART_BASE; |
| 2187 | kal_uint16 byteCount, index; |
| 2188 | kal_uint16 real_count_TASK, real_count = 0; |
| 2189 | kal_uint16 offset; |
| 2190 | kal_uint8 TX_DATA; |
| 2191 | |
| 2192 | if(UARTData->port_no >= MAX_UART_PORT_NUM) |
| 2193 | return; |
| 2194 | |
| 2195 | UART_BASE = UART_BaseAddr[UARTData->port_no]; |
| 2196 | |
| 2197 | byteCount = UART1_TxFIFO_DEPTH; |
| 2198 | |
| 2199 | if(real_count != byteCount) |
| 2200 | { |
| 2201 | Buf_GetBytesAvail(&(UARTData->Tx_Buffer), real_count_TASK); |
| 2202 | offset = byteCount - real_count; |
| 2203 | real_count = real_count_TASK; |
| 2204 | if(real_count_TASK > offset) |
| 2205 | { |
| 2206 | real_count = offset; |
| 2207 | } |
| 2208 | |
| 2209 | for(index = 0; index < real_count; index++) |
| 2210 | { |
| 2211 | Buf_Pop(&(UARTData->Tx_Buffer),TX_DATA); |
| 2212 | DRV_UART_WriteReg(UART_THR(UART_BASE), (kal_uint16) TX_DATA); |
| 2213 | } |
| 2214 | } |
| 2215 | |
| 2216 | Buf_GetBytesAvail(&(UARTData->Tx_Buffer), real_count_TASK); |
| 2217 | if(real_count_TASK == 0) |
| 2218 | DisableTxIntr(UART_BASE); |
| 2219 | } |
| 2220 | |
| 2221 | void UART_MsHandler(void *parameter) {} |
| 2222 | |
| 2223 | //Bei add for get irq code |
| 2224 | kal_uint8 UART_GetIRQCode(UART_PORT port) |
| 2225 | { |
| 2226 | kal_uint8 IRQ_code = 0; |
| 2227 | switch(port) |
| 2228 | { |
| 2229 | case uart_port1: |
| 2230 | IRQ_code = IRQ_UART_MD0_CODE; |
| 2231 | break; |
| 2232 | case uart_port2: |
| 2233 | IRQ_code = IRQ_UART_MD1_CODE; |
| 2234 | break; |
| 2235 | default: |
| 2236 | break; |
| 2237 | } |
| 2238 | return IRQ_code; |
| 2239 | } |
| 2240 | |
| 2241 | void UART1_LISR(kal_uint32 vector) |
| 2242 | { |
| 2243 | IRQMask(IRQ_UART_MD0_CODE); |
| 2244 | kal_activate_hisr_index(UART_1_HISR); |
| 2245 | } |
| 2246 | |
| 2247 | void UART1_HISR(void) |
| 2248 | { |
| 2249 | kal_uint16 IIR; |
| 2250 | |
| 2251 | IIR = DRV_UART_Reg(UART_IIR(UART_BaseAddr[uart_port1])); |
| 2252 | if (IIR & UART_IIR_INT_INVALID) |
| 2253 | { |
| 2254 | IRQClearInt(IRQ_UART_MD0_CODE); |
| 2255 | IRQUnmask(IRQ_UART_MD0_CODE); |
| 2256 | |
| 2257 | return; |
| 2258 | } |
| 2259 | |
| 2260 | switch(IIR & UART_IIR_INT_MASK) |
| 2261 | { |
| 2262 | |
| 2263 | case UART_IIR_RLS: |
| 2264 | UART_RLSHandler(&UARTPort[uart_port1]); |
| 2265 | break; |
| 2266 | case UART_IIR_CTI: |
| 2267 | case UART_IIR_RDA: |
| 2268 | #ifdef __SLT_TOOL_SUPPORT__ |
| 2269 | UART_RecHandler(&UARTPort[uart_port1]) ; |
| 2270 | #endif |
| 2271 | break; |
| 2272 | case UART_IIR_THRE: |
| 2273 | UART_TrxHandler(&UARTPort[uart_port1]); |
| 2274 | break; |
| 2275 | case UART_IIR_MS : |
| 2276 | case UART_IIR_SWFlowCtrl: |
| 2277 | case UART_IIR_HWFlowCtrl: |
| 2278 | default: |
| 2279 | break; |
| 2280 | } |
| 2281 | IRQClearInt(IRQ_UART_MD0_CODE); |
| 2282 | IRQUnmask(IRQ_UART_MD0_CODE); |
| 2283 | } |
| 2284 | |
| 2285 | /*============================ UART2 ========================*/ |
| 2286 | void UART2_LISR(kal_uint32 vector) |
| 2287 | { |
| 2288 | IRQMask(IRQ_UART_MD1_CODE); |
| 2289 | kal_activate_hisr_index(UART_2_HISR); |
| 2290 | } |
| 2291 | |
| 2292 | void UART2_HISR(void) |
| 2293 | { |
| 2294 | kal_uint16 IIR; |
| 2295 | |
| 2296 | IIR = DRV_UART_Reg(UART_IIR(UART_BaseAddr[uart_port2])); |
| 2297 | if (IIR & UART_IIR_INT_INVALID) |
| 2298 | { |
| 2299 | IRQClearInt(IRQ_UART_MD1_CODE); |
| 2300 | IRQUnmask(IRQ_UART_MD1_CODE); |
| 2301 | |
| 2302 | return; |
| 2303 | } |
| 2304 | |
| 2305 | switch(IIR & UART_IIR_INT_MASK) |
| 2306 | { |
| 2307 | |
| 2308 | case UART_IIR_RLS: |
| 2309 | UART_RLSHandler(&UARTPort[uart_port2]); |
| 2310 | break; |
| 2311 | case UART_IIR_CTI: |
| 2312 | case UART_IIR_RDA: |
| 2313 | break; |
| 2314 | case UART_IIR_THRE: |
| 2315 | UART_TrxHandler(&UARTPort[uart_port2]); |
| 2316 | break; |
| 2317 | case UART_IIR_MS : |
| 2318 | case UART_IIR_SWFlowCtrl: |
| 2319 | case UART_IIR_HWFlowCtrl: |
| 2320 | default: |
| 2321 | break; |
| 2322 | } |
| 2323 | IRQClearInt(IRQ_UART_MD1_CODE); |
| 2324 | IRQUnmask(IRQ_UART_MD1_CODE); |
| 2325 | } |
| 2326 | |
| 2327 | |
| 2328 | typedef struct _ut_hdma_intr_s{ |
| 2329 | kal_uint32 hdma_done_int; |
| 2330 | kal_uint32 hdma_qe_int; |
| 2331 | kal_uint32 hdma_len_err_int; |
| 2332 | kal_uint32 hdma_bd_cserr_int; |
| 2333 | kal_uint32 hdma_gpd_cserr_int; |
| 2334 | }ut_hdma_intr_t; |
| 2335 | |
| 2336 | volatile static ut_hdma_intr_t ut_hdma_intr_record[2]; |
| 2337 | |
| 2338 | |
| 2339 | void uart_hdma_lisr(kal_uint32 vector) |
| 2340 | { |
| 2341 | IRQMask(UART_HDMA_INTR_ID); |
| 2342 | kal_activate_hisr_index(GDMA2_HISR); |
| 2343 | } |
| 2344 | |
| 2345 | void uart_hdma_hisr(void) |
| 2346 | { |
| 2347 | //kal_uint32 mask; |
| 2348 | kal_uint32 val, chl; |
| 2349 | kal_uint32 i; |
| 2350 | |
| 2351 | //mask = SaveAndSetIRQMask(); |
| 2352 | |
| 2353 | val = DRV_Reg32(GDMA_GISAR_UART); |
| 2354 | |
| 2355 | //Set the interrupt record table |
| 2356 | for(i = 0; i < sizeof(ut_hdma_intr_record) / sizeof(ut_hdma_intr_t); i++ ){ |
| 2357 | chl = i + 2; |
| 2358 | |
| 2359 | if(IS_HDMA_DONE_INTR(val, chl)){ |
| 2360 | ut_hdma_intr_record[i].hdma_done_int++; |
| 2361 | |
| 2362 | #if defined(DRV_DEBUG_BUFFER_DMA_MODE) |
| 2363 | if (chl == UART1_HDMA_TX_CHANNEL) { |
| 2364 | UART_TxDMAHandler(&UARTPort[uart_port1], 1); |
| 2365 | } |
| 2366 | #endif |
| 2367 | } |
| 2368 | |
| 2369 | if(IS_HDMA_QE_INTR(val, chl)){ |
| 2370 | ut_hdma_intr_record[i].hdma_qe_int++; |
| 2371 | |
| 2372 | #if defined(__HMU_ENABLE__) |
| 2373 | if (chl == UART1_HDMA_RX_CHANNEL) { |
| 2374 | // trigger UARTCORE task to polling RX |
| 2375 | hmu_hifeg_set(HIF_DRV_EG_HIF_TICK_EVENT_UART); |
| 2376 | } |
| 2377 | #endif |
| 2378 | } |
| 2379 | |
| 2380 | if(IS_HDMA_GPD_CSERR_INTR(val, chl)){ |
| 2381 | ut_hdma_intr_record[i].hdma_gpd_cserr_int++; |
| 2382 | ASSERT(0); |
| 2383 | } |
| 2384 | |
| 2385 | if(IS_HDMA_BD_CSERR_INTR(val, chl)){ |
| 2386 | ut_hdma_intr_record[i].hdma_bd_cserr_int++; |
| 2387 | ASSERT(0); |
| 2388 | } |
| 2389 | |
| 2390 | if(IS_HDMA_LENERR_INTR(val, chl)){ |
| 2391 | ut_hdma_intr_record[i].hdma_len_err_int++; |
| 2392 | ASSERT(0); |
| 2393 | } |
| 2394 | } |
| 2395 | |
| 2396 | //Clear the interrupt status |
| 2397 | HDMA_INT_CLEAR_ALL(); |
| 2398 | |
| 2399 | //RestoreIRQMask(mask); |
| 2400 | IRQUnmask(UART_HDMA_INTR_ID); |
| 2401 | } |
| 2402 | |
| 2403 | #ifdef __USB_COM_PORT_ENABLE__ |
| 2404 | extern UARTStruct USB2UARTPort[MAX_USB_PORT_NUM]; |
| 2405 | #endif /*__USB_COM_PORT_ENABLE__*/ |
| 2406 | |
| 2407 | void UART_SetSleepEnable(UART_PORT port, kal_bool enable) |
| 2408 | { |
| 2409 | DRV_UART_WriteReg(UART_SLEEP_EN(UART_BaseAddr[port]), enable); |
| 2410 | } |
| 2411 | |
| 2412 | //This API only for test purpose, can only be called by MEUT DVT test. |
| 2413 | //*********** do not call this API directly ************ |
| 2414 | //*********** do not call this API directly ************ |
| 2415 | //*********** do not call this API directly ************ |
| 2416 | void UART_set_FIFO_trigger(UART_PORT port, kal_uint16 tx_level, kal_uint16 rx_level) |
| 2417 | { |
| 2418 | if(port >= MAX_UART_PORT_NUM) |
| 2419 | return; |
| 2420 | DRV_UART_WriteReg(UART_FCR(UART_BaseAddr[port]), ((tx_level<<4) | (rx_level<<6) | 0x7)); |
| 2421 | } |
| 2422 | |
| 2423 | void U_Register_TX_cb(UART_PORT port, module_type ownerid, UART_TX_FUNC func) {} |
| 2424 | void U_Register_RX_cb(UART_PORT port, module_type ownerid, UART_RX_FUNC func) {} |
| 2425 | void UART_TurnOnPower(UART_PORT port, kal_bool enable) {} |
| 2426 | |
| 2427 | /* This is to check that all the data in UART TX ring buffer is empty. */ |
| 2428 | kal_bool UART_CheckTxBufferEmpty(UART_PORT port) |
| 2429 | { |
| 2430 | kal_uint8 result; |
| 2431 | void *p_cur_gpd; |
| 2432 | if(port >= MAX_UART_PORT_NUM) |
| 2433 | return KAL_FALSE; |
| 2434 | |
| 2435 | // HDMA |
| 2436 | if(uart_wait_tgpd_head[port] != NULL || uart_wait_tgpd_tail[port] != NULL) return KAL_FALSE; |
| 2437 | p_cur_gpd = uart_tgpd_head[port]; |
| 2438 | while(1) |
| 2439 | { |
| 2440 | if(p_cur_gpd == NULL) break; |
| 2441 | if(p_cur_gpd == uart_tgpd_tail[port]) break; |
| 2442 | if(QBM_DES_GET_HWO(p_cur_gpd + 0x40000000)) return KAL_FALSE; |
| 2443 | p_cur_gpd = QBM_DES_GET_NEXT(p_cur_gpd); |
| 2444 | } |
| 2445 | |
| 2446 | Buf_IsEmpty(&(UARTPort[port].Tx_Buffer), result); |
| 2447 | return ((Buff_isEmpty == result) ? KAL_TRUE : KAL_FALSE); |
| 2448 | } |
| 2449 | |
| 2450 | /* This is to check that all TX data have been sent out |
| 2451 | including UART TX ring buffer and UART FIFO. */ |
| 2452 | kal_bool UART_CheckTxAllSentOut(UART_PORT port) |
| 2453 | { |
| 2454 | if(port >= MAX_UART_PORT_NUM) |
| 2455 | return KAL_FALSE; |
| 2456 | |
| 2457 | if (UART_CheckTxBufferEmpty(port) == KAL_FALSE) |
| 2458 | return KAL_FALSE; |
| 2459 | if (UART_LSR_TEMT & DRV_UART_Reg(UART_LSR(UART_BaseAddr[port]))) |
| 2460 | return KAL_TRUE; |
| 2461 | else |
| 2462 | return KAL_FALSE; |
| 2463 | } |
| 2464 | |
| 2465 | |
| 2466 | // this function has a problem |
| 2467 | void UART_GetTxBufferSize(UART_PORT port, kal_uint32 *total_size, kal_uint32 *rest_size) |
| 2468 | { |
| 2469 | if(port >= MAX_UART_PORT_NUM) |
| 2470 | return; |
| 2471 | *total_size = UARTPort[port].Tx_Buffer.Length; |
| 2472 | if(uart_tgpd_head[port] != NULL || uart_wait_tgpd_head[port] != NULL) |
| 2473 | { |
| 2474 | *rest_size = uart_cal_tgpd_buf_length((void *) GDMA_HDCPRN((port + 2)), (void *) uart_tgpd_tail[port]); |
| 2475 | *rest_size += uart_cal_tgpd_buf_length((void *) uart_wait_tgpd_head[port], (void *) uart_wait_tgpd_tail[port]); |
| 2476 | |
| 2477 | } else |
| 2478 | Buf_GetBytesAvail(&(UARTPort[port].Tx_Buffer), *rest_size); |
| 2479 | } |
| 2480 | |
| 2481 | |
| 2482 | /* |
| 2483 | * FUNCTION |
| 2484 | * UART_VFIFO_TX_DMA_Enable |
| 2485 | * |
| 2486 | * DESCRIPTION |
| 2487 | * for |
| 2488 | * |
| 2489 | * CALLS |
| 2490 | * This function is called to enable or disable VFIFO DMA TX |
| 2491 | * it is for logacc only , logacc will take UART TX , it might cause UART & VFIFO DMA sync problem |
| 2492 | * so we must disable VFIFO DMA when logacc on |
| 2493 | * enable and reset VFIFO DMA when logacc off |
| 2494 | * |
| 2495 | * PARAMETERS |
| 2496 | * port: uart port |
| 2497 | * enable: disable or enable VFIFO DMA TX |
| 2498 | * RETURNS |
| 2499 | * None |
| 2500 | * |
| 2501 | * GLOBALS AFFECTED |
| 2502 | * external_global |
| 2503 | */ |
| 2504 | void UART_VFIFO_TX_DMA_Enable(UART_PORT port,kal_bool enable) {} |
| 2505 | |
| 2506 | |
| 2507 | |
| 2508 | |
| 2509 | // Used under ASSERT condition |
| 2510 | // This has effect only when the port does NOT support VFIFO and used as Catcher port |
| 2511 | // After ASSERT, DHL will wait UART to send out all the data before ASSERT. |
| 2512 | // But now, all the interrupts are disabled, DHL may wait forever when the UART port is configured with DMA |
| 2513 | // To solve this problem, we provide this function for DHL to call |
| 2514 | // in order to send out all the data in ring buffer before ASSERT |
| 2515 | // DHL will open UART port again after previous data is sent out |
| 2516 | void UART_AssertWaitPrevDataSentOut(UART_PORT port){ |
| 2517 | kal_uint16 LSR; |
| 2518 | kal_uint16 TX_DATA; |
| 2519 | |
| 2520 | if(port >= MAX_UART_PORT_NUM) |
| 2521 | return; |
| 2522 | |
| 2523 | // Manually send out data by MCU polling |
| 2524 | while(!UART_CheckTxBufferEmpty(port)) |
| 2525 | { |
| 2526 | LSR = DRV_UART_Reg(UART_LSR(UART_BaseAddr[port])); |
| 2527 | if(LSR & UART_LSR_THRE) |
| 2528 | { |
| 2529 | Buf_Pop(&(UARTPort[port].Tx_Buffer), TX_DATA); |
| 2530 | DRV_UART_WriteReg(UART_THR(UART_BaseAddr[port]), (kal_uint16) TX_DATA); |
| 2531 | } |
| 2532 | } |
| 2533 | |
| 2534 | // Wait UART controller to sent out the data in FIFO |
| 2535 | while(!UART_CheckTxAllSentOut(port)); |
| 2536 | } |
| 2537 | |
| 2538 | kal_uint32 UART_Get_Maxbaudrate(UART_PORT port) |
| 2539 | { |
| 2540 | return 6000000; |
| 2541 | } |
| 2542 | |
| 2543 | kal_uint32 UART_PutBytesIor(UART_PORT port, void *putIor) |
| 2544 | { |
| 2545 | void *p_ior; |
| 2546 | if(port >= MAX_UART_PORT_NUM) |
| 2547 | return 0; |
| 2548 | |
| 2549 | p_ior = putIor; |
| 2550 | while(1) |
| 2551 | { |
| 2552 | // if there is no tgpd, atach a bypass tgpd |
| 2553 | uart_en_q_de_q_with_mutex(port, UART_TX, UART_EN_Q, ((tty_io_request_t *) putIor)->first_gpd, ((tty_io_request_t *) putIor)->last_gpd); |
| 2554 | if(((tty_io_request_t *) p_ior)->next_request == NULL) |
| 2555 | { |
| 2556 | break; |
| 2557 | } else |
| 2558 | { |
| 2559 | p_ior = ((tty_io_request_t *) p_ior)->next_request; |
| 2560 | } |
| 2561 | } |
| 2562 | |
| 2563 | return 0; |
| 2564 | } |
| 2565 | |
| 2566 | kal_uint32 UART_PutBytesIor_LIGHT(UART_PORT port, void *putIor) |
| 2567 | { |
| 2568 | void *p_ior; |
| 2569 | if(port >= MAX_UART_PORT_NUM) |
| 2570 | return 0; |
| 2571 | |
| 2572 | p_ior = putIor; |
| 2573 | while(1) |
| 2574 | { |
| 2575 | // if there is no tgpd, atach a bypass tgpd |
| 2576 | uart_en_q_de_q_with_mutex(port, UART_TX, UART_EN_Q_LIGHT, ((tty_io_request_t *) putIor)->first_gpd, ((tty_io_request_t *) putIor)->last_gpd); |
| 2577 | if(((tty_io_request_t *) p_ior)->next_request == NULL) |
| 2578 | { |
| 2579 | break; |
| 2580 | } else |
| 2581 | { |
| 2582 | p_ior = ((tty_io_request_t *) p_ior)->next_request; |
| 2583 | } |
| 2584 | } |
| 2585 | |
| 2586 | return 0; |
| 2587 | } |
| 2588 | |
| 2589 | kal_uint32 UART_GetBytesIor(UART_PORT port, void *ior) |
| 2590 | { |
| 2591 | void *p_ior; |
| 2592 | |
| 2593 | if(port >= MAX_UART_PORT_NUM) |
| 2594 | return 0; |
| 2595 | |
| 2596 | p_ior = ior; |
| 2597 | while(1) |
| 2598 | { |
| 2599 | uart_en_q_de_q_with_mutex(port, UART_RX, UART_EN_Q, ((tty_io_request_t *) p_ior)->first_gpd, ((tty_io_request_t *) p_ior)->last_gpd); |
| 2600 | if(((tty_io_request_t *) p_ior)->next_request == NULL) |
| 2601 | { |
| 2602 | break; |
| 2603 | } else |
| 2604 | { |
| 2605 | p_ior = ((tty_io_request_t *) p_ior)->next_request; |
| 2606 | } |
| 2607 | } |
| 2608 | |
| 2609 | return 0; |
| 2610 | } |
| 2611 | |
| 2612 | |
| 2613 | void UART_DriverInit(UART_PORT port) |
| 2614 | { |
| 2615 | module_type ownerid; |
| 2616 | static kal_bool b_uart_custom_init = KAL_FALSE; |
| 2617 | kal_bool Is_OpenUart = KAL_TRUE; |
| 2618 | |
| 2619 | ownerid = (MOD_UART1_HISR + port); |
| 2620 | |
| 2621 | // Customization |
| 2622 | if(b_uart_custom_init == KAL_FALSE) |
| 2623 | { |
| 2624 | uart_customize_init(); |
| 2625 | b_uart_custom_init = KAL_TRUE; |
| 2626 | } |
| 2627 | |
| 2628 | if(Is_OpenUart == KAL_TRUE) |
| 2629 | { |
| 2630 | UART_HWInit(port); |
| 2631 | |
| 2632 | pUart_CMD_FUNC[port]= &UartDriver; |
| 2633 | |
| 2634 | U_Open(port, ownerid); |
| 2635 | } |
| 2636 | |
| 2637 | // create mutex |
| 2638 | if(mutex_status == KAL_FALSE && !INT_QueryExceptionStatus()) |
| 2639 | { |
| 2640 | mutexid = kal_create_mutex("DRV_UART"); |
| 2641 | mutex_status = KAL_TRUE; |
| 2642 | } |
| 2643 | } |
| 2644 | |
| 2645 | void UART_SetNeedTxDoneCb(UART_PORT port, kal_bool needTxDoneCb, module_type ownerid) |
| 2646 | { |
| 2647 | UARTPort[port].need_tx_done_cb = needTxDoneCb; |
| 2648 | } |
| 2649 | |
| 2650 | kal_uint32 uart_cal_tgpd_buf_length(void *head, void *tail) |
| 2651 | { |
| 2652 | void *gpd_cur, *bd_cur; |
| 2653 | kal_uint32 sum = 0; |
| 2654 | |
| 2655 | if(head == NULL || tail == NULL) |
| 2656 | return 0; |
| 2657 | |
| 2658 | gpd_cur = head; |
| 2659 | while(1) |
| 2660 | { |
| 2661 | if(QBM_DES_GET_BPS(gpd_cur) == 0) |
| 2662 | { |
| 2663 | if(QBM_DES_GET_BDP(gpd_cur)) |
| 2664 | { |
| 2665 | bd_cur = QBM_DES_GET_DATAPTR(gpd_cur); |
| 2666 | while(1) |
| 2667 | { |
| 2668 | sum += QBM_DES_GET_DATALEN(bd_cur); |
| 2669 | |
| 2670 | if(QBM_DES_GET_EOL(bd_cur)) {break;} |
| 2671 | else {bd_cur = QBM_DES_GET_NEXT(bd_cur);} |
| 2672 | } |
| 2673 | } else |
| 2674 | { |
| 2675 | sum += QBM_DES_GET_DATALEN(gpd_cur); |
| 2676 | } |
| 2677 | } |
| 2678 | |
| 2679 | if(gpd_cur == tail) {return sum;} |
| 2680 | else {gpd_cur = QBM_DES_GET_NEXT(gpd_cur);} |
| 2681 | } |
| 2682 | } |
| 2683 | |
| 2684 | void uart_en_q_de_q_with_mutex(UART_PORT port, kal_bool tx_or_rx, kal_uint8 en_q_or_de_q, void *p_ior_head, void *p_ior_tail) |
| 2685 | { |
| 2686 | void *p_gpd_head = NULL; |
| 2687 | void *p_gpd_tail = NULL; |
| 2688 | void *p_gpd_cur = NULL; |
| 2689 | kal_uint32 queue_len = 0; |
| 2690 | tty_io_request_t *ior = NULL; |
| 2691 | if(!kal_if_hisr()){ |
| 2692 | // lock mutex |
| 2693 | kal_take_mutex(mutexid); |
| 2694 | } |
| 2695 | DCL_HANDLE handle = DclSerialPort_Open(port, 0); |
| 2696 | |
| 2697 | if(tx_or_rx == (kal_bool) UART_TX) |
| 2698 | { |
| 2699 | if(en_q_or_de_q == UART_EN_Q) |
| 2700 | { |
| 2701 | |
| 2702 | uart_cal_chksum_and_flush_gpd_list(p_ior_head, p_ior_tail); |
| 2703 | |
| 2704 | if(uart_wait_tgpd_head[port] == NULL && uart_wait_tgpd_tail[port] == NULL) |
| 2705 | { |
| 2706 | uart_wait_tgpd_head[port] = p_ior_head; |
| 2707 | uart_wait_tgpd_tail[port] = p_ior_tail; |
| 2708 | } else |
| 2709 | { |
| 2710 | qbmt_common_en_q_rx(p_ior_head, p_ior_tail, (void **) &uart_wait_tgpd_head[port], (void **) &uart_wait_tgpd_tail[port]); |
| 2711 | } |
| 2712 | } else if(en_q_or_de_q == UART_EN_Q_LIGHT) |
| 2713 | { |
| 2714 | if(uart_wait_tgpd_head[port] == NULL && uart_wait_tgpd_tail[port] == NULL) |
| 2715 | { |
| 2716 | uart_wait_tgpd_head[port] = p_ior_head; |
| 2717 | uart_wait_tgpd_tail[port] = p_ior_tail; |
| 2718 | } else |
| 2719 | { |
| 2720 | qbmt_common_en_q_rx(p_ior_head, p_ior_tail, (void **) &uart_wait_tgpd_head[port], (void **) &uart_wait_tgpd_tail[port]); |
| 2721 | } |
| 2722 | } else |
| 2723 | { |
| 2724 | if(uart_tgpd_head[port] != NULL) |
| 2725 | { |
| 2726 | if(en_q_or_de_q == UART_DE_Q) |
| 2727 | { |
| 2728 | queue_len = qbmt_de_q((void **) &uart_tgpd_head[port], (void **) &uart_tgpd_tail[port], (void **) &p_gpd_head, (void **) &p_gpd_tail); |
| 2729 | } else if(en_q_or_de_q == UART_DE_Q_ALL) |
| 2730 | { |
| 2731 | #if defined(META_MODE_SW_ESCAPING) |
| 2732 | if(kal_query_boot_mode() != FACTORY_BOOT) |
| 2733 | #endif |
| 2734 | { |
| 2735 | HDMA_BUF0_STOP((2 + port)); |
| 2736 | } |
| 2737 | uart_clear_hwo_of_gpd_list(uart_tgpd_head[port], uart_tgpd_tail[port]); |
| 2738 | queue_len = qbmt_de_q((void **) &uart_tgpd_head[port], (void **) &uart_tgpd_tail[port], (void **) &p_gpd_head, (void **) &p_gpd_tail); |
| 2739 | QBM_FREE_ONE(uart_tgpd_head[port]); |
| 2740 | |
| 2741 | if(uart_wait_tgpd_head[port] != NULL) |
| 2742 | { |
| 2743 | if(queue_len > 0) |
| 2744 | { |
| 2745 | qbmt_common_en_q_rx(uart_wait_tgpd_head[port], uart_wait_tgpd_tail[port], (void **) &p_gpd_head, (void **) &p_gpd_tail); |
| 2746 | } else |
| 2747 | { |
| 2748 | p_gpd_head = uart_wait_tgpd_head[port]; |
| 2749 | p_gpd_tail = uart_wait_tgpd_tail[port]; |
| 2750 | queue_len = 1; |
| 2751 | } |
| 2752 | uart_clear_hwo_of_gpd_list(p_gpd_head, p_gpd_tail); |
| 2753 | } |
| 2754 | |
| 2755 | uart_tgpd_head[port] = NULL; |
| 2756 | uart_tgpd_tail[port] = NULL; |
| 2757 | uart_wait_tgpd_head[port] = NULL; |
| 2758 | uart_wait_tgpd_tail[port] = NULL; |
| 2759 | } else ASSERT(0); |
| 2760 | |
| 2761 | if(queue_len > 0) |
| 2762 | { |
| 2763 | if(UARTPort[port].need_tx_done_cb) |
| 2764 | { |
| 2765 | ior = (tty_io_request_t *) QBM_DES_GET_SW_CTRL_FIELD(p_gpd_head); |
| 2766 | ior->first_gpd = p_gpd_head; |
| 2767 | ior->last_gpd = p_gpd_tail; |
| 2768 | ior->next_request = NULL; |
| 2769 | DclSerialPort_DrvTxDone(handle, kal_get_active_module_id(), ior); |
| 2770 | } else |
| 2771 | { |
| 2772 | qbmt_dest_q((void *) p_gpd_head, (void *) p_gpd_tail); |
| 2773 | } |
| 2774 | } |
| 2775 | } |
| 2776 | } |
| 2777 | } else |
| 2778 | { |
| 2779 | if(en_q_or_de_q == (kal_bool) UART_EN_Q) |
| 2780 | { |
| 2781 | if(uart_rgpd_head[port] == NULL && uart_rgpd_tail[port] == NULL) |
| 2782 | { |
| 2783 | uart_cal_chksum_and_flush_gpd_list(p_ior_head, p_ior_tail); |
| 2784 | |
| 2785 | QBM_DES_CLR_HWO(p_ior_tail); |
| 2786 | QBM_CACHE_FLUSH((void *) p_ior_tail, QBM_SIZE_GPD_BD_TST); |
| 2787 | HDMA_BUF0_PROG_ADDR_CONFIG((3 + port), p_ior_head); |
| 2788 | uart_rgpd_head[port] = p_ior_head; |
| 2789 | uart_rgpd_tail[port] = p_ior_tail; |
| 2790 | HDMA_BUF0_START((3 + port)); |
| 2791 | }else{ |
| 2792 | qbmt_common_en_q_rx(p_ior_head, p_ior_tail, (void **) &uart_rgpd_head[port], (void **) &uart_rgpd_tail[port]); |
| 2793 | uart_cal_chksum_and_flush_gpd_list(uart_rgpd_head[port], uart_rgpd_tail[port]); |
| 2794 | QBM_DES_CLR_HWO(uart_rgpd_tail[port]); |
| 2795 | QBM_CACHE_FLUSH((void *) uart_rgpd_tail[port], QBM_SIZE_GPD_BD_TST); |
| 2796 | |
| 2797 | HDMA_BUF0_RESUME((3 + port)); |
| 2798 | } |
| 2799 | } else |
| 2800 | { |
| 2801 | if(uart_rgpd_head[port] == NULL) |
| 2802 | { |
| 2803 | if(!kal_if_hisr()){ |
| 2804 | kal_give_mutex(mutexid); |
| 2805 | } |
| 2806 | return; |
| 2807 | } else |
| 2808 | { |
| 2809 | if(en_q_or_de_q == UART_DE_Q) |
| 2810 | { |
| 2811 | queue_len = qbmt_de_q((void **) &uart_rgpd_head[port], (void **) &uart_rgpd_tail[port], (void **) &p_gpd_head, (void **) &p_gpd_tail); |
| 2812 | } else if(en_q_or_de_q == UART_DE_Q_ALL) |
| 2813 | { |
| 2814 | // stop q |
| 2815 | HDMA_BUF0_STOP((port + 3)); |
| 2816 | // de-Q all GPDs |
| 2817 | p_gpd_head = uart_rgpd_head[port]; |
| 2818 | p_gpd_tail = uart_rgpd_tail[port]; |
| 2819 | uart_rgpd_head[port] = NULL; |
| 2820 | uart_rgpd_tail[port] = NULL; |
| 2821 | queue_len = 1; // not real queue length |
| 2822 | } |
| 2823 | |
| 2824 | if(p_gpd_head != NULL && p_gpd_tail != NULL && queue_len > 0) |
| 2825 | { |
| 2826 | #if defined(META_MODE_SW_ESCAPING) && !defined(UART_SIM_QMU) |
| 2827 | if(kal_query_boot_mode() == FACTORY_BOOT){ |
| 2828 | UART_META_ExBytes(port, p_gpd_head, p_gpd_tail); |
| 2829 | } |
| 2830 | #endif |
| 2831 | ior = (tty_io_request_t *) QBM_DES_GET_SW_CTRL_FIELD(p_gpd_head); |
| 2832 | ior->first_gpd = p_gpd_head; |
| 2833 | ior->last_gpd = p_gpd_tail; |
| 2834 | ior->next_request = NULL; |
| 2835 | DclSerialPort_DrvRx(handle, kal_get_active_module_id(), ior); // need to modify |
| 2836 | } |
| 2837 | } |
| 2838 | } |
| 2839 | } |
| 2840 | |
| 2841 | if(uart_wait_tgpd_head[port] != NULL && uart_wait_tgpd_tail[port] != NULL && !(DRV_Reg32(UART_LCR(UART_BaseAddr[port])) & UART_LCR_BREAK)) |
| 2842 | { |
| 2843 | if(uart_tgpd_head[port] == NULL && uart_tgpd_tail[port] == NULL) |
| 2844 | { |
| 2845 | uart_tgpd_head[port] = uart_wait_tgpd_head[port]; |
| 2846 | uart_tgpd_tail[port] = uart_wait_tgpd_tail[port]; |
| 2847 | |
| 2848 | // connect a BPS GPD to the tail |
| 2849 | qbmt_alloc_q(QBM_TYPE_TGPD_BPS, 1, (void **) &p_gpd_cur, (void **) &p_gpd_cur); |
| 2850 | ASSERT(p_gpd_cur!= NULL); |
| 2851 | |
| 2852 | qbmt_common_en_q_rx(p_gpd_cur, p_gpd_cur, (void **) &uart_tgpd_head[port], (void **) &uart_tgpd_tail[port]); |
| 2853 | #if defined(META_MODE_SW_ESCAPING) |
| 2854 | if(kal_query_boot_mode() == FACTORY_BOOT){ |
| 2855 | UART_META_PutBytes(port,uart_tgpd_head[port], uart_tgpd_tail[port]); |
| 2856 | }else |
| 2857 | #endif |
| 2858 | { |
| 2859 | HDMA_BUF0_PROG_ADDR_CONFIG((2 + port), uart_tgpd_head[port]); |
| 2860 | HDMA_BUF0_START((2 + port)); |
| 2861 | } |
| 2862 | uart_wait_tgpd_head[port] = NULL; |
| 2863 | uart_wait_tgpd_tail[port] = NULL; |
| 2864 | } else if(QBM_DES_GET_BPS(uart_tgpd_head[port]) && QBM_DES_GET_BPS(uart_tgpd_tail[port])) |
| 2865 | { |
| 2866 | QBM_FREE_ONE(uart_tgpd_head[port]); |
| 2867 | |
| 2868 | uart_tgpd_head[port] = uart_wait_tgpd_head[port]; |
| 2869 | uart_tgpd_tail[port] = uart_wait_tgpd_tail[port]; |
| 2870 | |
| 2871 | // connect a BPS GPD to the tail |
| 2872 | qbmt_alloc_q(QBM_TYPE_TGPD_BPS, 1, (void **) &p_gpd_cur, (void **) &p_gpd_cur); |
| 2873 | ASSERT(p_gpd_cur!= NULL); |
| 2874 | qbmt_common_en_q_rx(p_gpd_cur, p_gpd_cur, (void **) &uart_tgpd_head[port], (void **) &uart_tgpd_tail[port]); |
| 2875 | #if defined(META_MODE_SW_ESCAPING) |
| 2876 | if(kal_query_boot_mode() == FACTORY_BOOT){ |
| 2877 | UART_META_PutBytes(port,uart_wait_tgpd_head[port], uart_wait_tgpd_tail[port]); |
| 2878 | }else |
| 2879 | #endif |
| 2880 | { |
| 2881 | HDMA_BUF0_PROG_ADDR_CONFIG((2 + port), uart_wait_tgpd_head[port]); |
| 2882 | HDMA_BUF0_START((2 + port)); |
| 2883 | } |
| 2884 | uart_wait_tgpd_head[port] = NULL; |
| 2885 | uart_wait_tgpd_tail[port] = NULL; |
| 2886 | } |
| 2887 | } |
| 2888 | if(!kal_if_hisr()){ |
| 2889 | // unlock mutex |
| 2890 | kal_give_mutex(mutexid); |
| 2891 | } |
| 2892 | return; |
| 2893 | } |
| 2894 | |
| 2895 | |
| 2896 | void uart_qbm_virt_to_phy(void** pp_gpd_head, void** pp_gpd_tail) |
| 2897 | { |
| 2898 | void *gpd_ptr = NULL, *gpd_ptr_tmp = NULL; |
| 2899 | void *bd_ptr = NULL, *bd_ptr_tmp = NULL;; |
| 2900 | void *pgd_data_ptr = NULL, *bd_data_ptr = NULL; |
| 2901 | |
| 2902 | *pp_gpd_head = (void*)virt_to_phys(*pp_gpd_head); |
| 2903 | gpd_ptr = *pp_gpd_head; |
| 2904 | while(1) |
| 2905 | { |
| 2906 | if(QBM_DES_GET_BDP(gpd_ptr)) |
| 2907 | { |
| 2908 | bd_ptr = QBM_DES_GET_DATAPTR(gpd_ptr); |
| 2909 | bd_ptr = (void*)virt_to_phys(bd_ptr); |
| 2910 | QBM_DES_SET_DATAPTR(gpd_ptr,bd_ptr); |
| 2911 | qbm_cal_set_checksum_by_len((const kal_uint8 *)gpd_ptr, 12); |
| 2912 | while(1) |
| 2913 | { |
| 2914 | bd_data_ptr = QBM_DES_GET_DATAPTR(bd_ptr); |
| 2915 | bd_data_ptr = (void*)virt_to_phys(bd_data_ptr); |
| 2916 | QBM_DES_SET_DATAPTR(bd_ptr,bd_data_ptr); |
| 2917 | if(QBM_DES_GET_EOL(bd_ptr)) |
| 2918 | { |
| 2919 | break; |
| 2920 | } else |
| 2921 | { |
| 2922 | bd_ptr_tmp = (void*)QBM_DES_GET_NEXT(bd_ptr); |
| 2923 | bd_ptr_tmp = (void*)virt_to_phys(bd_ptr_tmp); |
| 2924 | QBM_DES_SET_NEXT(bd_ptr,bd_ptr_tmp); |
| 2925 | qbm_cal_set_checksum_by_len((const kal_uint8 *)bd_ptr, 12); |
| 2926 | bd_ptr = QBM_DES_GET_NEXT(bd_ptr); |
| 2927 | } |
| 2928 | } |
| 2929 | } else |
| 2930 | { |
| 2931 | pgd_data_ptr = QBM_DES_GET_DATAPTR(gpd_ptr); |
| 2932 | pgd_data_ptr = (void*)virt_to_phys(pgd_data_ptr); |
| 2933 | QBM_DES_SET_DATAPTR(gpd_ptr,pgd_data_ptr); |
| 2934 | } |
| 2935 | |
| 2936 | if(gpd_ptr == *pp_gpd_tail) |
| 2937 | { |
| 2938 | break; |
| 2939 | } else |
| 2940 | { |
| 2941 | gpd_ptr_tmp = (void*)QBM_DES_GET_NEXT(gpd_ptr); |
| 2942 | gpd_ptr_tmp = (void*)virt_to_phys(gpd_ptr_tmp); |
| 2943 | QBM_DES_SET_NEXT(gpd_ptr,gpd_ptr_tmp); |
| 2944 | qbm_cal_set_checksum_by_len((const kal_uint8 *) gpd_ptr, 12); |
| 2945 | gpd_ptr = QBM_DES_GET_NEXT(gpd_ptr); |
| 2946 | } |
| 2947 | |
| 2948 | } |
| 2949 | |
| 2950 | } |
| 2951 | |
| 2952 | void uart_qbm_phy_to_virt(void**pp_gpd_head, void**pp_gpd_tail) |
| 2953 | { |
| 2954 | void *gpd_ptr = NULL, *gpd_ptr_tmp = NULL; |
| 2955 | void *bd_ptr = NULL, *bd_ptr_tmp = NULL;; |
| 2956 | void *pgd_data_ptr = NULL, *bd_data_ptr = NULL; |
| 2957 | |
| 2958 | |
| 2959 | *pp_gpd_head = (void*)phys_to_virt(*pp_gpd_head); |
| 2960 | QBM_CACHE_INVALID(*pp_gpd_head, QBM_SIZE_TGPD); |
| 2961 | gpd_ptr = *pp_gpd_head; |
| 2962 | *pp_gpd_tail = (void*)phys_to_virt(*pp_gpd_tail); |
| 2963 | QBM_CACHE_INVALID(*pp_gpd_tail, QBM_SIZE_TGPD); |
| 2964 | while(1) |
| 2965 | { |
| 2966 | if(QBM_DES_GET_BDP(gpd_ptr)) |
| 2967 | { |
| 2968 | bd_ptr = QBM_DES_GET_DATAPTR(gpd_ptr); |
| 2969 | bd_ptr = (void*)phys_to_virt(bd_ptr); |
| 2970 | QBM_CACHE_INVALID(bd_ptr, QBM_SIZE_TBD); |
| 2971 | QBM_DES_SET_DATAPTR(gpd_ptr,bd_ptr); |
| 2972 | |
| 2973 | while(1) |
| 2974 | { |
| 2975 | bd_data_ptr = QBM_DES_GET_DATAPTR(bd_ptr); |
| 2976 | bd_data_ptr = (void*)phys_to_virt(bd_data_ptr); |
| 2977 | QBM_CACHE_INVALID(bd_data_ptr, QBM_SIZE_CACHE_ALIGN(QBM_DES_GET_DATALEN(bd_data_ptr))); |
| 2978 | QBM_DES_SET_DATAPTR(bd_ptr,bd_data_ptr); |
| 2979 | |
| 2980 | if(QBM_DES_GET_EOL(bd_ptr)) |
| 2981 | { |
| 2982 | break; |
| 2983 | } else |
| 2984 | { |
| 2985 | bd_ptr_tmp = (void*)QBM_DES_GET_NEXT(bd_ptr); |
| 2986 | bd_ptr_tmp = (void*)phys_to_virt(bd_ptr_tmp); |
| 2987 | QBM_CACHE_INVALID(bd_ptr_tmp, QBM_SIZE_TBD); |
| 2988 | QBM_DES_SET_NEXT(bd_ptr,bd_ptr_tmp); |
| 2989 | bd_ptr = QBM_DES_GET_NEXT(bd_ptr); |
| 2990 | } |
| 2991 | } |
| 2992 | } else |
| 2993 | { |
| 2994 | pgd_data_ptr = QBM_DES_GET_DATAPTR(gpd_ptr); |
| 2995 | pgd_data_ptr = (void*)phys_to_virt(pgd_data_ptr); |
| 2996 | QBM_CACHE_INVALID(pgd_data_ptr, QBM_SIZE_CACHE_ALIGN(QBM_DES_GET_DATALEN(pgd_data_ptr))); |
| 2997 | QBM_DES_SET_DATAPTR(gpd_ptr,pgd_data_ptr); |
| 2998 | } |
| 2999 | |
| 3000 | if(gpd_ptr == *pp_gpd_tail) |
| 3001 | { |
| 3002 | break; |
| 3003 | } else |
| 3004 | { |
| 3005 | gpd_ptr_tmp = (void*)QBM_DES_GET_NEXT(gpd_ptr); |
| 3006 | gpd_ptr_tmp = (void*)phys_to_virt(gpd_ptr_tmp); |
| 3007 | QBM_CACHE_INVALID(gpd_ptr_tmp, QBM_SIZE_TGPD); |
| 3008 | QBM_DES_SET_NEXT(gpd_ptr,gpd_ptr_tmp); |
| 3009 | gpd_ptr = QBM_DES_GET_NEXT(gpd_ptr); |
| 3010 | } |
| 3011 | |
| 3012 | } |
| 3013 | |
| 3014 | } |
| 3015 | |
| 3016 | void UART_META_PutBytes(UART_PORT port, void * gpd_head, void * gpd_tail){ |
| 3017 | hdma_tbd_t *bd_ptr = NULL, *p_bd_cur =NULL; |
| 3018 | hdma_tgpd_t *gpd_ptr = NULL; |
| 3019 | kal_uint8 gpd_ext_len=0, bd_ext_len=0; |
| 3020 | kal_uint32 gpd_data_len=0, bd_data_len=0; |
| 3021 | kal_uint8 *gpd_ext_ptr=NULL, *gpd_data_ptr=NULL, *bd_ext_ptr=NULL, *bd_data_ptr=NULL; |
| 3022 | |
| 3023 | gpd_ptr = (hdma_tgpd_t*)gpd_head; |
| 3024 | while(1){ |
| 3025 | if(QBM_DES_GET_HWO(gpd_ptr)==0){ |
| 3026 | break; |
| 3027 | } |
| 3028 | if(QBM_DES_GET_BPS(gpd_ptr)){ |
| 3029 | QBM_DES_CLR_HWO(gpd_ptr); |
| 3030 | QBM_CACHE_FLUSH(gpd_ptr, QBM_SIZE_TGPD); |
| 3031 | goto next; |
| 3032 | } |
| 3033 | if (QBM_DES_GET_EXTLEN(gpd_ptr)) { |
| 3034 | gpd_ext_len = QBM_DES_GET_EXTLEN(gpd_ptr); |
| 3035 | gpd_ext_ptr = QBM_DES_GET_EXT(gpd_ptr); |
| 3036 | PutUARTDatas(port, UART_ESCAPE_CHAR, gpd_ext_ptr,gpd_ext_len); |
| 3037 | //U_SendData(port, gpd_ext_ptr, gpd_ext_len, FACTORY_BOOT, UART_ESCAPE_CHAR, UARTPort[port].ownerid); |
| 3038 | } |
| 3039 | if (QBM_DES_GET_BDP(gpd_ptr)) { |
| 3040 | bd_ptr = QBM_DES_GET_DATAPTR(gpd_ptr); |
| 3041 | p_bd_cur = bd_ptr; |
| 3042 | while (1) { |
| 3043 | if (QBM_DES_GET_EXTLEN(p_bd_cur)) { |
| 3044 | bd_ext_len = QBM_DES_GET_EXTLEN(p_bd_cur); |
| 3045 | bd_ext_ptr = QBM_DES_GET_EXT(p_bd_cur); |
| 3046 | PutUARTDatas(port, UART_ESCAPE_CHAR, bd_ext_ptr,bd_ext_len); |
| 3047 | //U_SendData(port, bd_ext_ptr, bd_ext_len, FACTORY_BOOT, UART_ESCAPE_CHAR, UARTPort[port].ownerid); |
| 3048 | |
| 3049 | } |
| 3050 | if (QBM_DES_GET_DATALEN(p_bd_cur)) { |
| 3051 | bd_data_len = QBM_DES_GET_DATALEN(p_bd_cur); |
| 3052 | bd_data_ptr = QBM_DES_GET_DATAPTR(p_bd_cur); |
| 3053 | PutUARTDatas(port, UART_ESCAPE_CHAR, bd_data_ptr,bd_data_len); |
| 3054 | //U_SendData(port, bd_data_ptr, bd_data_len, FACTORY_BOOT, UART_ESCAPE_CHAR, UARTPort[port].ownerid); |
| 3055 | } |
| 3056 | if (QBM_DES_GET_EOL(p_bd_cur)) { |
| 3057 | break; |
| 3058 | } |
| 3059 | p_bd_cur = (void *)QBM_DES_GET_NEXT(p_bd_cur); |
| 3060 | } |
| 3061 | } else{ |
| 3062 | |
| 3063 | gpd_data_len = QBM_DES_GET_DATALEN(gpd_ptr); |
| 3064 | gpd_data_ptr = QBM_DES_GET_DATAPTR(gpd_ptr); |
| 3065 | PutUARTDatas(port, UART_ESCAPE_CHAR, gpd_data_ptr,gpd_data_len); |
| 3066 | //U_SendData(port, gpd_data_ptr, gpd_data_len, FACTORY_BOOT, UART_ESCAPE_CHAR, UARTPort[port].ownerid); |
| 3067 | } |
| 3068 | |
| 3069 | QBM_DES_CLR_HWO(gpd_ptr); |
| 3070 | QBM_CACHE_FLUSH(gpd_ptr, QBM_SIZE_TGPD); |
| 3071 | if(gpd_ptr == gpd_tail) |
| 3072 | { |
| 3073 | break; |
| 3074 | } else |
| 3075 | { |
| 3076 | next: |
| 3077 | gpd_ptr = (void *) QBM_DES_GET_NEXT(gpd_ptr); |
| 3078 | } |
| 3079 | } |
| 3080 | |
| 3081 | /* Cooperate with Non-Blocking CACHE API */ |
| 3082 | MM_Sync(); |
| 3083 | } |
| 3084 | |
| 3085 | |
| 3086 | void uart_cal_chksum_and_flush_gpd_list(void * gpd_head, void * gpd_tail) |
| 3087 | { |
| 3088 | hdma_tbd_t *gpd_ptr = NULL, *bd_ptr = NULL; |
| 3089 | void *pgd_data_ptr = NULL, *bd_data_ptr = NULL; |
| 3090 | |
| 3091 | gpd_ptr = (hdma_tbd_t*)gpd_head; |
| 3092 | while(1) |
| 3093 | { |
| 3094 | QBM_DES_SET_HWO(gpd_ptr); |
| 3095 | #if !defined(__DRVTEST_SW_DOMAIN__) |
| 3096 | qbm_cal_set_checksum_by_len((const kal_uint8 *) gpd_ptr, 12); |
| 3097 | #endif |
| 3098 | QBM_CACHE_FLUSH((void *) gpd_ptr, QBM_SIZE_TGPD); |
| 3099 | |
| 3100 | if(QBM_DES_GET_BDP(gpd_ptr)) |
| 3101 | { |
| 3102 | bd_ptr = QBM_DES_GET_DATAPTR(gpd_ptr); |
| 3103 | while(1) |
| 3104 | { |
| 3105 | #if !defined(__DRVTEST_SW_DOMAIN__) |
| 3106 | qbm_cal_set_checksum_by_len((const kal_uint8 *) bd_ptr, 12); |
| 3107 | #endif |
| 3108 | QBM_CACHE_FLUSH((void *) bd_ptr, QBM_SIZE_TBD); |
| 3109 | bd_data_ptr = QBM_DES_GET_DATAPTR(bd_ptr); |
| 3110 | QBM_CACHE_FLUSH((void *) bd_data_ptr, QBM_DES_GET_DATALEN(bd_ptr)); |
| 3111 | |
| 3112 | if(QBM_DES_GET_EOL(bd_ptr)) |
| 3113 | { |
| 3114 | break; |
| 3115 | } else |
| 3116 | { |
| 3117 | bd_ptr = (void *) QBM_DES_GET_NEXT(bd_ptr); |
| 3118 | } |
| 3119 | } |
| 3120 | } else |
| 3121 | { |
| 3122 | pgd_data_ptr = QBM_DES_GET_DATAPTR(gpd_ptr); |
| 3123 | QBM_CACHE_FLUSH((void *) pgd_data_ptr, QBM_DES_GET_DATALEN(gpd_ptr)); |
| 3124 | } |
| 3125 | |
| 3126 | if(gpd_ptr == gpd_tail) |
| 3127 | { |
| 3128 | break; |
| 3129 | } else |
| 3130 | { |
| 3131 | gpd_ptr = (void *) QBM_DES_GET_NEXT(gpd_ptr); |
| 3132 | } |
| 3133 | |
| 3134 | } |
| 3135 | |
| 3136 | /* Cooperate with Non-Blocking CACHE API */ |
| 3137 | MM_Sync(); |
| 3138 | } |
| 3139 | |
| 3140 | void uart_clear_hwo_of_gpd_list(void *gpd_head, void *gpd_tail) |
| 3141 | { |
| 3142 | hdma_tbd_t *gpd_ptr = NULL;//, *bd_ptr = NULL; |
| 3143 | |
| 3144 | gpd_ptr = gpd_head; |
| 3145 | while(1) |
| 3146 | { |
| 3147 | QBM_DES_CLR_HWO(gpd_ptr); |
| 3148 | QBM_CACHE_FLUSH(gpd_ptr, QBM_SIZE_GPD_BD_TST); |
| 3149 | |
| 3150 | if(gpd_ptr == gpd_tail) |
| 3151 | { |
| 3152 | break; |
| 3153 | } else |
| 3154 | { |
| 3155 | gpd_ptr = (void *) QBM_DES_GET_NEXT(gpd_ptr); |
| 3156 | } |
| 3157 | } |
| 3158 | |
| 3159 | /* Cooperate with Non-Blocking CACHE API */ |
| 3160 | MM_Sync(); |
| 3161 | } |
| 3162 | |
| 3163 | typedef struct _uart_bps_gpd_pool { |
| 3164 | void *gpd_head; |
| 3165 | void *gpd_tail; |
| 3166 | kal_uint32 free_num; |
| 3167 | kal_uint32 alloc_ok_cnt; |
| 3168 | kal_uint32 alloc_fail_cnt; |
| 3169 | kal_uint32 free_ok_cnt; |
| 3170 | void *buffer_start; |
| 3171 | void *buffer_end; |
| 3172 | kal_uint32 total_num; |
| 3173 | } uart_bps_gpd_pool; |
| 3174 | |
| 3175 | static void *uart_discard_tgpd_head = NULL; |
| 3176 | static void *uart_discard_tgpd_tail = NULL; |
| 3177 | static void *uart_discard_rgpd_head = NULL; |
| 3178 | static void *uart_discard_rgpd_tail = NULL; |
| 3179 | static kal_uint32 uart_excpt_tx_bytes[MAX_UART_PORT_NUM]; |
| 3180 | static kal_uint32 uart_excpt_rx_bytes[MAX_UART_PORT_NUM]; |
| 3181 | static uart_bps_gpd_pool uart_bps_gpd_pool_info; |
| 3182 | |
| 3183 | extern void uart_cal_chksum_and_flush_gpd_list(void *gpd_head, void *gpd_tail); |
| 3184 | |
| 3185 | |
| 3186 | kal_bool uart_except_init_qbm() |
| 3187 | { |
| 3188 | uart_bps_gpd_pool *gpd_pool = &uart_bps_gpd_pool_info; |
| 3189 | bm_queue_config conf; |
| 3190 | kal_uint32 ret; |
| 3191 | |
| 3192 | qbm_init_q_config(&conf); |
| 3193 | |
| 3194 | conf.buff_num = UART_ECPT_QBM_BPS_NUM; |
| 3195 | conf.p_mem_pool_str = uart_ecpt_bps_buf; |
| 3196 | conf.p_mem_pool_end = conf.p_mem_pool_str + UART_ECPT_QBM_BPS_BUF_SZ; |
| 3197 | ret = qbm_init_queue_non_free(QBM_TYPE_TGPD_BPS, &conf, |
| 3198 | &gpd_pool->gpd_head, |
| 3199 | &gpd_pool->gpd_tail); |
| 3200 | if(QBM_ERROR_OK != ret) |
| 3201 | return KAL_FALSE; |
| 3202 | |
| 3203 | gpd_pool->buffer_start = conf.p_mem_pool_str; |
| 3204 | gpd_pool->buffer_end = conf.p_mem_pool_end; |
| 3205 | gpd_pool->total_num = conf.buff_num; |
| 3206 | gpd_pool->free_num = conf.buff_num; |
| 3207 | |
| 3208 | return KAL_TRUE; |
| 3209 | } |
| 3210 | |
| 3211 | kal_bool uart_except_check_bps_gpd(void *p_gpd) |
| 3212 | { |
| 3213 | kal_uint8* uart_bps_buf; |
| 3214 | |
| 3215 | uart_bps_buf = uart_ecpt_bps_buf; |
| 3216 | |
| 3217 | if (((kal_uint8 *)p_gpd >= uart_bps_buf) && ((kal_uint8 *)p_gpd < uart_bps_buf + UART_ECPT_QBM_BPS_BUF_SZ)){ |
| 3218 | return KAL_TRUE; |
| 3219 | } |
| 3220 | return KAL_FALSE; |
| 3221 | } |
| 3222 | |
| 3223 | void uart_except_free_bps_gpd(void *p_gpd) |
| 3224 | { |
| 3225 | uart_bps_gpd_pool *gpd_pool = &uart_bps_gpd_pool_info; |
| 3226 | |
| 3227 | ASSERT(uart_except_check_bps_gpd(p_gpd)); |
| 3228 | |
| 3229 | if (gpd_pool->gpd_head == NULL) { |
| 3230 | gpd_pool->gpd_head = gpd_pool->gpd_tail = p_gpd; |
| 3231 | } else { |
| 3232 | QBM_DES_SET_NEXT(gpd_pool->gpd_tail, p_gpd); |
| 3233 | gpd_pool->gpd_tail = p_gpd; |
| 3234 | } |
| 3235 | |
| 3236 | gpd_pool->free_num ++; |
| 3237 | gpd_pool->free_ok_cnt ++; |
| 3238 | } |
| 3239 | |
| 3240 | void *uart_except_alloc_bps_gpd(kal_bool tx_or_rx) |
| 3241 | { |
| 3242 | void *p_ret_gpd; |
| 3243 | uart_bps_gpd_pool *gpd_pool = &uart_bps_gpd_pool_info; |
| 3244 | |
| 3245 | if (gpd_pool->gpd_head == NULL) { |
| 3246 | gpd_pool->alloc_fail_cnt ++; |
| 3247 | return NULL; |
| 3248 | } |
| 3249 | |
| 3250 | p_ret_gpd = gpd_pool->gpd_head; |
| 3251 | if (gpd_pool->gpd_head == gpd_pool->gpd_tail) { |
| 3252 | gpd_pool->gpd_head = gpd_pool->gpd_tail = NULL; |
| 3253 | } else { |
| 3254 | gpd_pool->gpd_head = QBM_DES_GET_NEXT(gpd_pool->gpd_head); |
| 3255 | } |
| 3256 | |
| 3257 | gpd_pool->free_num --; |
| 3258 | gpd_pool->alloc_ok_cnt ++; |
| 3259 | |
| 3260 | QBM_DES_SET_NEXT(p_ret_gpd, NULL); |
| 3261 | |
| 3262 | //QBM_DES_SET_BPS(p_ret_gpd); |
| 3263 | |
| 3264 | return p_ret_gpd; |
| 3265 | } |
| 3266 | |
| 3267 | kal_uint32 uart_except_free_bps_gpd_in_list(void **pp_head, void **pp_tail) |
| 3268 | { |
| 3269 | void *p_gpd_cur, *p_gpd_pre, *p_gpd_nex; |
| 3270 | int free_num = 0; |
| 3271 | |
| 3272 | p_gpd_cur = *pp_head; |
| 3273 | p_gpd_pre = NULL; |
| 3274 | |
| 3275 | if (*pp_head == NULL || *pp_tail == NULL) |
| 3276 | return 0; |
| 3277 | |
| 3278 | while (1) { |
| 3279 | p_gpd_nex = QBM_DES_GET_NEXT(p_gpd_cur); |
| 3280 | if (uart_except_check_bps_gpd(p_gpd_cur)) { |
| 3281 | /* free this gpd from list */ |
| 3282 | if (p_gpd_pre == NULL) |
| 3283 | *pp_head = p_gpd_nex; |
| 3284 | else |
| 3285 | QBM_DES_SET_NEXT(p_gpd_pre, p_gpd_nex); |
| 3286 | |
| 3287 | uart_except_free_bps_gpd(p_gpd_cur); |
| 3288 | free_num ++; |
| 3289 | } else { |
| 3290 | p_gpd_pre = p_gpd_cur; |
| 3291 | } |
| 3292 | |
| 3293 | if(p_gpd_cur == *pp_tail) |
| 3294 | break; |
| 3295 | |
| 3296 | p_gpd_cur = p_gpd_nex; |
| 3297 | } |
| 3298 | |
| 3299 | return free_num; |
| 3300 | } |
| 3301 | |
| 3302 | void uart_except_en_q_rx( |
| 3303 | void *p_new_head, |
| 3304 | void *p_new_tail, |
| 3305 | void **pp_orig_head, |
| 3306 | void **pp_orig_tail |
| 3307 | ) |
| 3308 | { |
| 3309 | void *p_orig_tail = NULL; |
| 3310 | |
| 3311 | ASSERT(pp_orig_head!=NULL); |
| 3312 | ASSERT(pp_orig_tail!=NULL); |
| 3313 | if (*pp_orig_head != NULL) { |
| 3314 | p_orig_tail = *pp_orig_tail; |
| 3315 | |
| 3316 | /* set new tail's HWO=0 */ |
| 3317 | QBM_DES_CLR_HWO(p_new_tail); |
| 3318 | QBM_CACHE_FLUSH(p_new_tail, QBM_SIZE_TGPD); |
| 3319 | |
| 3320 | /* link new list to tail of orig list */ |
| 3321 | QBM_DES_SET_NEXT(p_orig_tail, p_new_head); |
| 3322 | |
| 3323 | /* re-calc the orig tail's checksum */ |
| 3324 | #if !defined(__DRVTEST_SW_DOMAIN__) |
| 3325 | qbm_cal_set_checksum_wth_hwo(p_orig_tail); |
| 3326 | #endif |
| 3327 | |
| 3328 | /* set the orig tail's HWO=1 */ |
| 3329 | QBM_DES_SET_HWO(p_orig_tail); |
| 3330 | QBM_CACHE_FLUSH(p_orig_tail, QBM_SIZE_TGPD); |
| 3331 | |
| 3332 | /* update the orig tail */ |
| 3333 | *pp_orig_tail = p_new_tail; |
| 3334 | } else { |
| 3335 | *pp_orig_head = p_new_head; |
| 3336 | *pp_orig_tail = p_new_tail; |
| 3337 | } |
| 3338 | } |
| 3339 | /* the last gpd will not be de-queued */ |
| 3340 | kal_uint32 uart_except_de_q( |
| 3341 | void **pp_src_head, |
| 3342 | void **pp_src_tail, |
| 3343 | void **pp_new_head, |
| 3344 | void **pp_new_tail |
| 3345 | ) |
| 3346 | { |
| 3347 | kal_uint32 deqno = 0; |
| 3348 | void *p_this_gpd = NULL; |
| 3349 | *pp_new_head = NULL; |
| 3350 | *pp_new_tail = NULL; |
| 3351 | |
| 3352 | if (pp_src_head != NULL && *pp_src_head != NULL && *pp_src_head != *pp_src_tail) { |
| 3353 | p_this_gpd = *pp_src_head; |
| 3354 | QBM_CACHE_INVALID(p_this_gpd, QBM_SIZE_TGPD); |
| 3355 | if (!QBM_DES_GET_HWO(p_this_gpd)){ |
| 3356 | *pp_new_head = p_this_gpd; |
| 3357 | |
| 3358 | while(!QBM_DES_GET_HWO(p_this_gpd) && p_this_gpd != *pp_src_tail) { |
| 3359 | *pp_new_tail = p_this_gpd; |
| 3360 | deqno ++; |
| 3361 | |
| 3362 | p_this_gpd = QBM_DES_GET_NEXT(p_this_gpd); |
| 3363 | QBM_CACHE_INVALID(p_this_gpd, QBM_SIZE_TGPD); |
| 3364 | } |
| 3365 | |
| 3366 | *pp_src_head = p_this_gpd; |
| 3367 | } |
| 3368 | } |
| 3369 | |
| 3370 | return deqno; |
| 3371 | } |
| 3372 | |
| 3373 | kal_uint32 uart_except_de_q_with_timeout( |
| 3374 | UART_PORT port, |
| 3375 | void **pp_src_head, |
| 3376 | void **pp_src_tail, |
| 3377 | void **pp_new_head, |
| 3378 | void **pp_new_tail |
| 3379 | ) |
| 3380 | { |
| 3381 | kal_uint32 deqno = 0; |
| 3382 | void *p_this_gpd = NULL; |
| 3383 | *pp_new_head = NULL; |
| 3384 | *pp_new_tail = NULL; |
| 3385 | |
| 3386 | if (pp_src_head != NULL && *pp_src_head != NULL && *pp_src_head != *pp_src_tail) { |
| 3387 | p_this_gpd = *pp_src_head; |
| 3388 | QBM_CACHE_INVALID(p_this_gpd, QBM_SIZE_TGPD); |
| 3389 | if (!QBM_DES_GET_HWO(p_this_gpd)){ |
| 3390 | *pp_new_head = p_this_gpd; |
| 3391 | |
| 3392 | while(!QBM_DES_GET_HWO(p_this_gpd) && p_this_gpd != *pp_src_tail) { |
| 3393 | *pp_new_tail = p_this_gpd; |
| 3394 | deqno ++; |
| 3395 | |
| 3396 | p_this_gpd = QBM_DES_GET_NEXT(p_this_gpd); |
| 3397 | QBM_CACHE_INVALID(p_this_gpd, QBM_SIZE_TGPD); |
| 3398 | } |
| 3399 | |
| 3400 | *pp_src_head = p_this_gpd; |
| 3401 | uart_ecpt_timer_reset(port); |
| 3402 | }else{ |
| 3403 | uart_ecpt_timer_start(port); |
| 3404 | } |
| 3405 | } |
| 3406 | |
| 3407 | return deqno; |
| 3408 | } |
| 3409 | |
| 3410 | DCL_STATUS uart_except_check_dma_status(kal_uint32 hdma_channel) |
| 3411 | { |
| 3412 | kal_uint32 int_sts; |
| 3413 | DCL_STATUS ret_sts = STATUS_OK; |
| 3414 | |
| 3415 | int_sts = DRV_Reg32(GDMA_GISAR_UART); |
| 3416 | |
| 3417 | if(IS_HDMA_LENERR_INTR(int_sts, hdma_channel)) { |
| 3418 | DRV_WriteReg32(GDMA_GISAR_UART, (HDMA_INTR_CHL_MASK(hdma_channel) << 16)); |
| 3419 | ret_sts = STATUS_FAIL; |
| 3420 | } |
| 3421 | |
| 3422 | if(IS_HDMA_BD_CSERR_INTR(int_sts, hdma_channel)) { |
| 3423 | DRV_WriteReg32(GDMA_GISAR_UART, (HDMA_INTR_CHL_MASK(hdma_channel) << 24)); |
| 3424 | ret_sts = STATUS_ERROR_CRCERROR; |
| 3425 | } |
| 3426 | |
| 3427 | if(IS_HDMA_GPD_CSERR_INTR(int_sts, hdma_channel)) { |
| 3428 | DRV_WriteReg32(GDMA_GISAR_UART, (HDMA_INTR_CHL_MASK(hdma_channel) << 28)); |
| 3429 | ret_sts = STATUS_ERROR_CRCERROR; |
| 3430 | } |
| 3431 | |
| 3432 | return ret_sts; |
| 3433 | } |
| 3434 | |
| 3435 | DCL_STATUS |
| 3436 | uart_en_q_de_q_for_ecpt( |
| 3437 | UART_PORT port, |
| 3438 | kal_bool tx_or_rx, |
| 3439 | kal_uint8 en_q_or_de_q, |
| 3440 | void **pp_gpd_head, |
| 3441 | void **pp_gpd_tail, |
| 3442 | kal_uint32 *p_num |
| 3443 | ) |
| 3444 | { |
| 3445 | void *p_gpd_head, *p_gpd_tail; /* work queue */ |
| 3446 | void *p_bps_gpd; |
| 3447 | kal_uint32 deq_num; |
| 3448 | DCL_STATUS ret = STATUS_OK; |
| 3449 | kal_uint32 hdma_ch; |
| 3450 | kal_uint32 xfer_bytes; |
| 3451 | |
| 3452 | ASSERT(pp_gpd_head != NULL); |
| 3453 | ASSERT(pp_gpd_tail != NULL); |
| 3454 | |
| 3455 | /* get global variable to local variable */ |
| 3456 | if (tx_or_rx == (kal_bool)UART_TX) { |
| 3457 | p_gpd_head = uart_tgpd_head[port]; |
| 3458 | p_gpd_tail = uart_tgpd_tail[port]; |
| 3459 | } else { |
| 3460 | p_gpd_head = uart_rgpd_head[port]; |
| 3461 | p_gpd_tail = uart_rgpd_tail[port]; |
| 3462 | } |
| 3463 | |
| 3464 | hdma_ch = (tx_or_rx == (kal_bool)UART_TX)?port+2:port+3; |
| 3465 | |
| 3466 | if (en_q_or_de_q == UART_EN_Q) { |
| 3467 | if (*pp_gpd_head == NULL || *pp_gpd_tail == NULL) { |
| 3468 | goto end; |
| 3469 | } |
| 3470 | |
| 3471 | /* alloc a bypass gpd */ |
| 3472 | if (tx_or_rx == (kal_bool)UART_TX) { |
| 3473 | p_bps_gpd = uart_except_alloc_bps_gpd(tx_or_rx); |
| 3474 | if (p_bps_gpd == NULL) { |
| 3475 | ret = STATUS_FAIL; |
| 3476 | goto end; |
| 3477 | } |
| 3478 | |
| 3479 | /* append the bypass gpd to the gpd list */ |
| 3480 | QBM_DES_SET_NEXT(*pp_gpd_tail, p_bps_gpd); |
| 3481 | *pp_gpd_tail = p_bps_gpd; |
| 3482 | } else { |
| 3483 | QBM_DES_CLR_HWO(*pp_gpd_tail); |
| 3484 | } |
| 3485 | |
| 3486 | /* re-calc checksum and flush cache */ |
| 3487 | uart_cal_chksum_and_flush_gpd_list(*pp_gpd_head, *pp_gpd_tail); |
| 3488 | |
| 3489 | /* now, start en-q operation */ |
| 3490 | if (p_gpd_head == NULL) { |
| 3491 | /* clear tail's HWO bit manually */ |
| 3492 | QBM_DES_CLR_HWO(*pp_gpd_tail); |
| 3493 | QBM_CACHE_FLUSH(*pp_gpd_tail, QBM_SIZE_TGPD_BPS); |
| 3494 | |
| 3495 | p_gpd_head = *pp_gpd_head; |
| 3496 | p_gpd_tail = *pp_gpd_tail; |
| 3497 | #if defined(META_MODE_SW_ESCAPING) |
| 3498 | if((kal_query_boot_mode() == FACTORY_BOOT) && (tx_or_rx ==(kal_bool)UART_TX)){ |
| 3499 | UART_META_PutBytes(port, p_gpd_head, p_gpd_tail); |
| 3500 | }else |
| 3501 | #endif |
| 3502 | { |
| 3503 | /* newly configure and start DMA */ |
| 3504 | HDMA_BUF0_PROG_ADDR_CONFIG(hdma_ch, p_gpd_head); |
| 3505 | HDMA_BUF0_START(hdma_ch); |
| 3506 | } |
| 3507 | } else { |
| 3508 | /* Because META mode Tx should be done before new en_q, p_gpd_head must be NULL. so Tx would not be affected by new Start putbytes. |
| 3509 | The following step just for backup, but should not be running. If it run, will may send more data or lose data*/ |
| 3510 | #if defined(META_MODE_SW_ESCAPING) |
| 3511 | if((kal_query_boot_mode() == FACTORY_BOOT) && (tx_or_rx ==(kal_bool)UART_TX)){ |
| 3512 | UART_META_PutBytes(port, p_gpd_head, p_gpd_tail); |
| 3513 | }else |
| 3514 | #endif |
| 3515 | { |
| 3516 | /* tail's HWO bit will be cleared automatically */ |
| 3517 | /* en-q and resume DMA */ |
| 3518 | uart_except_en_q_rx(*pp_gpd_head, *pp_gpd_tail, (void **)&p_gpd_head, (void **)&p_gpd_tail); |
| 3519 | HDMA_BUF0_RESUME(hdma_ch); |
| 3520 | } |
| 3521 | } |
| 3522 | } else if (en_q_or_de_q == UART_DE_Q) { |
| 3523 | if (p_gpd_head == NULL) { |
| 3524 | *pp_gpd_head = NULL; |
| 3525 | *pp_gpd_tail = NULL; |
| 3526 | if (NULL != p_num) |
| 3527 | *p_num = 0; |
| 3528 | goto end; |
| 3529 | } |
| 3530 | |
| 3531 | if(tx_or_rx == (kal_bool)UART_TX){ |
| 3532 | deq_num = uart_except_de_q_with_timeout(port,(void **)&p_gpd_head, (void **) &p_gpd_tail, (void **)pp_gpd_head, (void **)pp_gpd_tail); |
| 3533 | }else{ |
| 3534 | deq_num = uart_except_de_q((void **)&p_gpd_head, (void **) &p_gpd_tail, (void **)pp_gpd_head, (void **)pp_gpd_tail); |
| 3535 | } |
| 3536 | |
| 3537 | if (deq_num == 0) { |
| 3538 | *pp_gpd_head = NULL; |
| 3539 | *pp_gpd_tail = NULL; |
| 3540 | if (NULL != p_num) |
| 3541 | *p_num = deq_num; |
| 3542 | goto end; |
| 3543 | } |
| 3544 | |
| 3545 | /* check if all is done */ |
| 3546 | if (p_gpd_head == p_gpd_tail && QBM_DES_GET_HWO(p_gpd_head)==0) { |
| 3547 | if (uart_except_check_bps_gpd(p_gpd_head)) { |
| 3548 | uart_except_free_bps_gpd(p_gpd_head); |
| 3549 | QBM_DES_SET_NEXT(*pp_gpd_tail, NULL); |
| 3550 | } else { |
| 3551 | QBM_DES_SET_NEXT(*pp_gpd_tail, p_gpd_head); |
| 3552 | *pp_gpd_tail = p_gpd_head; |
| 3553 | } |
| 3554 | |
| 3555 | p_gpd_head = p_gpd_tail = NULL; |
| 3556 | } |
| 3557 | |
| 3558 | /* check and free bypass GPD allocated by us in list */ |
| 3559 | deq_num -= uart_except_free_bps_gpd_in_list(pp_gpd_head, pp_gpd_tail); |
| 3560 | |
| 3561 | if (NULL != p_num && deq_num > 0) { |
| 3562 | *p_num = deq_num; |
| 3563 | #if defined(META_MODE_SW_ESCAPING) |
| 3564 | if(kal_query_boot_mode() == FACTORY_BOOT && tx_or_rx == (kal_bool)UART_RX){ |
| 3565 | UART_META_ExBytes(port, *pp_gpd_head, *pp_gpd_tail); |
| 3566 | } |
| 3567 | #endif |
| 3568 | xfer_bytes = uart_cal_tgpd_buf_length(*pp_gpd_head, *pp_gpd_tail); |
| 3569 | if (tx_or_rx == (kal_bool)UART_TX) |
| 3570 | uart_excpt_tx_bytes[port] += xfer_bytes; |
| 3571 | else |
| 3572 | uart_excpt_rx_bytes[port] += xfer_bytes; |
| 3573 | } |
| 3574 | |
| 3575 | } else { |
| 3576 | ASSERT(en_q_or_de_q != UART_EN_Q && en_q_or_de_q != UART_DE_Q); |
| 3577 | } |
| 3578 | |
| 3579 | /* updated global variable from local variable */ |
| 3580 | if (tx_or_rx == (kal_bool)UART_TX) { |
| 3581 | uart_tgpd_head[port] = p_gpd_head; |
| 3582 | uart_tgpd_tail[port] = p_gpd_tail; |
| 3583 | } else { |
| 3584 | uart_rgpd_head[port] = p_gpd_head; |
| 3585 | uart_rgpd_tail[port] = p_gpd_tail; |
| 3586 | } |
| 3587 | |
| 3588 | end: |
| 3589 | return ret; |
| 3590 | } |
| 3591 | |
| 3592 | DCL_STATUS uart_ecpt_tx_gpd(UART_PORT port, void *p_first_gpd, void *p_last_gpd) |
| 3593 | { |
| 3594 | ASSERT(port < MAX_UART_PORT_NUM); |
| 3595 | |
| 3596 | return uart_en_q_de_q_for_ecpt(port, UART_TX, UART_EN_Q, &p_first_gpd, &p_last_gpd, NULL); |
| 3597 | } |
| 3598 | |
| 3599 | DCL_STATUS uart_ecpt_tx_done_info(UART_PORT port, void **pp_first_gpd, void **pp_last_gpd, kal_uint32 *gpd_num) |
| 3600 | { |
| 3601 | ASSERT(port < MAX_UART_PORT_NUM); |
| 3602 | |
| 3603 | return uart_en_q_de_q_for_ecpt(port, UART_TX, UART_DE_Q, pp_first_gpd, pp_last_gpd, gpd_num); |
| 3604 | } |
| 3605 | |
| 3606 | DCL_STATUS uart_ecpt_assign_rx_gpd(UART_PORT port, void *p_first_gpd, void *p_last_gpd) |
| 3607 | { |
| 3608 | ASSERT(port < MAX_UART_PORT_NUM); |
| 3609 | |
| 3610 | return uart_en_q_de_q_for_ecpt(port, UART_RX, UART_EN_Q, &p_first_gpd, &p_last_gpd, NULL); |
| 3611 | } |
| 3612 | |
| 3613 | DCL_STATUS uart_ecpt_get_rx_gpd(UART_PORT port, void **pp_first_gpd, void **pp_last_gpd, kal_uint32 *gpd_num) |
| 3614 | { |
| 3615 | ASSERT(port < MAX_UART_PORT_NUM); |
| 3616 | |
| 3617 | return uart_en_q_de_q_for_ecpt(port, UART_RX, UART_DE_Q, pp_first_gpd, pp_last_gpd, gpd_num); |
| 3618 | } |
| 3619 | |
| 3620 | void uart_ecpt_clear_sw_queue(UART_PORT port) |
| 3621 | { |
| 3622 | static kal_bool first_time_clear = KAL_TRUE; |
| 3623 | |
| 3624 | if (first_time_clear) { |
| 3625 | first_time_clear = KAL_FALSE; |
| 3626 | |
| 3627 | if (uart_wait_tgpd_head[port] != NULL) { |
| 3628 | if (uart_discard_tgpd_head != NULL) { |
| 3629 | QBM_DES_SET_NEXT(uart_discard_tgpd_tail, uart_wait_tgpd_head[port]); |
| 3630 | uart_discard_tgpd_tail = uart_wait_tgpd_tail[port]; |
| 3631 | } else { |
| 3632 | uart_discard_tgpd_head = uart_wait_tgpd_head[port]; |
| 3633 | uart_discard_tgpd_tail = uart_wait_tgpd_tail[port]; |
| 3634 | } |
| 3635 | } |
| 3636 | |
| 3637 | if (uart_tgpd_head[port] != NULL) { |
| 3638 | if (uart_discard_tgpd_head != NULL) { |
| 3639 | QBM_DES_SET_NEXT(uart_discard_tgpd_tail, uart_tgpd_head[port]); |
| 3640 | uart_discard_tgpd_tail = uart_tgpd_tail[port]; |
| 3641 | } else { |
| 3642 | uart_discard_tgpd_head = uart_tgpd_head[port]; |
| 3643 | uart_discard_tgpd_tail = uart_tgpd_tail[port]; |
| 3644 | } |
| 3645 | } |
| 3646 | |
| 3647 | if (uart_rgpd_head[port] != NULL) { |
| 3648 | if (uart_discard_rgpd_head != NULL) { |
| 3649 | QBM_DES_SET_NEXT(uart_discard_rgpd_tail, uart_rgpd_head[port]); |
| 3650 | uart_discard_rgpd_tail = uart_rgpd_tail[port]; |
| 3651 | } else { |
| 3652 | uart_discard_rgpd_head = uart_rgpd_head[port]; |
| 3653 | uart_discard_rgpd_tail = uart_rgpd_tail[port]; |
| 3654 | } |
| 3655 | } |
| 3656 | |
| 3657 | } else { |
| 3658 | ; |
| 3659 | } |
| 3660 | |
| 3661 | uart_wait_tgpd_head[port] = NULL; |
| 3662 | uart_wait_tgpd_tail[port] = NULL; |
| 3663 | |
| 3664 | uart_tgpd_head[port] = NULL; |
| 3665 | uart_tgpd_tail[port] = NULL; |
| 3666 | |
| 3667 | uart_rgpd_head[port] = NULL; |
| 3668 | uart_rgpd_tail[port] = NULL; |
| 3669 | } |
| 3670 | |
| 3671 | DCL_STATUS uart_ecpt_clear_ch(UART_PORT port) |
| 3672 | { |
| 3673 | kal_uint32 val = 0; |
| 3674 | |
| 3675 | ASSERT(port < MAX_UART_PORT_NUM); |
| 3676 | |
| 3677 | #if defined(META_MODE_SW_ESCAPING) |
| 3678 | if(kal_query_boot_mode() != FACTORY_BOOT) |
| 3679 | #endif |
| 3680 | { |
| 3681 | /* Wait Tx HDMA Channel to be inactive */ |
| 3682 | while(HDMA_BUF0_IS_ACTIVE((port + 2))) |
| 3683 | { |
| 3684 | val = DRV_Reg32(GDMA_GISAR_UART); |
| 3685 | if(IS_HDMA_LENERR_INTR(val, (2 + port))) break; |
| 3686 | if(IS_HDMA_GPD_CSERR_INTR(val, (2 + port))) break; |
| 3687 | if(IS_HDMA_BD_CSERR_INTR(val, (2 + port))) break; |
| 3688 | } |
| 3689 | |
| 3690 | /* Stop Tx HDMA Channel */ |
| 3691 | HDMA_BUF0_STOP((2 + port)); |
| 3692 | while (HDMA_BUF0_IS_ACTIVE((port + 2))); |
| 3693 | } |
| 3694 | /* Stop Rx HDMA Channel */ |
| 3695 | HDMA_BUF0_STOP((3 + port)); |
| 3696 | while (HDMA_BUF0_IS_ACTIVE((port + 3))); |
| 3697 | |
| 3698 | /* Clear SW Queue */ |
| 3699 | uart_ecpt_clear_sw_queue(port); |
| 3700 | |
| 3701 | return STATUS_OK; |
| 3702 | } |
| 3703 | |
| 3704 | void uart_ecpt_timer_reset(UART_PORT port){ |
| 3705 | ASSERT(port < MAX_UART_PORT_NUM); |
| 3706 | uart_ecpt_timer[port].timer_during = 0; |
| 3707 | uart_ecpt_timer[port].timer_old = 0; |
| 3708 | uart_ecpt_timer[port].timer_now = 0; |
| 3709 | uart_ecpt_timer[port].timer_start = 0; |
| 3710 | } |
| 3711 | |
| 3712 | void uart_ecpt_timer_start(UART_PORT port) |
| 3713 | { |
| 3714 | ASSERT(port < MAX_UART_PORT_NUM); |
| 3715 | if(uart_ecpt_timer[port].timer_start == 0){ |
| 3716 | uart_ecpt_timer[port].timer_now = ust_get_current_time(); |
| 3717 | uart_ecpt_timer[port].timer_old = uart_ecpt_timer[port].timer_now; |
| 3718 | uart_ecpt_timer[port].timer_during = 0; |
| 3719 | uart_ecpt_timer[port].timer_start = 1; |
| 3720 | }else{ |
| 3721 | uart_ecpt_timer[port].timer_now = ust_get_current_time(); |
| 3722 | } |
| 3723 | } |
| 3724 | |
| 3725 | kal_uint32 uart_ecpt_get_timer_during(UART_PORT port) |
| 3726 | { |
| 3727 | ASSERT(port < MAX_UART_PORT_NUM); |
| 3728 | uart_ecpt_timer[port].timer_during =ust_us_duration(uart_ecpt_timer[port].timer_old,uart_ecpt_timer[port].timer_now)/1000 ; |
| 3729 | return uart_ecpt_timer[port].timer_during; |
| 3730 | } |
| 3731 | |
| 3732 | DCL_STATUS uart_ecpt_init_hif(UART_PORT port) |
| 3733 | { |
| 3734 | ASSERT(port < MAX_UART_PORT_NUM); |
| 3735 | |
| 3736 | /* need re-init hardware ??? */ |
| 3737 | |
| 3738 | /* initial exception mode qbm */ |
| 3739 | if (uart_except_init_qbm() != KAL_TRUE) { |
| 3740 | return STATUS_FAIL; |
| 3741 | } |
| 3742 | return STATUS_OK; |
| 3743 | } |
| 3744 | |
| 3745 | DCL_STATUS uart_except_reset(UART_PORT port) |
| 3746 | { |
| 3747 | ASSERT(port < MAX_UART_PORT_NUM); |
| 3748 | uart_ecpt_tx_state[port] = HIF_STATE_NORMAL; |
| 3749 | uart_ecpt_timer_reset(port); |
| 3750 | |
| 3751 | return STATUS_OK; |
| 3752 | } |
| 3753 | kal_uint32 uart_ecpt_get_tx_state(UART_PORT port){ |
| 3754 | ASSERT(port < MAX_UART_PORT_NUM); |
| 3755 | kal_uint32 timer_dur = 0; |
| 3756 | timer_dur = uart_ecpt_get_timer_during(port); |
| 3757 | if(timer_dur>=UART_ECPT_MAX_TIMEOUT){ |
| 3758 | uart_ecpt_tx_state[port] = HIF_STATE_TXERROR; |
| 3759 | uart_ecpt_timer_reset( port); |
| 3760 | }else{ |
| 3761 | uart_ecpt_tx_state[port] = HIF_STATE_NORMAL; |
| 3762 | } |
| 3763 | |
| 3764 | return uart_ecpt_tx_state[port]; |
| 3765 | } |
| 3766 | |
| 3767 | |
| 3768 | #else //#if !defined(DRV_UART_OFF) |
| 3769 | |
| 3770 | UARTStruct UARTPort[MAX_UART_PORT_NUM]; |
| 3771 | |
| 3772 | kal_bool UART_VFIFO_support[MAX_UART_PORT_NUM] = |
| 3773 | { |
| 3774 | KAL_FALSE, |
| 3775 | KAL_FALSE, |
| 3776 | }; |
| 3777 | |
| 3778 | void UART_Boot_PutUARTBytes(UART_PORT port, kal_uint8 *data,kal_uint16 len){} |
| 3779 | void U_Register(UART_PORT port, UartType_enum type, UartDriver_strcut* drv){} |
| 3780 | kal_bool U_Open(UART_PORT port, module_type ownerid){} |
| 3781 | void U_Close(UART_PORT port, module_type ownerid){} |
| 3782 | kal_uint16 U_GetBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length, kal_uint8 *status, module_type ownerid){} |
| 3783 | kal_uint16 U_PutBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length, module_type ownerid){} |
| 3784 | kal_uint16 U_GetBytesAvail(UART_PORT port){} |
| 3785 | kal_uint16 U_GetTxRoomLeft(UART_PORT port){} |
| 3786 | kal_uint16 U_PutISRBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length, module_type ownerid){} |
| 3787 | kal_uint16 U_GetTxISRRoomLeft(UART_PORT port){} |
| 3788 | kal_uint16 U_SendISRData(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length,kal_uint8 mode, kal_uint8 escape_char, module_type ownerid){} |
| 3789 | kal_uint16 U_SendData(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length,kal_uint8 mode,kal_uint8 escape_char, module_type ownerid ){} |
| 3790 | void U_Purge(UART_PORT port, UART_buffer dir, module_type ownerid){} |
| 3791 | void U_SetOwner (UART_PORT port, module_type ownerid){} |
| 3792 | void U_SetFlowCtrl(UART_PORT port, kal_bool XON, module_type ownerid){} |
| 3793 | void U_ConfigEscape (UART_PORT port, kal_uint8 EscChar, kal_uint16 ESCGuardtime, module_type ownerid){} |
| 3794 | void U_SetDCBConfig(UART_PORT port, UARTDCBStruct *UART_Config, module_type ownerid){} |
| 3795 | void U_CtrlDCD(UART_PORT port, IO_level SDCD, module_type ownerid){} |
| 3796 | void U_CtrlBreak(UART_PORT port, IO_level SBREAK, module_type ownerid){} |
| 3797 | void U_ClrRxBuffer(UART_PORT port, module_type ownerid){} |
| 3798 | void U_ClrTxBuffer(UART_PORT port, module_type ownerid){} |
| 3799 | void U_SetBaudRate(UART_PORT port, UART_baudrate baudrate, module_type ownerid){} |
| 3800 | module_type U_GetOwnerID(UART_PORT port){} |
| 3801 | void U_SetAutoBaud_Div(UART_PORT port, module_type ownerid){} |
| 3802 | void U_Register_TX_cb(UART_PORT port, module_type ownerid, UART_TX_FUNC func){} |
| 3803 | void U_Register_RX_cb(UART_PORT port, module_type ownerid, UART_RX_FUNC func){} |
| 3804 | kal_uint8 U_GetUARTByte(UART_PORT port){} |
| 3805 | kal_uint8 U_GetUARTByteWithTimeOut(UART_PORT port, kal_uint8* ch, kal_uint32 timeout_value){return 0;} |
| 3806 | void U_PutUARTByte(UART_PORT port, kal_uint8 data){} |
| 3807 | void U_PutUARTBytes(UART_PORT port, kal_uint8 *data, kal_uint16 len){} |
| 3808 | void U_ReadDCBConfig(UART_PORT port, UARTDCBStruct *DCB){} |
| 3809 | void U_CtrlRI (UART_PORT port, IO_level SRI, module_type ownerid){} |
| 3810 | void U_CtrlDTR (UART_PORT port, IO_level SDTR, module_type ownerid){} |
| 3811 | void U_ReadHWStatus(UART_PORT port, IO_level *SDSR, IO_level *SCTS){} |
| 3812 | void UART_AssertWaitPrevDataSentOut(UART_PORT port){} |
| 3813 | void UART_Calback(void *parameter){} |
| 3814 | void UART_CheckAT_Callback(void *parameter){} |
| 3815 | kal_bool UART_CheckTxAllSentOut(UART_PORT port){} |
| 3816 | kal_bool UART_CheckTxBufferEmpty(UART_PORT port){} |
| 3817 | void UART_CompensateAT(UART_PORT port){} |
| 3818 | void uart_customize_init(void){} |
| 3819 | void UART_dafault_rx_cb(UART_PORT port){} |
| 3820 | void UART_dafault_tx_cb(UART_PORT port){} |
| 3821 | void UART_DriverInit(UART_PORT port){} |
| 3822 | void UART_EnableTX(UART_PORT port, kal_bool enable){} |
| 3823 | void UART_GetTxBufferSize(UART_PORT port, kal_uint32 *total_size, kal_uint32 *rest_size){} |
| 3824 | void UART_HWInit(UART_PORT port){} |
| 3825 | kal_bool UART_IsVfifoSetting(UART_PORT port, UART_TxRx_VFIFO_support vs){} |
| 3826 | void UART_RecHandler(void *parameter){} |
| 3827 | void UART_MsHandler(void *parameter){} |
| 3828 | void UART_RLSHandler(void *parameter){} |
| 3829 | void UART_sendilm(UART_PORT port, msg_type msgid){} |
| 3830 | void UART_set_FIFO_trigger(UART_PORT port, kal_uint16 tx_level, kal_uint16 rx_level){} |
| 3831 | void UART_SetRateFix(UART_PORT port){} |
| 3832 | void UART_SetSleepEnable(UART_PORT port, kal_bool enable){} |
| 3833 | void UART_SleepOnTx_Enable(UART_PORT port, UART_SLEEP_ON_TX enable_flag){} |
| 3834 | kal_bool uart_support_autoescape(void){} |
| 3835 | void UART_SwitchPort(UART_PORT *APP_port, UART_PORT new_uart_port){} |
| 3836 | void UART_TrxHandler(void *parameter){} |
| 3837 | void UART_TxDMAHandler(void *parameter, kal_uint8 chk_done){} |
| 3838 | void UART_TurnOnPower(UART_PORT port, kal_bool enable){} |
| 3839 | void UART1_HISR(void){} |
| 3840 | void UART2_HISR(void){} |
| 3841 | void PutUARTDatas(UART_PORT port, kal_uint8 escape_char, kal_uint8 *data,kal_uint16 len){} |
| 3842 | kal_uint16 BMT_PutBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length){} |
| 3843 | void PutUARTRingBufferData(UART_PORT port){} |
| 3844 | void UART_loopback(UART_PORT port){} |
| 3845 | void UART_dsp_dafault_tx_cb(UART_PORT port){} |
| 3846 | void UART_dsp_dafault_rx_cb(UART_PORT port){} |
| 3847 | #endif //if !defined(DRV_UART_OFF) |
| 3848 | |
| 3849 | |
| 3850 | // uart dispatch funtion table |
| 3851 | UartDriver_strcut UartDriver= |
| 3852 | { |
| 3853 | U_Open, |
| 3854 | U_Close, |
| 3855 | U_GetBytes, // SIO_CMD_GET_BYTES is not supported |
| 3856 | U_PutBytes, // SIO_CMD_PUT_BYTES is not supported |
| 3857 | U_GetBytesAvail, // SIO_CMD_GET_RX_AVAIL is not supported |
| 3858 | U_GetTxRoomLeft, // SIO_CMD_GET_TX_AVAIL is not supported |
| 3859 | U_PutISRBytes, // SIO_CMD_PUT_ISR_BYTES is not supported |
| 3860 | U_GetTxISRRoomLeft, // SIO_CMD_GET_ISR_TX_AVAIL is not supported |
| 3861 | U_Purge, |
| 3862 | U_SetOwner, |
| 3863 | U_SetFlowCtrl, |
| 3864 | U_ConfigEscape, |
| 3865 | U_SetDCBConfig, |
| 3866 | U_CtrlDCD, // SIO_CMD_CTRL_DCD is not supported |
| 3867 | U_CtrlBreak, |
| 3868 | U_ClrRxBuffer, |
| 3869 | U_ClrTxBuffer, |
| 3870 | U_SetBaudRate, |
| 3871 | U_SendISRData, // SIO_CMD_SEND_ISR_DATA is not supported |
| 3872 | U_SendData, // SIO_CMD_SEND_DATA is not supported |
| 3873 | U_GetOwnerID, |
| 3874 | U_SetAutoBaud_Div, // SIO_CMD_SET_AUTOBAUD_DIV is not supported |
| 3875 | /*TY adds these to expand flexibility 2004/10/15*/ |
| 3876 | U_Register_TX_cb, // SIO_CMD_REG_TX_CB is not supported |
| 3877 | U_Register_RX_cb, // SIO_CMD_REG_RX_CB is not supported |
| 3878 | /*TY adds these to let virtual COM port can retrive exception log 2005/3/8*/ |
| 3879 | U_GetUARTByte, // SIO_CMD_GET_UART_BYTE is not supported |
| 3880 | U_PutUARTByte, // SIO_CMD_PUT_UART_BYTE is not supported |
| 3881 | U_PutUARTBytes, // SIO_CMD_PUT_UART_BYTES is not supported |
| 3882 | /*for virtual com port to return DCB configuration*/ |
| 3883 | U_ReadDCBConfig, |
| 3884 | U_CtrlRI, // SIO_CMD_CTRL_RI is not supported |
| 3885 | U_CtrlDTR, // SIO_CMD_CTRL_DTR is not supported |
| 3886 | U_ReadHWStatus, |
| 3887 | U_GetUARTByteWithTimeOut |
| 3888 | }; |
| 3889 | |
| 3890 | |
| 3891 | typedef struct hdma_tgpd_ss { |
| 3892 | kal_uint8 hwo:1; |
| 3893 | kal_uint8 bdp:1; |
| 3894 | kal_uint8 bps:1; |
| 3895 | kal_uint8 resv1:4; |
| 3896 | kal_uint8 ioc:1; |
| 3897 | kal_uint8 cksum; |
| 3898 | kal_uint16 resv2; |
| 3899 | kal_uint32 nextPtr; |
| 3900 | kal_uint32 bufPtr; |
| 3901 | kal_uint8 resv3; |
| 3902 | } hdma_tgpd_tt; |
| 3903 | |
| 3904 | typedef struct hdma_rgpd_ss { |
| 3905 | kal_uint8 hwo:1; |
| 3906 | kal_uint8 bdp:1; |
| 3907 | kal_uint8 bps:1; |
| 3908 | kal_uint8 resv1:4; |
| 3909 | kal_uint8 ioc:1; |
| 3910 | kal_uint8 cksum; |
| 3911 | kal_uint16 allowBufLen; |
| 3912 | kal_uint32 nextPtr; |
| 3913 | kal_uint32 bufPtr; |
| 3914 | kal_uint16 bufLen; |
| 3915 | kal_uint16 resv2; |
| 3916 | } hdma_rgpd_tt; |
| 3917 | |
| 3918 | |
| 3919 | // dummy_fdma() just for mt6595 workaround patch. removed on LR12. |
| 3920 | /* |
| 3921 | void dummy_fdma(kal_uint32 gdma_start) |
| 3922 | { |
| 3923 | |
| 3924 | FDMA_PDN_CLR(3); |
| 3925 | if(gdma_start == 0){ |
| 3926 | DRV_WriteReg32(0xff2c0080, 0x4); // stop (GDMA_FDCR0) |
| 3927 | FDMA_PDN_SET(3); |
| 3928 | } |
| 3929 | else{ |
| 3930 | DRV_WriteReg32(0xff2c0080, 0x4); // stop (GDMA_FDCR0) |
| 3931 | while(DRV_Reg32(0xff2c0014) & (1<<16)); // check done state (GDMA_FDCSR0) |
| 3932 | |
| 3933 | DRV_WriteReg32(0xff2c0014, 0x02000000); // GDMA_FDCSR |
| 3934 | DRV_WriteReg32(0xff2c0084, 0xbf830C20); // GDMA_FDSAR3 |
| 3935 | DRV_WriteReg32(0xff2c0088, 0xbf830C24); // GDMA_FDDAR3 |
| 3936 | DRV_WriteReg32(0xff2c0080, 0xffff43a1); // start (GDMA_FDCR3) |
| 3937 | } |
| 3938 | return; |
| 3939 | } |
| 3940 | |
| 3941 | } |
| 3942 | */ |
| 3943 | |
| 3944 | extern UARTStruct UARTPort[]; |
| 3945 | extern Seriport_HANDLER_T Uart_Drv_Handler; |
| 3946 | |
| 3947 | enum { |
| 3948 | INIT_NOTINIT, |
| 3949 | INIT_REG_CB, |
| 3950 | INIT_DRV_ATTACH, |
| 3951 | INIT_DRV_INIT, |
| 3952 | INIT_UPMOD_INIT, |
| 3953 | INIT_SET_BAUDRATE, |
| 3954 | INIT_DONE, |
| 3955 | } uart_excpt_drv_init_stage = INIT_NOTINIT; |
| 3956 | kal_bool uart_excpt_drv_init_done_g = KAL_FALSE; |
| 3957 | kal_bool uart_st_in_except_mode_g = KAL_FALSE; |
| 3958 | |
| 3959 | #if defined __UART_UT__ |
| 3960 | kal_int32 uart_hmu_pre_init(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 3961 | { |
| 3962 | return KAL_TRUE; |
| 3963 | } |
| 3964 | |
| 3965 | kal_int32 uart_hmu_init(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 3966 | { |
| 3967 | return 0; |
| 3968 | } |
| 3969 | |
| 3970 | kal_int32 uart_hmu_post_init(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 3971 | { |
| 3972 | return KAL_TRUE; |
| 3973 | } |
| 3974 | |
| 3975 | kal_int32 uart_hmu_pre_deinit(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 3976 | { |
| 3977 | return KAL_TRUE; |
| 3978 | } |
| 3979 | |
| 3980 | kal_int32 uart_hmu_deinit(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 3981 | { |
| 3982 | return KAL_TRUE; |
| 3983 | } |
| 3984 | |
| 3985 | kal_int32 uart_hmu_post_deinit(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 3986 | { |
| 3987 | return KAL_TRUE; |
| 3988 | } |
| 3989 | |
| 3990 | kal_int32 uart_hmu_except_init(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 3991 | { |
| 3992 | return KAL_TRUE; |
| 3993 | } |
| 3994 | |
| 3995 | #else |
| 3996 | |
| 3997 | kal_int32 uart_hmu_pre_init(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 3998 | { |
| 3999 | return KAL_TRUE; |
| 4000 | } |
| 4001 | |
| 4002 | kal_int32 uart_hmu_init(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 4003 | { |
| 4004 | |
| 4005 | return KAL_TRUE; |
| 4006 | } |
| 4007 | |
| 4008 | kal_int32 uart_hmu_post_init(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 4009 | { |
| 4010 | return KAL_TRUE; |
| 4011 | } |
| 4012 | |
| 4013 | kal_int32 uart_hmu_pre_deinit(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 4014 | { |
| 4015 | return KAL_TRUE; |
| 4016 | } |
| 4017 | |
| 4018 | kal_int32 uart_hmu_deinit(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 4019 | { |
| 4020 | |
| 4021 | return KAL_TRUE; |
| 4022 | } |
| 4023 | |
| 4024 | kal_int32 uart_hmu_post_deinit(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 4025 | { |
| 4026 | return KAL_TRUE; |
| 4027 | } |
| 4028 | |
| 4029 | UARTStruct* uart_core_get_instance(kal_uint32 uart_port) |
| 4030 | { |
| 4031 | return &UARTPort[uart_port]; |
| 4032 | } |
| 4033 | |
| 4034 | DCL_STATUS uart_ttyhdr_reg_ttycore(UARTStruct*p_dev_inst, kal_uint32 port) |
| 4035 | { |
| 4036 | DCL_STATUS status; |
| 4037 | DCL_HANDLE handle; |
| 4038 | |
| 4039 | handle = DclSerialPort_Open(port, 0); |
| 4040 | |
| 4041 | uart_excpt_drv_init_stage = INIT_REG_CB; |
| 4042 | status = DclSerialPort_DrvRegisterCb(handle, &Uart_Drv_Handler); |
| 4043 | |
| 4044 | if (KAL_TRUE == uart_st_in_except_mode_g && STATUS_ALREADY_OPENED == status) { |
| 4045 | return STATUS_OK; |
| 4046 | } |
| 4047 | return status; |
| 4048 | } |
| 4049 | |
| 4050 | DCL_STATUS uart_ttyhdr_cmd_init(UART_PORT port) |
| 4051 | { |
| 4052 | DCL_STATUS status; |
| 4053 | DCL_HANDLE handle; |
| 4054 | DCL_CTRL_DATA_T data; |
| 4055 | |
| 4056 | handle = DclSerialPort_Open(port, 0); |
| 4057 | |
| 4058 | uart_excpt_drv_init_stage = INIT_DRV_ATTACH; |
| 4059 | status = DclSerialPort_DrvAttach(handle); |
| 4060 | if(status != STATUS_OK) |
| 4061 | { |
| 4062 | return STATUS_FAIL; |
| 4063 | } |
| 4064 | |
| 4065 | uart_excpt_drv_init_stage = INIT_DRV_INIT; |
| 4066 | status = DclSerialPort_Control(handle, SIO_CMD_INIT, &data); |
| 4067 | |
| 4068 | return status; |
| 4069 | |
| 4070 | } |
| 4071 | |
| 4072 | DCL_STATUS uart_ttyhdr_upmodule_init(UART_PORT port) |
| 4073 | { |
| 4074 | DCL_STATUS status; |
| 4075 | DCL_HANDLE handle; |
| 4076 | UART_CTRL_DCB_T data; |
| 4077 | |
| 4078 | handle = DclSerialPort_Open(port, 0); |
| 4079 | |
| 4080 | uart_excpt_drv_init_stage = INIT_UPMOD_INIT; |
| 4081 | status = DclSerialPort_UpModuleInit(handle, MOD_DRV_DBG, TTY_FLAG_NEW_TX | TTY_FLAG_NEW_RX); |
| 4082 | if (status != STATUS_OK && status != STATUS_ALREADY_OPENED) { |
| 4083 | return status; |
| 4084 | } |
| 4085 | |
| 4086 | //DclSerialPort_UpModuleRegisterCb(handle, dbg_print_tty_rx_cb, NULL, dbg_print_tty_state_cb); |
| 4087 | |
| 4088 | data.u4OwenrId = MOD_DRV_DBG; |
| 4089 | data.rUARTConfig.u4Baud = UART_BAUD_1500000; |
| 4090 | data.rUARTConfig.u1DataBits = len_8; |
| 4091 | data.rUARTConfig.u1StopBits = sb_1; |
| 4092 | data.rUARTConfig.u1Parity = pa_none; |
| 4093 | data.rUARTConfig.u1FlowControl = fc_sw; |
| 4094 | data.rUARTConfig.ucXonChar = 0x11; |
| 4095 | data.rUARTConfig.ucXoffChar = 0x13; |
| 4096 | data.rUARTConfig.fgDSRCheck = KAL_FALSE; |
| 4097 | |
| 4098 | // Set baudrate |
| 4099 | uart_excpt_drv_init_stage = INIT_SET_BAUDRATE; |
| 4100 | status = DclSerialPort_Control(handle, SIO_CMD_SET_DCB_CONFIG, (DCL_CTRL_DATA_T*)&data); |
| 4101 | |
| 4102 | return status; |
| 4103 | } |
| 4104 | |
| 4105 | kal_int32 uart_hmu_except_init(kal_uint32 dev_mapping, kal_uint32 ext_devinfo_len, kal_char *ext_devinfo) |
| 4106 | { |
| 4107 | DCL_STATUS ret; |
| 4108 | UARTStruct* p_dev_inst; |
| 4109 | kal_uint32 uart_port; |
| 4110 | kal_uint32 init_ports[] = {uart_port1, uart_port2}; |
| 4111 | kal_uint32 ret_val = 0; |
| 4112 | int i; |
| 4113 | |
| 4114 | uart_st_in_except_mode_g = KAL_TRUE; |
| 4115 | if (uart_excpt_drv_init_done_g == KAL_TRUE) { |
| 4116 | return 0; |
| 4117 | } |
| 4118 | |
| 4119 | for (i = 0; i < sizeof(init_ports)/sizeof(init_ports[0]); i++) { |
| 4120 | uart_port = init_ports[i]; |
| 4121 | |
| 4122 | p_dev_inst = uart_core_get_instance(uart_port); |
| 4123 | |
| 4124 | if(p_dev_inst->initialized == KAL_TRUE){ |
| 4125 | continue; |
| 4126 | } |
| 4127 | |
| 4128 | ret = uart_ttyhdr_reg_ttycore(p_dev_inst, uart_port); |
| 4129 | if (STATUS_OK != ret) { |
| 4130 | ret_val = -1; |
| 4131 | continue; |
| 4132 | } |
| 4133 | |
| 4134 | ret = uart_ttyhdr_cmd_init(uart_port); |
| 4135 | if (STATUS_OK != ret) { |
| 4136 | ret_val = -1; |
| 4137 | continue; |
| 4138 | } |
| 4139 | } |
| 4140 | |
| 4141 | uart_excpt_drv_init_stage = INIT_DONE; |
| 4142 | uart_excpt_drv_init_done_g = KAL_TRUE; |
| 4143 | |
| 4144 | return ret_val; |
| 4145 | } |
| 4146 | |
| 4147 | #endif |
| 4148 | |
| 4149 | |